snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -323,12 +322,7 @@ class OPTICS(BaseTransformer):
323
322
  )
324
323
  return selected_cols
325
324
 
326
- @telemetry.send_api_usage_telemetry(
327
- project=_PROJECT,
328
- subproject=_SUBPROJECT,
329
- custom_tags=dict([("autogen", True)]),
330
- )
331
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OPTICS":
325
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OPTICS":
332
326
  """Perform OPTICS clustering
333
327
  For more details on this function, see [sklearn.cluster.OPTICS.fit]
334
328
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS.fit)
@@ -355,12 +349,14 @@ class OPTICS(BaseTransformer):
355
349
 
356
350
  self._snowpark_cols = dataset.select(self.input_cols).columns
357
351
 
358
- # If we are already in a stored procedure, no need to kick off another one.
352
+ # If we are already in a stored procedure, no need to kick off another one.
359
353
  if SNOWML_SPROC_ENV in os.environ:
360
354
  statement_params = telemetry.get_function_usage_statement_params(
361
355
  project=_PROJECT,
362
356
  subproject=_SUBPROJECT,
363
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OPTICS.__class__.__name__),
357
+ function_name=telemetry.get_statement_params_full_func_name(
358
+ inspect.currentframe(), OPTICS.__class__.__name__
359
+ ),
364
360
  api_calls=[Session.call],
365
361
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
366
362
  )
@@ -381,7 +377,7 @@ class OPTICS(BaseTransformer):
381
377
  )
382
378
  self._sklearn_object = model_trainer.train()
383
379
  self._is_fitted = True
384
- self._get_model_signatures(dataset)
380
+ self._generate_model_signatures(dataset)
385
381
  return self
386
382
 
387
383
  def _batch_inference_validate_snowpark(
@@ -455,7 +451,9 @@ class OPTICS(BaseTransformer):
455
451
  # when it is classifier, infer the datatype from label columns
456
452
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
457
453
  # Batch inference takes a single expected output column type. Use the first columns type for now.
458
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
454
+ label_cols_signatures = [
455
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
456
+ ]
459
457
  if len(label_cols_signatures) == 0:
460
458
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
461
459
  raise exceptions.SnowflakeMLException(
@@ -463,25 +461,22 @@ class OPTICS(BaseTransformer):
463
461
  original_exception=ValueError(error_str),
464
462
  )
465
463
 
466
- expected_type_inferred = convert_sp_to_sf_type(
467
- label_cols_signatures[0].as_snowpark_type()
468
- )
464
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
469
465
 
470
466
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
471
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
467
+ assert isinstance(
468
+ dataset._session, Session
469
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
472
470
 
473
471
  transform_kwargs = dict(
474
- session = dataset._session,
475
- dependencies = self._deps,
476
- drop_input_cols = self._drop_input_cols,
477
- expected_output_cols_type = expected_type_inferred,
472
+ session=dataset._session,
473
+ dependencies=self._deps,
474
+ drop_input_cols=self._drop_input_cols,
475
+ expected_output_cols_type=expected_type_inferred,
478
476
  )
479
477
 
480
478
  elif isinstance(dataset, pd.DataFrame):
481
- transform_kwargs = dict(
482
- snowpark_input_cols = self._snowpark_cols,
483
- drop_input_cols = self._drop_input_cols
484
- )
479
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
485
480
 
486
481
  transform_handlers = ModelTransformerBuilder.build(
487
482
  dataset=dataset,
@@ -521,7 +516,7 @@ class OPTICS(BaseTransformer):
521
516
  Transformed dataset.
522
517
  """
523
518
  super()._check_dataset_type(dataset)
524
- inference_method="transform"
519
+ inference_method = "transform"
525
520
 
526
521
  # This dictionary contains optional kwargs for batch inference. These kwargs
527
522
  # are specific to the type of dataset used.
@@ -558,17 +553,14 @@ class OPTICS(BaseTransformer):
558
553
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
559
554
 
560
555
  transform_kwargs = dict(
561
- session = dataset._session,
562
- dependencies = self._deps,
563
- drop_input_cols = self._drop_input_cols,
564
- expected_output_cols_type = expected_dtype,
556
+ session=dataset._session,
557
+ dependencies=self._deps,
558
+ drop_input_cols=self._drop_input_cols,
559
+ expected_output_cols_type=expected_dtype,
565
560
  )
566
561
 
567
562
  elif isinstance(dataset, pd.DataFrame):
568
- transform_kwargs = dict(
569
- snowpark_input_cols = self._snowpark_cols,
570
- drop_input_cols = self._drop_input_cols
571
- )
563
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
572
564
 
573
565
  transform_handlers = ModelTransformerBuilder.build(
574
566
  dataset=dataset,
@@ -587,7 +579,11 @@ class OPTICS(BaseTransformer):
587
579
  return output_df
588
580
 
589
581
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
590
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
582
+ def fit_predict(
583
+ self,
584
+ dataset: Union[DataFrame, pd.DataFrame],
585
+ output_cols_prefix: str = "fit_predict_",
586
+ ) -> Union[DataFrame, pd.DataFrame]:
591
587
  """ Perform clustering on `X` and returns cluster labels
592
588
  For more details on this function, see [sklearn.cluster.OPTICS.fit_predict]
593
589
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS.fit_predict)
@@ -614,7 +610,9 @@ class OPTICS(BaseTransformer):
614
610
  )
615
611
  output_result, fitted_estimator = model_trainer.train_fit_predict(
616
612
  drop_input_cols=self._drop_input_cols,
617
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
613
+ expected_output_cols_list=(
614
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
615
+ ),
618
616
  )
619
617
  self._sklearn_object = fitted_estimator
620
618
  self._is_fitted = True
@@ -631,6 +629,62 @@ class OPTICS(BaseTransformer):
631
629
  assert self._sklearn_object is not None
632
630
  return self._sklearn_object.embedding_
633
631
 
632
+
633
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
634
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
635
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
636
+ """
637
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
638
+ # The following condition is introduced for kneighbors methods, and not used in other methods
639
+ if output_cols:
640
+ output_cols = [
641
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
642
+ for c in output_cols
643
+ ]
644
+ elif getattr(self._sklearn_object, "classes_", None) is None:
645
+ output_cols = [output_cols_prefix]
646
+ elif self._sklearn_object is not None:
647
+ classes = self._sklearn_object.classes_
648
+ if isinstance(classes, numpy.ndarray):
649
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
650
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
651
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
652
+ output_cols = []
653
+ for i, cl in enumerate(classes):
654
+ # For binary classification, there is only one output column for each class
655
+ # ndarray as the two classes are complementary.
656
+ if len(cl) == 2:
657
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
658
+ else:
659
+ output_cols.extend([
660
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
661
+ ])
662
+ else:
663
+ output_cols = []
664
+
665
+ # Make sure column names are valid snowflake identifiers.
666
+ assert output_cols is not None # Make MyPy happy
667
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
668
+
669
+ return rv
670
+
671
+ def _align_expected_output_names(
672
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
673
+ ) -> List[str]:
674
+ # in case the inferred output column names dimension is different
675
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
676
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
677
+ output_df_columns = list(output_df_pd.columns)
678
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
679
+ if self.sample_weight_col:
680
+ output_df_columns_set -= set(self.sample_weight_col)
681
+ # if the dimension of inferred output column names is correct; use it
682
+ if len(expected_output_cols_list) == len(output_df_columns_set):
683
+ return expected_output_cols_list
684
+ # otherwise, use the sklearn estimator's output
685
+ else:
686
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
687
+
634
688
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
635
689
  @telemetry.send_api_usage_telemetry(
636
690
  project=_PROJECT,
@@ -661,24 +715,28 @@ class OPTICS(BaseTransformer):
661
715
  # are specific to the type of dataset used.
662
716
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
663
717
 
718
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
719
+
664
720
  if isinstance(dataset, DataFrame):
665
721
  self._deps = self._batch_inference_validate_snowpark(
666
722
  dataset=dataset,
667
723
  inference_method=inference_method,
668
724
  )
669
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
725
+ assert isinstance(
726
+ dataset._session, Session
727
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
670
728
  transform_kwargs = dict(
671
729
  session=dataset._session,
672
730
  dependencies=self._deps,
673
- drop_input_cols = self._drop_input_cols,
731
+ drop_input_cols=self._drop_input_cols,
674
732
  expected_output_cols_type="float",
675
733
  )
734
+ expected_output_cols = self._align_expected_output_names(
735
+ inference_method, dataset, expected_output_cols, output_cols_prefix
736
+ )
676
737
 
677
738
  elif isinstance(dataset, pd.DataFrame):
678
- transform_kwargs = dict(
679
- snowpark_input_cols = self._snowpark_cols,
680
- drop_input_cols = self._drop_input_cols
681
- )
739
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
682
740
 
683
741
  transform_handlers = ModelTransformerBuilder.build(
684
742
  dataset=dataset,
@@ -690,7 +748,7 @@ class OPTICS(BaseTransformer):
690
748
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
691
749
  inference_method=inference_method,
692
750
  input_cols=self.input_cols,
693
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
751
+ expected_output_cols=expected_output_cols,
694
752
  **transform_kwargs
695
753
  )
696
754
  return output_df
@@ -720,7 +778,8 @@ class OPTICS(BaseTransformer):
720
778
  Output dataset with log probability of the sample for each class in the model.
721
779
  """
722
780
  super()._check_dataset_type(dataset)
723
- inference_method="predict_log_proba"
781
+ inference_method = "predict_log_proba"
782
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
724
783
 
725
784
  # This dictionary contains optional kwargs for batch inference. These kwargs
726
785
  # are specific to the type of dataset used.
@@ -731,18 +790,20 @@ class OPTICS(BaseTransformer):
731
790
  dataset=dataset,
732
791
  inference_method=inference_method,
733
792
  )
734
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
793
+ assert isinstance(
794
+ dataset._session, Session
795
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
735
796
  transform_kwargs = dict(
736
797
  session=dataset._session,
737
798
  dependencies=self._deps,
738
- drop_input_cols = self._drop_input_cols,
799
+ drop_input_cols=self._drop_input_cols,
739
800
  expected_output_cols_type="float",
740
801
  )
802
+ expected_output_cols = self._align_expected_output_names(
803
+ inference_method, dataset, expected_output_cols, output_cols_prefix
804
+ )
741
805
  elif isinstance(dataset, pd.DataFrame):
742
- transform_kwargs = dict(
743
- snowpark_input_cols = self._snowpark_cols,
744
- drop_input_cols = self._drop_input_cols
745
- )
806
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
746
807
 
747
808
  transform_handlers = ModelTransformerBuilder.build(
748
809
  dataset=dataset,
@@ -755,7 +816,7 @@ class OPTICS(BaseTransformer):
755
816
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
756
817
  inference_method=inference_method,
757
818
  input_cols=self.input_cols,
758
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
819
+ expected_output_cols=expected_output_cols,
759
820
  **transform_kwargs
760
821
  )
761
822
  return output_df
@@ -781,30 +842,34 @@ class OPTICS(BaseTransformer):
781
842
  Output dataset with results of the decision function for the samples in input dataset.
782
843
  """
783
844
  super()._check_dataset_type(dataset)
784
- inference_method="decision_function"
845
+ inference_method = "decision_function"
785
846
 
786
847
  # This dictionary contains optional kwargs for batch inference. These kwargs
787
848
  # are specific to the type of dataset used.
788
849
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
789
850
 
851
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
852
+
790
853
  if isinstance(dataset, DataFrame):
791
854
  self._deps = self._batch_inference_validate_snowpark(
792
855
  dataset=dataset,
793
856
  inference_method=inference_method,
794
857
  )
795
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
858
+ assert isinstance(
859
+ dataset._session, Session
860
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
796
861
  transform_kwargs = dict(
797
862
  session=dataset._session,
798
863
  dependencies=self._deps,
799
- drop_input_cols = self._drop_input_cols,
864
+ drop_input_cols=self._drop_input_cols,
800
865
  expected_output_cols_type="float",
801
866
  )
867
+ expected_output_cols = self._align_expected_output_names(
868
+ inference_method, dataset, expected_output_cols, output_cols_prefix
869
+ )
802
870
 
803
871
  elif isinstance(dataset, pd.DataFrame):
804
- transform_kwargs = dict(
805
- snowpark_input_cols = self._snowpark_cols,
806
- drop_input_cols = self._drop_input_cols
807
- )
872
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
808
873
 
809
874
  transform_handlers = ModelTransformerBuilder.build(
810
875
  dataset=dataset,
@@ -817,7 +882,7 @@ class OPTICS(BaseTransformer):
817
882
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
818
883
  inference_method=inference_method,
819
884
  input_cols=self.input_cols,
820
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
885
+ expected_output_cols=expected_output_cols,
821
886
  **transform_kwargs
822
887
  )
823
888
  return output_df
@@ -846,12 +911,14 @@ class OPTICS(BaseTransformer):
846
911
  Output dataset with probability of the sample for each class in the model.
847
912
  """
848
913
  super()._check_dataset_type(dataset)
849
- inference_method="score_samples"
914
+ inference_method = "score_samples"
850
915
 
851
916
  # This dictionary contains optional kwargs for batch inference. These kwargs
852
917
  # are specific to the type of dataset used.
853
918
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
854
919
 
920
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
921
+
855
922
  if isinstance(dataset, DataFrame):
856
923
  self._deps = self._batch_inference_validate_snowpark(
857
924
  dataset=dataset,
@@ -864,6 +931,9 @@ class OPTICS(BaseTransformer):
864
931
  drop_input_cols = self._drop_input_cols,
865
932
  expected_output_cols_type="float",
866
933
  )
934
+ expected_output_cols = self._align_expected_output_names(
935
+ inference_method, dataset, expected_output_cols, output_cols_prefix
936
+ )
867
937
 
868
938
  elif isinstance(dataset, pd.DataFrame):
869
939
  transform_kwargs = dict(
@@ -882,7 +952,7 @@ class OPTICS(BaseTransformer):
882
952
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
883
953
  inference_method=inference_method,
884
954
  input_cols=self.input_cols,
885
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
955
+ expected_output_cols=expected_output_cols,
886
956
  **transform_kwargs
887
957
  )
888
958
  return output_df
@@ -1027,50 +1097,84 @@ class OPTICS(BaseTransformer):
1027
1097
  )
1028
1098
  return output_df
1029
1099
 
1100
+
1101
+
1102
+ def to_sklearn(self) -> Any:
1103
+ """Get sklearn.cluster.OPTICS object.
1104
+ """
1105
+ if self._sklearn_object is None:
1106
+ self._sklearn_object = self._create_sklearn_object()
1107
+ return self._sklearn_object
1108
+
1109
+ def to_xgboost(self) -> Any:
1110
+ raise exceptions.SnowflakeMLException(
1111
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1112
+ original_exception=AttributeError(
1113
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1114
+ "to_xgboost()",
1115
+ "to_sklearn()"
1116
+ )
1117
+ ),
1118
+ )
1119
+
1120
+ def to_lightgbm(self) -> Any:
1121
+ raise exceptions.SnowflakeMLException(
1122
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1123
+ original_exception=AttributeError(
1124
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1125
+ "to_lightgbm()",
1126
+ "to_sklearn()"
1127
+ )
1128
+ ),
1129
+ )
1030
1130
 
1031
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1131
+ def _get_dependencies(self) -> List[str]:
1132
+ return self._deps
1133
+
1134
+
1135
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1032
1136
  self._model_signature_dict = dict()
1033
1137
 
1034
1138
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1035
1139
 
1036
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1140
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1037
1141
  outputs: List[BaseFeatureSpec] = []
1038
1142
  if hasattr(self, "predict"):
1039
1143
  # keep mypy happy
1040
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1144
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1041
1145
  # For classifier, the type of predict is the same as the type of label
1042
- if self._sklearn_object._estimator_type == 'classifier':
1043
- # label columns is the desired type for output
1146
+ if self._sklearn_object._estimator_type == "classifier":
1147
+ # label columns is the desired type for output
1044
1148
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1045
1149
  # rename the output columns
1046
1150
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1047
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1048
- ([] if self._drop_input_cols else inputs)
1049
- + outputs)
1151
+ self._model_signature_dict["predict"] = ModelSignature(
1152
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1153
+ )
1050
1154
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1051
1155
  # For outlier models, returns -1 for outliers and 1 for inliers.
1052
- # Clusterer returns int64 cluster labels.
1156
+ # Clusterer returns int64 cluster labels.
1053
1157
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1054
1158
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1055
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1056
- ([] if self._drop_input_cols else inputs)
1057
- + outputs)
1058
-
1159
+ self._model_signature_dict["predict"] = ModelSignature(
1160
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1161
+ )
1162
+
1059
1163
  # For regressor, the type of predict is float64
1060
- elif self._sklearn_object._estimator_type == 'regressor':
1164
+ elif self._sklearn_object._estimator_type == "regressor":
1061
1165
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1062
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1063
- ([] if self._drop_input_cols else inputs)
1064
- + outputs)
1065
-
1166
+ self._model_signature_dict["predict"] = ModelSignature(
1167
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1168
+ )
1169
+
1066
1170
  for prob_func in PROB_FUNCTIONS:
1067
1171
  if hasattr(self, prob_func):
1068
1172
  output_cols_prefix: str = f"{prob_func}_"
1069
1173
  output_column_names = self._get_output_column_names(output_cols_prefix)
1070
1174
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1071
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1072
- ([] if self._drop_input_cols else inputs)
1073
- + outputs)
1175
+ self._model_signature_dict[prob_func] = ModelSignature(
1176
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1177
+ )
1074
1178
 
1075
1179
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1076
1180
  items = list(self._model_signature_dict.items())
@@ -1083,10 +1187,10 @@ class OPTICS(BaseTransformer):
1083
1187
  """Returns model signature of current class.
1084
1188
 
1085
1189
  Raises:
1086
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1190
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1087
1191
 
1088
1192
  Returns:
1089
- Dict[str, ModelSignature]: each method and its input output signature
1193
+ Dict with each method and its input output signature
1090
1194
  """
1091
1195
  if self._model_signature_dict is None:
1092
1196
  raise exceptions.SnowflakeMLException(
@@ -1094,35 +1198,3 @@ class OPTICS(BaseTransformer):
1094
1198
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1095
1199
  )
1096
1200
  return self._model_signature_dict
1097
-
1098
- def to_sklearn(self) -> Any:
1099
- """Get sklearn.cluster.OPTICS object.
1100
- """
1101
- if self._sklearn_object is None:
1102
- self._sklearn_object = self._create_sklearn_object()
1103
- return self._sklearn_object
1104
-
1105
- def to_xgboost(self) -> Any:
1106
- raise exceptions.SnowflakeMLException(
1107
- error_code=error_codes.METHOD_NOT_ALLOWED,
1108
- original_exception=AttributeError(
1109
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1110
- "to_xgboost()",
1111
- "to_sklearn()"
1112
- )
1113
- ),
1114
- )
1115
-
1116
- def to_lightgbm(self) -> Any:
1117
- raise exceptions.SnowflakeMLException(
1118
- error_code=error_codes.METHOD_NOT_ALLOWED,
1119
- original_exception=AttributeError(
1120
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1121
- "to_lightgbm()",
1122
- "to_sklearn()"
1123
- )
1124
- ),
1125
- )
1126
-
1127
- def _get_dependencies(self) -> List[str]:
1128
- return self._deps