snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -304,12 +303,7 @@ class ExtraTreeRegressor(BaseTransformer):
304
303
  )
305
304
  return selected_cols
306
305
 
307
- @telemetry.send_api_usage_telemetry(
308
- project=_PROJECT,
309
- subproject=_SUBPROJECT,
310
- custom_tags=dict([("autogen", True)]),
311
- )
312
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreeRegressor":
306
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreeRegressor":
313
307
  """Build a decision tree regressor from the training set (X, y)
314
308
  For more details on this function, see [sklearn.tree.ExtraTreeRegressor.fit]
315
309
  (https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor.fit)
@@ -336,12 +330,14 @@ class ExtraTreeRegressor(BaseTransformer):
336
330
 
337
331
  self._snowpark_cols = dataset.select(self.input_cols).columns
338
332
 
339
- # If we are already in a stored procedure, no need to kick off another one.
333
+ # If we are already in a stored procedure, no need to kick off another one.
340
334
  if SNOWML_SPROC_ENV in os.environ:
341
335
  statement_params = telemetry.get_function_usage_statement_params(
342
336
  project=_PROJECT,
343
337
  subproject=_SUBPROJECT,
344
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreeRegressor.__class__.__name__),
338
+ function_name=telemetry.get_statement_params_full_func_name(
339
+ inspect.currentframe(), ExtraTreeRegressor.__class__.__name__
340
+ ),
345
341
  api_calls=[Session.call],
346
342
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
347
343
  )
@@ -362,7 +358,7 @@ class ExtraTreeRegressor(BaseTransformer):
362
358
  )
363
359
  self._sklearn_object = model_trainer.train()
364
360
  self._is_fitted = True
365
- self._get_model_signatures(dataset)
361
+ self._generate_model_signatures(dataset)
366
362
  return self
367
363
 
368
364
  def _batch_inference_validate_snowpark(
@@ -438,7 +434,9 @@ class ExtraTreeRegressor(BaseTransformer):
438
434
  # when it is classifier, infer the datatype from label columns
439
435
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
440
436
  # Batch inference takes a single expected output column type. Use the first columns type for now.
441
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
437
+ label_cols_signatures = [
438
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
439
+ ]
442
440
  if len(label_cols_signatures) == 0:
443
441
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
444
442
  raise exceptions.SnowflakeMLException(
@@ -446,25 +444,22 @@ class ExtraTreeRegressor(BaseTransformer):
446
444
  original_exception=ValueError(error_str),
447
445
  )
448
446
 
449
- expected_type_inferred = convert_sp_to_sf_type(
450
- label_cols_signatures[0].as_snowpark_type()
451
- )
447
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
452
448
 
453
449
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
454
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
450
+ assert isinstance(
451
+ dataset._session, Session
452
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
455
453
 
456
454
  transform_kwargs = dict(
457
- session = dataset._session,
458
- dependencies = self._deps,
459
- drop_input_cols = self._drop_input_cols,
460
- expected_output_cols_type = expected_type_inferred,
455
+ session=dataset._session,
456
+ dependencies=self._deps,
457
+ drop_input_cols=self._drop_input_cols,
458
+ expected_output_cols_type=expected_type_inferred,
461
459
  )
462
460
 
463
461
  elif isinstance(dataset, pd.DataFrame):
464
- transform_kwargs = dict(
465
- snowpark_input_cols = self._snowpark_cols,
466
- drop_input_cols = self._drop_input_cols
467
- )
462
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
468
463
 
469
464
  transform_handlers = ModelTransformerBuilder.build(
470
465
  dataset=dataset,
@@ -504,7 +499,7 @@ class ExtraTreeRegressor(BaseTransformer):
504
499
  Transformed dataset.
505
500
  """
506
501
  super()._check_dataset_type(dataset)
507
- inference_method="transform"
502
+ inference_method = "transform"
508
503
 
509
504
  # This dictionary contains optional kwargs for batch inference. These kwargs
510
505
  # are specific to the type of dataset used.
@@ -541,17 +536,14 @@ class ExtraTreeRegressor(BaseTransformer):
541
536
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
542
537
 
543
538
  transform_kwargs = dict(
544
- session = dataset._session,
545
- dependencies = self._deps,
546
- drop_input_cols = self._drop_input_cols,
547
- expected_output_cols_type = expected_dtype,
539
+ session=dataset._session,
540
+ dependencies=self._deps,
541
+ drop_input_cols=self._drop_input_cols,
542
+ expected_output_cols_type=expected_dtype,
548
543
  )
549
544
 
550
545
  elif isinstance(dataset, pd.DataFrame):
551
- transform_kwargs = dict(
552
- snowpark_input_cols = self._snowpark_cols,
553
- drop_input_cols = self._drop_input_cols
554
- )
546
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
555
547
 
556
548
  transform_handlers = ModelTransformerBuilder.build(
557
549
  dataset=dataset,
@@ -570,7 +562,11 @@ class ExtraTreeRegressor(BaseTransformer):
570
562
  return output_df
571
563
 
572
564
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
573
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
565
+ def fit_predict(
566
+ self,
567
+ dataset: Union[DataFrame, pd.DataFrame],
568
+ output_cols_prefix: str = "fit_predict_",
569
+ ) -> Union[DataFrame, pd.DataFrame]:
574
570
  """ Method not supported for this class.
575
571
 
576
572
 
@@ -595,7 +591,9 @@ class ExtraTreeRegressor(BaseTransformer):
595
591
  )
596
592
  output_result, fitted_estimator = model_trainer.train_fit_predict(
597
593
  drop_input_cols=self._drop_input_cols,
598
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
594
+ expected_output_cols_list=(
595
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
596
+ ),
599
597
  )
600
598
  self._sklearn_object = fitted_estimator
601
599
  self._is_fitted = True
@@ -612,6 +610,62 @@ class ExtraTreeRegressor(BaseTransformer):
612
610
  assert self._sklearn_object is not None
613
611
  return self._sklearn_object.embedding_
614
612
 
613
+
614
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
615
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
616
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
617
+ """
618
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
619
+ # The following condition is introduced for kneighbors methods, and not used in other methods
620
+ if output_cols:
621
+ output_cols = [
622
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
623
+ for c in output_cols
624
+ ]
625
+ elif getattr(self._sklearn_object, "classes_", None) is None:
626
+ output_cols = [output_cols_prefix]
627
+ elif self._sklearn_object is not None:
628
+ classes = self._sklearn_object.classes_
629
+ if isinstance(classes, numpy.ndarray):
630
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
631
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
632
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
633
+ output_cols = []
634
+ for i, cl in enumerate(classes):
635
+ # For binary classification, there is only one output column for each class
636
+ # ndarray as the two classes are complementary.
637
+ if len(cl) == 2:
638
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
639
+ else:
640
+ output_cols.extend([
641
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
642
+ ])
643
+ else:
644
+ output_cols = []
645
+
646
+ # Make sure column names are valid snowflake identifiers.
647
+ assert output_cols is not None # Make MyPy happy
648
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
649
+
650
+ return rv
651
+
652
+ def _align_expected_output_names(
653
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
654
+ ) -> List[str]:
655
+ # in case the inferred output column names dimension is different
656
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
657
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
658
+ output_df_columns = list(output_df_pd.columns)
659
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
660
+ if self.sample_weight_col:
661
+ output_df_columns_set -= set(self.sample_weight_col)
662
+ # if the dimension of inferred output column names is correct; use it
663
+ if len(expected_output_cols_list) == len(output_df_columns_set):
664
+ return expected_output_cols_list
665
+ # otherwise, use the sklearn estimator's output
666
+ else:
667
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
668
+
615
669
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
616
670
  @telemetry.send_api_usage_telemetry(
617
671
  project=_PROJECT,
@@ -642,24 +696,28 @@ class ExtraTreeRegressor(BaseTransformer):
642
696
  # are specific to the type of dataset used.
643
697
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
644
698
 
699
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
700
+
645
701
  if isinstance(dataset, DataFrame):
646
702
  self._deps = self._batch_inference_validate_snowpark(
647
703
  dataset=dataset,
648
704
  inference_method=inference_method,
649
705
  )
650
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
706
+ assert isinstance(
707
+ dataset._session, Session
708
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
651
709
  transform_kwargs = dict(
652
710
  session=dataset._session,
653
711
  dependencies=self._deps,
654
- drop_input_cols = self._drop_input_cols,
712
+ drop_input_cols=self._drop_input_cols,
655
713
  expected_output_cols_type="float",
656
714
  )
715
+ expected_output_cols = self._align_expected_output_names(
716
+ inference_method, dataset, expected_output_cols, output_cols_prefix
717
+ )
657
718
 
658
719
  elif isinstance(dataset, pd.DataFrame):
659
- transform_kwargs = dict(
660
- snowpark_input_cols = self._snowpark_cols,
661
- drop_input_cols = self._drop_input_cols
662
- )
720
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
663
721
 
664
722
  transform_handlers = ModelTransformerBuilder.build(
665
723
  dataset=dataset,
@@ -671,7 +729,7 @@ class ExtraTreeRegressor(BaseTransformer):
671
729
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
672
730
  inference_method=inference_method,
673
731
  input_cols=self.input_cols,
674
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
732
+ expected_output_cols=expected_output_cols,
675
733
  **transform_kwargs
676
734
  )
677
735
  return output_df
@@ -701,7 +759,8 @@ class ExtraTreeRegressor(BaseTransformer):
701
759
  Output dataset with log probability of the sample for each class in the model.
702
760
  """
703
761
  super()._check_dataset_type(dataset)
704
- inference_method="predict_log_proba"
762
+ inference_method = "predict_log_proba"
763
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
705
764
 
706
765
  # This dictionary contains optional kwargs for batch inference. These kwargs
707
766
  # are specific to the type of dataset used.
@@ -712,18 +771,20 @@ class ExtraTreeRegressor(BaseTransformer):
712
771
  dataset=dataset,
713
772
  inference_method=inference_method,
714
773
  )
715
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
774
+ assert isinstance(
775
+ dataset._session, Session
776
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
716
777
  transform_kwargs = dict(
717
778
  session=dataset._session,
718
779
  dependencies=self._deps,
719
- drop_input_cols = self._drop_input_cols,
780
+ drop_input_cols=self._drop_input_cols,
720
781
  expected_output_cols_type="float",
721
782
  )
783
+ expected_output_cols = self._align_expected_output_names(
784
+ inference_method, dataset, expected_output_cols, output_cols_prefix
785
+ )
722
786
  elif isinstance(dataset, pd.DataFrame):
723
- transform_kwargs = dict(
724
- snowpark_input_cols = self._snowpark_cols,
725
- drop_input_cols = self._drop_input_cols
726
- )
787
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
727
788
 
728
789
  transform_handlers = ModelTransformerBuilder.build(
729
790
  dataset=dataset,
@@ -736,7 +797,7 @@ class ExtraTreeRegressor(BaseTransformer):
736
797
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
737
798
  inference_method=inference_method,
738
799
  input_cols=self.input_cols,
739
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
800
+ expected_output_cols=expected_output_cols,
740
801
  **transform_kwargs
741
802
  )
742
803
  return output_df
@@ -762,30 +823,34 @@ class ExtraTreeRegressor(BaseTransformer):
762
823
  Output dataset with results of the decision function for the samples in input dataset.
763
824
  """
764
825
  super()._check_dataset_type(dataset)
765
- inference_method="decision_function"
826
+ inference_method = "decision_function"
766
827
 
767
828
  # This dictionary contains optional kwargs for batch inference. These kwargs
768
829
  # are specific to the type of dataset used.
769
830
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
770
831
 
832
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
833
+
771
834
  if isinstance(dataset, DataFrame):
772
835
  self._deps = self._batch_inference_validate_snowpark(
773
836
  dataset=dataset,
774
837
  inference_method=inference_method,
775
838
  )
776
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
839
+ assert isinstance(
840
+ dataset._session, Session
841
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
777
842
  transform_kwargs = dict(
778
843
  session=dataset._session,
779
844
  dependencies=self._deps,
780
- drop_input_cols = self._drop_input_cols,
845
+ drop_input_cols=self._drop_input_cols,
781
846
  expected_output_cols_type="float",
782
847
  )
848
+ expected_output_cols = self._align_expected_output_names(
849
+ inference_method, dataset, expected_output_cols, output_cols_prefix
850
+ )
783
851
 
784
852
  elif isinstance(dataset, pd.DataFrame):
785
- transform_kwargs = dict(
786
- snowpark_input_cols = self._snowpark_cols,
787
- drop_input_cols = self._drop_input_cols
788
- )
853
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
789
854
 
790
855
  transform_handlers = ModelTransformerBuilder.build(
791
856
  dataset=dataset,
@@ -798,7 +863,7 @@ class ExtraTreeRegressor(BaseTransformer):
798
863
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
799
864
  inference_method=inference_method,
800
865
  input_cols=self.input_cols,
801
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
866
+ expected_output_cols=expected_output_cols,
802
867
  **transform_kwargs
803
868
  )
804
869
  return output_df
@@ -827,12 +892,14 @@ class ExtraTreeRegressor(BaseTransformer):
827
892
  Output dataset with probability of the sample for each class in the model.
828
893
  """
829
894
  super()._check_dataset_type(dataset)
830
- inference_method="score_samples"
895
+ inference_method = "score_samples"
831
896
 
832
897
  # This dictionary contains optional kwargs for batch inference. These kwargs
833
898
  # are specific to the type of dataset used.
834
899
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
835
900
 
901
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
902
+
836
903
  if isinstance(dataset, DataFrame):
837
904
  self._deps = self._batch_inference_validate_snowpark(
838
905
  dataset=dataset,
@@ -845,6 +912,9 @@ class ExtraTreeRegressor(BaseTransformer):
845
912
  drop_input_cols = self._drop_input_cols,
846
913
  expected_output_cols_type="float",
847
914
  )
915
+ expected_output_cols = self._align_expected_output_names(
916
+ inference_method, dataset, expected_output_cols, output_cols_prefix
917
+ )
848
918
 
849
919
  elif isinstance(dataset, pd.DataFrame):
850
920
  transform_kwargs = dict(
@@ -863,7 +933,7 @@ class ExtraTreeRegressor(BaseTransformer):
863
933
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
864
934
  inference_method=inference_method,
865
935
  input_cols=self.input_cols,
866
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
936
+ expected_output_cols=expected_output_cols,
867
937
  **transform_kwargs
868
938
  )
869
939
  return output_df
@@ -1010,50 +1080,84 @@ class ExtraTreeRegressor(BaseTransformer):
1010
1080
  )
1011
1081
  return output_df
1012
1082
 
1083
+
1084
+
1085
+ def to_sklearn(self) -> Any:
1086
+ """Get sklearn.tree.ExtraTreeRegressor object.
1087
+ """
1088
+ if self._sklearn_object is None:
1089
+ self._sklearn_object = self._create_sklearn_object()
1090
+ return self._sklearn_object
1091
+
1092
+ def to_xgboost(self) -> Any:
1093
+ raise exceptions.SnowflakeMLException(
1094
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1095
+ original_exception=AttributeError(
1096
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1097
+ "to_xgboost()",
1098
+ "to_sklearn()"
1099
+ )
1100
+ ),
1101
+ )
1102
+
1103
+ def to_lightgbm(self) -> Any:
1104
+ raise exceptions.SnowflakeMLException(
1105
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1106
+ original_exception=AttributeError(
1107
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1108
+ "to_lightgbm()",
1109
+ "to_sklearn()"
1110
+ )
1111
+ ),
1112
+ )
1013
1113
 
1014
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1114
+ def _get_dependencies(self) -> List[str]:
1115
+ return self._deps
1116
+
1117
+
1118
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1015
1119
  self._model_signature_dict = dict()
1016
1120
 
1017
1121
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1018
1122
 
1019
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1123
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1020
1124
  outputs: List[BaseFeatureSpec] = []
1021
1125
  if hasattr(self, "predict"):
1022
1126
  # keep mypy happy
1023
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1127
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1024
1128
  # For classifier, the type of predict is the same as the type of label
1025
- if self._sklearn_object._estimator_type == 'classifier':
1026
- # label columns is the desired type for output
1129
+ if self._sklearn_object._estimator_type == "classifier":
1130
+ # label columns is the desired type for output
1027
1131
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1028
1132
  # rename the output columns
1029
1133
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1030
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1031
- ([] if self._drop_input_cols else inputs)
1032
- + outputs)
1134
+ self._model_signature_dict["predict"] = ModelSignature(
1135
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1136
+ )
1033
1137
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1034
1138
  # For outlier models, returns -1 for outliers and 1 for inliers.
1035
- # Clusterer returns int64 cluster labels.
1139
+ # Clusterer returns int64 cluster labels.
1036
1140
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1037
1141
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1038
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1039
- ([] if self._drop_input_cols else inputs)
1040
- + outputs)
1041
-
1142
+ self._model_signature_dict["predict"] = ModelSignature(
1143
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1144
+ )
1145
+
1042
1146
  # For regressor, the type of predict is float64
1043
- elif self._sklearn_object._estimator_type == 'regressor':
1147
+ elif self._sklearn_object._estimator_type == "regressor":
1044
1148
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1045
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1046
- ([] if self._drop_input_cols else inputs)
1047
- + outputs)
1048
-
1149
+ self._model_signature_dict["predict"] = ModelSignature(
1150
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1151
+ )
1152
+
1049
1153
  for prob_func in PROB_FUNCTIONS:
1050
1154
  if hasattr(self, prob_func):
1051
1155
  output_cols_prefix: str = f"{prob_func}_"
1052
1156
  output_column_names = self._get_output_column_names(output_cols_prefix)
1053
1157
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1054
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1055
- ([] if self._drop_input_cols else inputs)
1056
- + outputs)
1158
+ self._model_signature_dict[prob_func] = ModelSignature(
1159
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1160
+ )
1057
1161
 
1058
1162
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1059
1163
  items = list(self._model_signature_dict.items())
@@ -1066,10 +1170,10 @@ class ExtraTreeRegressor(BaseTransformer):
1066
1170
  """Returns model signature of current class.
1067
1171
 
1068
1172
  Raises:
1069
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1173
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1070
1174
 
1071
1175
  Returns:
1072
- Dict[str, ModelSignature]: each method and its input output signature
1176
+ Dict with each method and its input output signature
1073
1177
  """
1074
1178
  if self._model_signature_dict is None:
1075
1179
  raise exceptions.SnowflakeMLException(
@@ -1077,35 +1181,3 @@ class ExtraTreeRegressor(BaseTransformer):
1077
1181
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1078
1182
  )
1079
1183
  return self._model_signature_dict
1080
-
1081
- def to_sklearn(self) -> Any:
1082
- """Get sklearn.tree.ExtraTreeRegressor object.
1083
- """
1084
- if self._sklearn_object is None:
1085
- self._sklearn_object = self._create_sklearn_object()
1086
- return self._sklearn_object
1087
-
1088
- def to_xgboost(self) -> Any:
1089
- raise exceptions.SnowflakeMLException(
1090
- error_code=error_codes.METHOD_NOT_ALLOWED,
1091
- original_exception=AttributeError(
1092
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1093
- "to_xgboost()",
1094
- "to_sklearn()"
1095
- )
1096
- ),
1097
- )
1098
-
1099
- def to_lightgbm(self) -> Any:
1100
- raise exceptions.SnowflakeMLException(
1101
- error_code=error_codes.METHOD_NOT_ALLOWED,
1102
- original_exception=AttributeError(
1103
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1104
- "to_lightgbm()",
1105
- "to_sklearn()"
1106
- )
1107
- ),
1108
- )
1109
-
1110
- def _get_dependencies(self) -> List[str]:
1111
- return self._deps