snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -132,11 +132,7 @@ class StandardScaler(base.BaseTransformer):
132
132
  if hasattr(self, "var_"):
133
133
  self.var_ = {} if self.with_std else None
134
134
 
135
- @telemetry.send_api_usage_telemetry(
136
- project=base.PROJECT,
137
- subproject=base.SUBPROJECT,
138
- )
139
- def fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "StandardScaler":
135
+ def _fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "StandardScaler":
140
136
  """
141
137
  Compute mean and std values of the dataset.
142
138
 
@@ -165,11 +161,11 @@ class StandardScaler(base.BaseTransformer):
165
161
 
166
162
  for i, input_col in enumerate(self.input_cols):
167
163
  if self.mean_ is not None:
168
- self.mean_[input_col] = float(sklearn_scaler.mean_[i])
164
+ self.mean_[input_col] = _utils.to_float_if_valid(sklearn_scaler.mean_[i], input_col, "mean_")
169
165
  if self.scale_ is not None:
170
- self.scale_[input_col] = float(sklearn_scaler.scale_[i])
166
+ self.scale_[input_col] = _utils.to_float_if_valid(sklearn_scaler.scale_[i], input_col, "scale_")
171
167
  if self.var_ is not None:
172
- self.var_[input_col] = float(sklearn_scaler.var_[i])
168
+ self.var_[input_col] = _utils.to_float_if_valid(sklearn_scaler.var_[i], input_col, "var_")
173
169
 
174
170
  def _fit_snowpark(self, dataset: snowpark.DataFrame) -> None:
175
171
  computed_states = self._compute(dataset, self.input_cols, self.custom_states)
@@ -179,14 +175,18 @@ class StandardScaler(base.BaseTransformer):
179
175
  numeric_stats = computed_states[input_col]
180
176
 
181
177
  if self.mean_ is not None:
182
- self.mean_[input_col] = float(numeric_stats[_utils.NumericStatistics.MEAN])
178
+ self.mean_[input_col] = _utils.to_float_if_valid(
179
+ numeric_stats[_utils.NumericStatistics.MEAN], input_col, "mean_"
180
+ )
183
181
 
184
182
  if self.var_ is not None:
185
- self.var_[input_col] = float(numeric_stats[_utils.NumericStatistics.VAR_POP])
183
+ self.var_[input_col] = _utils.to_float_if_valid(
184
+ numeric_stats[_utils.NumericStatistics.VAR_POP], input_col, "var_"
185
+ )
186
186
 
187
187
  if self.scale_ is not None:
188
188
  self.scale_[input_col] = sklearn_preprocessing_data._handle_zeros_in_scale(
189
- float(numeric_stats[_utils.NumericStatistics.STDDEV_POP])
189
+ _utils.to_float_if_valid(numeric_stats[_utils.NumericStatistics.STDDEV_POP], input_col, "scale_")
190
190
  )
191
191
 
192
192
  @telemetry.send_api_usage_telemetry(
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -228,12 +227,7 @@ class LabelPropagation(BaseTransformer):
228
227
  )
229
228
  return selected_cols
230
229
 
231
- @telemetry.send_api_usage_telemetry(
232
- project=_PROJECT,
233
- subproject=_SUBPROJECT,
234
- custom_tags=dict([("autogen", True)]),
235
- )
236
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LabelPropagation":
230
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LabelPropagation":
237
231
  """Fit a semi-supervised label propagation model to X
238
232
  For more details on this function, see [sklearn.semi_supervised.LabelPropagation.fit]
239
233
  (https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelPropagation.html#sklearn.semi_supervised.LabelPropagation.fit)
@@ -260,12 +254,14 @@ class LabelPropagation(BaseTransformer):
260
254
 
261
255
  self._snowpark_cols = dataset.select(self.input_cols).columns
262
256
 
263
- # If we are already in a stored procedure, no need to kick off another one.
257
+ # If we are already in a stored procedure, no need to kick off another one.
264
258
  if SNOWML_SPROC_ENV in os.environ:
265
259
  statement_params = telemetry.get_function_usage_statement_params(
266
260
  project=_PROJECT,
267
261
  subproject=_SUBPROJECT,
268
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LabelPropagation.__class__.__name__),
262
+ function_name=telemetry.get_statement_params_full_func_name(
263
+ inspect.currentframe(), LabelPropagation.__class__.__name__
264
+ ),
269
265
  api_calls=[Session.call],
270
266
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
271
267
  )
@@ -286,7 +282,7 @@ class LabelPropagation(BaseTransformer):
286
282
  )
287
283
  self._sklearn_object = model_trainer.train()
288
284
  self._is_fitted = True
289
- self._get_model_signatures(dataset)
285
+ self._generate_model_signatures(dataset)
290
286
  return self
291
287
 
292
288
  def _batch_inference_validate_snowpark(
@@ -362,7 +358,9 @@ class LabelPropagation(BaseTransformer):
362
358
  # when it is classifier, infer the datatype from label columns
363
359
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
364
360
  # Batch inference takes a single expected output column type. Use the first columns type for now.
365
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
361
+ label_cols_signatures = [
362
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
363
+ ]
366
364
  if len(label_cols_signatures) == 0:
367
365
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
368
366
  raise exceptions.SnowflakeMLException(
@@ -370,25 +368,22 @@ class LabelPropagation(BaseTransformer):
370
368
  original_exception=ValueError(error_str),
371
369
  )
372
370
 
373
- expected_type_inferred = convert_sp_to_sf_type(
374
- label_cols_signatures[0].as_snowpark_type()
375
- )
371
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
376
372
 
377
373
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
378
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
374
+ assert isinstance(
375
+ dataset._session, Session
376
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
379
377
 
380
378
  transform_kwargs = dict(
381
- session = dataset._session,
382
- dependencies = self._deps,
383
- drop_input_cols = self._drop_input_cols,
384
- expected_output_cols_type = expected_type_inferred,
379
+ session=dataset._session,
380
+ dependencies=self._deps,
381
+ drop_input_cols=self._drop_input_cols,
382
+ expected_output_cols_type=expected_type_inferred,
385
383
  )
386
384
 
387
385
  elif isinstance(dataset, pd.DataFrame):
388
- transform_kwargs = dict(
389
- snowpark_input_cols = self._snowpark_cols,
390
- drop_input_cols = self._drop_input_cols
391
- )
386
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
392
387
 
393
388
  transform_handlers = ModelTransformerBuilder.build(
394
389
  dataset=dataset,
@@ -428,7 +423,7 @@ class LabelPropagation(BaseTransformer):
428
423
  Transformed dataset.
429
424
  """
430
425
  super()._check_dataset_type(dataset)
431
- inference_method="transform"
426
+ inference_method = "transform"
432
427
 
433
428
  # This dictionary contains optional kwargs for batch inference. These kwargs
434
429
  # are specific to the type of dataset used.
@@ -465,17 +460,14 @@ class LabelPropagation(BaseTransformer):
465
460
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
466
461
 
467
462
  transform_kwargs = dict(
468
- session = dataset._session,
469
- dependencies = self._deps,
470
- drop_input_cols = self._drop_input_cols,
471
- expected_output_cols_type = expected_dtype,
463
+ session=dataset._session,
464
+ dependencies=self._deps,
465
+ drop_input_cols=self._drop_input_cols,
466
+ expected_output_cols_type=expected_dtype,
472
467
  )
473
468
 
474
469
  elif isinstance(dataset, pd.DataFrame):
475
- transform_kwargs = dict(
476
- snowpark_input_cols = self._snowpark_cols,
477
- drop_input_cols = self._drop_input_cols
478
- )
470
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
479
471
 
480
472
  transform_handlers = ModelTransformerBuilder.build(
481
473
  dataset=dataset,
@@ -494,7 +486,11 @@ class LabelPropagation(BaseTransformer):
494
486
  return output_df
495
487
 
496
488
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
497
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
489
+ def fit_predict(
490
+ self,
491
+ dataset: Union[DataFrame, pd.DataFrame],
492
+ output_cols_prefix: str = "fit_predict_",
493
+ ) -> Union[DataFrame, pd.DataFrame]:
498
494
  """ Method not supported for this class.
499
495
 
500
496
 
@@ -519,7 +515,9 @@ class LabelPropagation(BaseTransformer):
519
515
  )
520
516
  output_result, fitted_estimator = model_trainer.train_fit_predict(
521
517
  drop_input_cols=self._drop_input_cols,
522
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
518
+ expected_output_cols_list=(
519
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
520
+ ),
523
521
  )
524
522
  self._sklearn_object = fitted_estimator
525
523
  self._is_fitted = True
@@ -536,6 +534,62 @@ class LabelPropagation(BaseTransformer):
536
534
  assert self._sklearn_object is not None
537
535
  return self._sklearn_object.embedding_
538
536
 
537
+
538
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
539
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
540
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
541
+ """
542
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
543
+ # The following condition is introduced for kneighbors methods, and not used in other methods
544
+ if output_cols:
545
+ output_cols = [
546
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
547
+ for c in output_cols
548
+ ]
549
+ elif getattr(self._sklearn_object, "classes_", None) is None:
550
+ output_cols = [output_cols_prefix]
551
+ elif self._sklearn_object is not None:
552
+ classes = self._sklearn_object.classes_
553
+ if isinstance(classes, numpy.ndarray):
554
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
555
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
556
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
557
+ output_cols = []
558
+ for i, cl in enumerate(classes):
559
+ # For binary classification, there is only one output column for each class
560
+ # ndarray as the two classes are complementary.
561
+ if len(cl) == 2:
562
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
563
+ else:
564
+ output_cols.extend([
565
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
566
+ ])
567
+ else:
568
+ output_cols = []
569
+
570
+ # Make sure column names are valid snowflake identifiers.
571
+ assert output_cols is not None # Make MyPy happy
572
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
573
+
574
+ return rv
575
+
576
+ def _align_expected_output_names(
577
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
578
+ ) -> List[str]:
579
+ # in case the inferred output column names dimension is different
580
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
581
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
582
+ output_df_columns = list(output_df_pd.columns)
583
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
584
+ if self.sample_weight_col:
585
+ output_df_columns_set -= set(self.sample_weight_col)
586
+ # if the dimension of inferred output column names is correct; use it
587
+ if len(expected_output_cols_list) == len(output_df_columns_set):
588
+ return expected_output_cols_list
589
+ # otherwise, use the sklearn estimator's output
590
+ else:
591
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
592
+
539
593
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
540
594
  @telemetry.send_api_usage_telemetry(
541
595
  project=_PROJECT,
@@ -568,24 +622,28 @@ class LabelPropagation(BaseTransformer):
568
622
  # are specific to the type of dataset used.
569
623
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
570
624
 
625
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
626
+
571
627
  if isinstance(dataset, DataFrame):
572
628
  self._deps = self._batch_inference_validate_snowpark(
573
629
  dataset=dataset,
574
630
  inference_method=inference_method,
575
631
  )
576
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
632
+ assert isinstance(
633
+ dataset._session, Session
634
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
577
635
  transform_kwargs = dict(
578
636
  session=dataset._session,
579
637
  dependencies=self._deps,
580
- drop_input_cols = self._drop_input_cols,
638
+ drop_input_cols=self._drop_input_cols,
581
639
  expected_output_cols_type="float",
582
640
  )
641
+ expected_output_cols = self._align_expected_output_names(
642
+ inference_method, dataset, expected_output_cols, output_cols_prefix
643
+ )
583
644
 
584
645
  elif isinstance(dataset, pd.DataFrame):
585
- transform_kwargs = dict(
586
- snowpark_input_cols = self._snowpark_cols,
587
- drop_input_cols = self._drop_input_cols
588
- )
646
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
589
647
 
590
648
  transform_handlers = ModelTransformerBuilder.build(
591
649
  dataset=dataset,
@@ -597,7 +655,7 @@ class LabelPropagation(BaseTransformer):
597
655
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
598
656
  inference_method=inference_method,
599
657
  input_cols=self.input_cols,
600
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
658
+ expected_output_cols=expected_output_cols,
601
659
  **transform_kwargs
602
660
  )
603
661
  return output_df
@@ -629,7 +687,8 @@ class LabelPropagation(BaseTransformer):
629
687
  Output dataset with log probability of the sample for each class in the model.
630
688
  """
631
689
  super()._check_dataset_type(dataset)
632
- inference_method="predict_log_proba"
690
+ inference_method = "predict_log_proba"
691
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
633
692
 
634
693
  # This dictionary contains optional kwargs for batch inference. These kwargs
635
694
  # are specific to the type of dataset used.
@@ -640,18 +699,20 @@ class LabelPropagation(BaseTransformer):
640
699
  dataset=dataset,
641
700
  inference_method=inference_method,
642
701
  )
643
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
702
+ assert isinstance(
703
+ dataset._session, Session
704
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
644
705
  transform_kwargs = dict(
645
706
  session=dataset._session,
646
707
  dependencies=self._deps,
647
- drop_input_cols = self._drop_input_cols,
708
+ drop_input_cols=self._drop_input_cols,
648
709
  expected_output_cols_type="float",
649
710
  )
711
+ expected_output_cols = self._align_expected_output_names(
712
+ inference_method, dataset, expected_output_cols, output_cols_prefix
713
+ )
650
714
  elif isinstance(dataset, pd.DataFrame):
651
- transform_kwargs = dict(
652
- snowpark_input_cols = self._snowpark_cols,
653
- drop_input_cols = self._drop_input_cols
654
- )
715
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
655
716
 
656
717
  transform_handlers = ModelTransformerBuilder.build(
657
718
  dataset=dataset,
@@ -664,7 +725,7 @@ class LabelPropagation(BaseTransformer):
664
725
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
665
726
  inference_method=inference_method,
666
727
  input_cols=self.input_cols,
667
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
728
+ expected_output_cols=expected_output_cols,
668
729
  **transform_kwargs
669
730
  )
670
731
  return output_df
@@ -690,30 +751,34 @@ class LabelPropagation(BaseTransformer):
690
751
  Output dataset with results of the decision function for the samples in input dataset.
691
752
  """
692
753
  super()._check_dataset_type(dataset)
693
- inference_method="decision_function"
754
+ inference_method = "decision_function"
694
755
 
695
756
  # This dictionary contains optional kwargs for batch inference. These kwargs
696
757
  # are specific to the type of dataset used.
697
758
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
698
759
 
760
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
761
+
699
762
  if isinstance(dataset, DataFrame):
700
763
  self._deps = self._batch_inference_validate_snowpark(
701
764
  dataset=dataset,
702
765
  inference_method=inference_method,
703
766
  )
704
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
767
+ assert isinstance(
768
+ dataset._session, Session
769
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
705
770
  transform_kwargs = dict(
706
771
  session=dataset._session,
707
772
  dependencies=self._deps,
708
- drop_input_cols = self._drop_input_cols,
773
+ drop_input_cols=self._drop_input_cols,
709
774
  expected_output_cols_type="float",
710
775
  )
776
+ expected_output_cols = self._align_expected_output_names(
777
+ inference_method, dataset, expected_output_cols, output_cols_prefix
778
+ )
711
779
 
712
780
  elif isinstance(dataset, pd.DataFrame):
713
- transform_kwargs = dict(
714
- snowpark_input_cols = self._snowpark_cols,
715
- drop_input_cols = self._drop_input_cols
716
- )
781
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
717
782
 
718
783
  transform_handlers = ModelTransformerBuilder.build(
719
784
  dataset=dataset,
@@ -726,7 +791,7 @@ class LabelPropagation(BaseTransformer):
726
791
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
727
792
  inference_method=inference_method,
728
793
  input_cols=self.input_cols,
729
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
794
+ expected_output_cols=expected_output_cols,
730
795
  **transform_kwargs
731
796
  )
732
797
  return output_df
@@ -755,12 +820,14 @@ class LabelPropagation(BaseTransformer):
755
820
  Output dataset with probability of the sample for each class in the model.
756
821
  """
757
822
  super()._check_dataset_type(dataset)
758
- inference_method="score_samples"
823
+ inference_method = "score_samples"
759
824
 
760
825
  # This dictionary contains optional kwargs for batch inference. These kwargs
761
826
  # are specific to the type of dataset used.
762
827
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
763
828
 
829
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
830
+
764
831
  if isinstance(dataset, DataFrame):
765
832
  self._deps = self._batch_inference_validate_snowpark(
766
833
  dataset=dataset,
@@ -773,6 +840,9 @@ class LabelPropagation(BaseTransformer):
773
840
  drop_input_cols = self._drop_input_cols,
774
841
  expected_output_cols_type="float",
775
842
  )
843
+ expected_output_cols = self._align_expected_output_names(
844
+ inference_method, dataset, expected_output_cols, output_cols_prefix
845
+ )
776
846
 
777
847
  elif isinstance(dataset, pd.DataFrame):
778
848
  transform_kwargs = dict(
@@ -791,7 +861,7 @@ class LabelPropagation(BaseTransformer):
791
861
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
792
862
  inference_method=inference_method,
793
863
  input_cols=self.input_cols,
794
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
864
+ expected_output_cols=expected_output_cols,
795
865
  **transform_kwargs
796
866
  )
797
867
  return output_df
@@ -938,50 +1008,84 @@ class LabelPropagation(BaseTransformer):
938
1008
  )
939
1009
  return output_df
940
1010
 
1011
+
1012
+
1013
+ def to_sklearn(self) -> Any:
1014
+ """Get sklearn.semi_supervised.LabelPropagation object.
1015
+ """
1016
+ if self._sklearn_object is None:
1017
+ self._sklearn_object = self._create_sklearn_object()
1018
+ return self._sklearn_object
1019
+
1020
+ def to_xgboost(self) -> Any:
1021
+ raise exceptions.SnowflakeMLException(
1022
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1023
+ original_exception=AttributeError(
1024
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1025
+ "to_xgboost()",
1026
+ "to_sklearn()"
1027
+ )
1028
+ ),
1029
+ )
1030
+
1031
+ def to_lightgbm(self) -> Any:
1032
+ raise exceptions.SnowflakeMLException(
1033
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1034
+ original_exception=AttributeError(
1035
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1036
+ "to_lightgbm()",
1037
+ "to_sklearn()"
1038
+ )
1039
+ ),
1040
+ )
941
1041
 
942
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1042
+ def _get_dependencies(self) -> List[str]:
1043
+ return self._deps
1044
+
1045
+
1046
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
943
1047
  self._model_signature_dict = dict()
944
1048
 
945
1049
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
946
1050
 
947
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1051
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
948
1052
  outputs: List[BaseFeatureSpec] = []
949
1053
  if hasattr(self, "predict"):
950
1054
  # keep mypy happy
951
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1055
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
952
1056
  # For classifier, the type of predict is the same as the type of label
953
- if self._sklearn_object._estimator_type == 'classifier':
954
- # label columns is the desired type for output
1057
+ if self._sklearn_object._estimator_type == "classifier":
1058
+ # label columns is the desired type for output
955
1059
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
956
1060
  # rename the output columns
957
1061
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
958
- self._model_signature_dict["predict"] = ModelSignature(inputs,
959
- ([] if self._drop_input_cols else inputs)
960
- + outputs)
1062
+ self._model_signature_dict["predict"] = ModelSignature(
1063
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1064
+ )
961
1065
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
962
1066
  # For outlier models, returns -1 for outliers and 1 for inliers.
963
- # Clusterer returns int64 cluster labels.
1067
+ # Clusterer returns int64 cluster labels.
964
1068
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
965
1069
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
966
- self._model_signature_dict["predict"] = ModelSignature(inputs,
967
- ([] if self._drop_input_cols else inputs)
968
- + outputs)
969
-
1070
+ self._model_signature_dict["predict"] = ModelSignature(
1071
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1072
+ )
1073
+
970
1074
  # For regressor, the type of predict is float64
971
- elif self._sklearn_object._estimator_type == 'regressor':
1075
+ elif self._sklearn_object._estimator_type == "regressor":
972
1076
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
973
- self._model_signature_dict["predict"] = ModelSignature(inputs,
974
- ([] if self._drop_input_cols else inputs)
975
- + outputs)
976
-
1077
+ self._model_signature_dict["predict"] = ModelSignature(
1078
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1079
+ )
1080
+
977
1081
  for prob_func in PROB_FUNCTIONS:
978
1082
  if hasattr(self, prob_func):
979
1083
  output_cols_prefix: str = f"{prob_func}_"
980
1084
  output_column_names = self._get_output_column_names(output_cols_prefix)
981
1085
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
982
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
983
- ([] if self._drop_input_cols else inputs)
984
- + outputs)
1086
+ self._model_signature_dict[prob_func] = ModelSignature(
1087
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1088
+ )
985
1089
 
986
1090
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
987
1091
  items = list(self._model_signature_dict.items())
@@ -994,10 +1098,10 @@ class LabelPropagation(BaseTransformer):
994
1098
  """Returns model signature of current class.
995
1099
 
996
1100
  Raises:
997
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1101
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
998
1102
 
999
1103
  Returns:
1000
- Dict[str, ModelSignature]: each method and its input output signature
1104
+ Dict with each method and its input output signature
1001
1105
  """
1002
1106
  if self._model_signature_dict is None:
1003
1107
  raise exceptions.SnowflakeMLException(
@@ -1005,35 +1109,3 @@ class LabelPropagation(BaseTransformer):
1005
1109
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1006
1110
  )
1007
1111
  return self._model_signature_dict
1008
-
1009
- def to_sklearn(self) -> Any:
1010
- """Get sklearn.semi_supervised.LabelPropagation object.
1011
- """
1012
- if self._sklearn_object is None:
1013
- self._sklearn_object = self._create_sklearn_object()
1014
- return self._sklearn_object
1015
-
1016
- def to_xgboost(self) -> Any:
1017
- raise exceptions.SnowflakeMLException(
1018
- error_code=error_codes.METHOD_NOT_ALLOWED,
1019
- original_exception=AttributeError(
1020
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1021
- "to_xgboost()",
1022
- "to_sklearn()"
1023
- )
1024
- ),
1025
- )
1026
-
1027
- def to_lightgbm(self) -> Any:
1028
- raise exceptions.SnowflakeMLException(
1029
- error_code=error_codes.METHOD_NOT_ALLOWED,
1030
- original_exception=AttributeError(
1031
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1032
- "to_lightgbm()",
1033
- "to_sklearn()"
1034
- )
1035
- ),
1036
- )
1037
-
1038
- def _get_dependencies(self) -> List[str]:
1039
- return self._deps