snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -5,9 +5,9 @@ snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4Ts
5
5
  snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
6
  snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
7
  snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
- snowflake/ml/version.py,sha256=X9n40H72i_qUrqdGO45MIHs_PUCysRlD1xrJRZ97KiU,16
8
+ snowflake/ml/version.py,sha256=PhS7XK3XWIDp2SwZaZV976hFEG5kMWzFvOxTAICredA,16
9
9
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
10
- snowflake/ml/_internal/env_utils.py,sha256=nkBk8bDDKi5zIK9ZD8hBlKd3krccNZ4XC2pt6bgb4L4,25797
10
+ snowflake/ml/_internal/env_utils.py,sha256=Kntfp8gqF4BvaaWQuLpwMtRuPXjlx_EuJY6SZAO0rEw,26212
11
11
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
12
12
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
13
13
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
@@ -28,7 +28,7 @@ snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t
28
28
  snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
29
29
  snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
30
30
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
31
- snowflake/ml/_internal/utils/identifier.py,sha256=_NAW00FGtQsQESxF2b30_T4kkmzQITsdfykvJ2PqPUo,10870
31
+ snowflake/ml/_internal/utils/identifier.py,sha256=eokEDF7JIML2gm_3FfknPdPR9aBT3woweA5S4z_46-E,10925
32
32
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
33
33
  snowflake/ml/_internal/utils/log_stream_processor.py,sha256=pBf8ycEamhHjEzUT55Rx_tFqSkYRpD5Dt71Mx9ZdaS8,1001
34
34
  snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
@@ -40,19 +40,19 @@ snowflake/ml/_internal/utils/session_token_manager.py,sha256=qXRlE7pyw-Gb0q_BmTd
40
40
  snowflake/ml/_internal/utils/snowflake_env.py,sha256=Mrov0v95pzVUeAe7r1e1PtlIco9ytj5SGAuUWORQaKs,2927
41
41
  snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=HPyWxj-SwgvWUrYR38BkBtx813eMqz5wmQosgc1sce0,5403
42
42
  snowflake/ml/_internal/utils/spcs_attribution_utils.py,sha256=9XPKe1BDkWhnGuHDXBHE4FP-m3U22lTZnrQLsHGFhWU,4292
43
- snowflake/ml/_internal/utils/sql_identifier.py,sha256=BYd0_ZNHjbpP33XeVLOcnhZXCrIschQegpE_hXXJ4bw,3502
43
+ snowflake/ml/_internal/utils/sql_identifier.py,sha256=CHTxr3qtc1ygNkA5oOQQa-XEoosw5sjfHe7J4WZlkDQ,3270
44
44
  snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
45
45
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=7JNib0DvjxW7Eu3bimwAHibGosf0u8W49HEc49BghF8,1402
46
46
  snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
47
47
  snowflake/ml/dataset/dataset.py,sha256=OG_RonPgj86mRKRgN-xhJV0uZfa78ohVBpxsoYYnceY,6078
48
48
  snowflake/ml/feature_store/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
49
49
  snowflake/ml/feature_store/entity.py,sha256=dCpzLC3jrt5wDHqFYJXbAYkMiZ0zEmiVDMGkks6MXkA,3378
50
- snowflake/ml/feature_store/feature_store.py,sha256=aNcbXHwpq9qja3785kpvgvahGtooY2KGjqspLM26W1o,69115
51
- snowflake/ml/feature_store/feature_view.py,sha256=APSn-xqm1Yv_iIKCckPdsvAqFb7D0-3BUW6URjSNut8,17806
50
+ snowflake/ml/feature_store/feature_store.py,sha256=TyLzlsVkPb0Vh-jyCA0prX5vMi6Q8DtxbU2uFElRnVM,71962
51
+ snowflake/ml/feature_store/feature_view.py,sha256=2WtcqcHcvh51ojbf8K7a16GSiY5WbMDDwTMQmj_AQT8,17544
52
52
  snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
53
53
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
54
- snowflake/ml/fileset/sfcfs.py,sha256=XFtLpeo2Smq1Hn4sMKl5kwCKfqlMFqA4soynxK9YJJM,15174
55
- snowflake/ml/fileset/stage_fs.py,sha256=_hoJrZoqFZYl8fPdEO8crmcWoahAdxeleEUoKPqG8yg,17021
54
+ snowflake/ml/fileset/sfcfs.py,sha256=aRhGMLnFLRQcvhN3epScTLUoOFNM9UQJwVpF8reZ-Yo,15596
55
+ snowflake/ml/fileset/stage_fs.py,sha256=Lzt5qglRE6p27MYBlb2CO2KdqvTlzuOGXoVmJ1Xfnec,18595
56
56
  snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
57
57
  snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
58
58
  snowflake/ml/model/__init__.py,sha256=fk8OMvOyrSIkAhX0EcrgBBvdz1VGRsdMmfYFV2GCf14,367
@@ -60,13 +60,13 @@ snowflake/ml/model/_api.py,sha256=Y3r-Rm1-TJ0rnuydcWs6ENGdNp86T57PbmCWJlB0o0U,21
60
60
  snowflake/ml/model/custom_model.py,sha256=xvu7WZ1YmOdvuPePyAj6qMwKq-HNeVV9bNfkOT09CRI,8267
61
61
  snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
62
62
  snowflake/ml/model/model_signature.py,sha256=UQSGieGJcnmC02V4feCYMdhMXnGoOUa9KBuDrbeivBM,29342
63
- snowflake/ml/model/type_hints.py,sha256=qe9U01Br4zYN0Uo0Pm7OC8eyjIuAoVwzweSvEe9SMzQ,12195
63
+ snowflake/ml/model/type_hints.py,sha256=aUg_1xNtzdH2_kH48v918jbpEnHPNIn6MmfrwdvYvdg,12705
64
64
  snowflake/ml/model/_client/model/model_impl.py,sha256=QmTJr1JLdqBHWrFFpR2xARfbx0INYPzbfKWJn--3yX4,12525
65
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=A9d4ipgiymX35Hsk7j4GkO908u0aVUAf95kUWybTT9M,13548
65
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=OQJab7XkFGBenuKw5_xqUibXhTU6ZUWTAjCghBooLTY,11160
66
66
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=XFNolmueu0nC3nAjb2Lj3v1NffDAhAq0JWMek9JVO38,4094
67
- snowflake/ml/model/_client/ops/model_ops.py,sha256=cL791mSAr4fJvPco6PtMdpwqicHhSTc8nsn4jdcEuEA,17767
68
- snowflake/ml/model/_client/sql/model.py,sha256=diuyGfFtLu1Z9yBThP-SjGOG9Zy4gflRKh6JoyUBDHk,4525
69
- snowflake/ml/model/_client/sql/model_version.py,sha256=G4chwD_C4oVCPqyAfaWpjOu246XnhgJ4gCM64-jlkTQ,9426
67
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=Rc0jRRkTbJpymlKLOc1iK7xDoKwnP80sB6NjK1XhhLQ,20264
68
+ snowflake/ml/model/_client/sql/model.py,sha256=bIw606G3GP0OQRwYKDywWEpZOIisQP3JjEoWVdTUvpo,5386
69
+ snowflake/ml/model/_client/sql/model_version.py,sha256=YNngtSVrr9-RHlDMpF1RdxjHRNZPfQX14-KywPER2hU,10172
70
70
  snowflake/ml/model/_client/sql/stage.py,sha256=4zP8aO6cv0IDrZEqhkheNWwy4qBuv1qyGLwMFSW-7EI,1497
71
71
  snowflake/ml/model/_client/sql/tag.py,sha256=RYvblBfQmK4xmLF0pz0BNUd9wddqlfHtEK1JRRpJGPE,4646
72
72
  snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
@@ -88,39 +88,41 @@ snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=R_ilt8SGwQR
88
88
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
89
89
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
90
90
  snowflake/ml/model/_model_composer/model_composer.py,sha256=ShoSp74xImfdXuIMTVJKt09sIBS8uxz-0rCbYBxLX9o,6337
91
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=wdMTFH8St31mr88Fj8lQLTj_gvskHQu8fQOxAPQoXuQ,6677
92
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=R4oX50Rlpr0C6zTYJRPuuZqImzYcBSTCQJfuSGutULI,2029
91
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=kvNMuL8L2Yvtbgf9wr_nly6DmL8wAkwT976rgdqRQPE,4722
92
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=SCXyYZ2-UN_wcLZRM6wf2N4zy6ObpLsUwOxJBxhHXYI,2291
93
93
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2B-fykyanYlGWA4Ie2nOwXx2N5D2qZEvTbbPuSSreeI,1837
94
94
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
95
95
  snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=gex5if17PZ6t6fPcr2i_LO_3IRY03Ykcv_XAyKJt8pg,2170
96
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=Lk32tVHAN_oMRuKx_9hiFKuk7gqCDcJe-D0fN56BzvM,6693
97
- snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py,sha256=z3V7mRgdP-TYpZSX7TrW2k_4hNQ3ZsR4YO4ZQ0YSm8s,248
98
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py,sha256=y6gZURScuGFZK6-n_YEdzDIzJHCiHXctKuSGv_ObRwc,4307
96
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=cr5soVDesBm19tjDG6lHLN6xrxj_uwPv1lKt8FgpM-c,6682
99
97
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
100
- snowflake/ml/model/_packager/model_packager.py,sha256=qT07boM7j1ZcbjfMLcDpB1JXdg8s0A7zGORpkhxFfVA,5966
98
+ snowflake/ml/model/_packager/model_packager.py,sha256=WwF54Qu5Q-p6qGRcY7BzXNBFCRJRjUWFLpXiYnK7Uf0,5958
101
99
  snowflake/ml/model/_packager/model_env/model_env.py,sha256=MHajuZ7LnMadPImXESeEQDocgKh2E3QiKqC-fqmDKio,16640
102
100
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=-FfoDfULcfFRizya5ZHOjx48_w04Zy4eLEqOOrQIDHM,6033
103
101
  snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=KKwS93yZnrUr2JERuRGWpzxCWwD6LOCCvR3ZfjZTnyQ,2622
102
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=FC0Yw2QDknaR9jdzncTI4QckozT-y87hWSHsqQYHLTs,8142
104
103
  snowflake/ml/model/_packager/model_handlers/custom.py,sha256=y5CHdEeKWAO08uor2OtEob4-67zv1CVfRf1CLvBHN40,7325
105
104
  snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=Z7vZ5zhZByLVPfNdSkhgzBot1Y8UBOM3ITj3Qfway3A,19985
105
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=PWPdpOdden2vfloXZA5sA20b2dCBiGO1-NfJ8atH-Uc,8445
106
106
  snowflake/ml/model/_packager/model_handlers/llm.py,sha256=SgCgy9Ys5KivNymjF35ufCpPOtMtSby2Zu4Tllir8Mg,10772
107
107
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=Itw1fPiBdU2euOmjLU3P6Vyfj9Go3jSx1c-yHlQRYpU,8993
108
108
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=dSxKO530_IlF1OK3t9_UYpVntdPiszKy-x_7XGk0bzQ,8033
109
109
  snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=JRPargMNEJaDFQIpzqEVvOml62G_UVVvJdqBH8Lhu_Y,9051
110
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=bb-3AkK5T5HlFLSzviGKKRjhVcGvKIClDU7OP1OsNHg,8065
110
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=u4ino0SxjAMxEl2jgTqt6Mqs1dKGZmSE90mIp3qHErU,8218
111
111
  snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=le4Y_dbiPlcjhiFpK1shla3pVgQ5UASdx2g7a70tYYY,7967
112
112
  snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=ujBcbJ1-Ymv7ZeLfuxuDBe7QZ7KNU7x1p2k6OM_yi-0,8179
113
113
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=8s8sMWQ9ydJpK1Nk2uPQ-FVeB-xclfX5qzRDr9G1bdk,8104
114
114
  snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=x5bXz5DRzb3O7DMDOF535LBPGnydCa78JHP_7-vsnjY,8874
115
115
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
116
- snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=BE-T6xd48OmUIthNAapbI6w7cmUsJwd32I7c1slaXpE,274
116
+ snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=zObSLyhu56hMnIfdv7PMkzHJrTP3-FAroNZ6-Rji7J4,274
117
117
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
118
118
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
119
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=duiMX-EJDVCMoMnPRdhgk2umtDxF30-uC4CkdbHPSuc,15903
120
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=j5b7hkh3Kz79vDaQmuCnBq5S9FvpUfDz3Ee2KmaKfBE,1897
119
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=UnmTBsWDbvW0iJCkXNYJG2J7qEehrvS3Ds_3G-P7VRM,17266
120
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=8eutgCBiL8IFjFIya0NyHLekPhtAsuMhyMA8MCA9VOQ,2380
121
121
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
122
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=czF4J_i3FPHDaaFwKF93Gr6qxVwF4IbaoCdb3G_5iH8,1034
122
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
123
123
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
124
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=urdG-zCiGWnVBYrvPzeEeaISjBDQwBCft6QJXBmVHWY,248
125
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=Hnu0ND3fEmuI29-ommNJdJRzII3tekHrU4z8mUEUqTk,5872
124
126
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
125
127
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=0kAnTZ_-gCK0j5AiWHQhzBZsCweP_87tClsCTUJb3jE,2706
126
128
  snowflake/ml/model/_signatures/core.py,sha256=VfOjMsCOKuZwFAXc_FSs2TeFjM-2MSHxQzB_LXc-gLk,17972
@@ -133,150 +135,150 @@ snowflake/ml/model/_signatures/utils.py,sha256=aP5lkxiT4lY5gtN6vnupAJhXwRXFSlWFu
133
135
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
134
136
  snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
135
137
  snowflake/ml/modeling/_internal/constants.py,sha256=xI4ofa3ATQ2UszRPpkfUAxghV_gXmvxleqOew4UI1PM,45
136
- snowflake/ml/modeling/_internal/estimator_utils.py,sha256=Szhpip5g7ddmT1-nfRg8WFRRCBx9QIjsSW9ey7jkTLo,8855
138
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=ajRlCHvb4a-rGzMAVvtKhEE5ijObzW7YA_Ox5u2Orr4,9215
137
139
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=nAqgw7i1LcYMKRQq9mg2I50Kl0tsayh2_do5UMDXdT0,4801
138
140
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=AlnTRnIowaF39Qjy2Zv4U3JsMydzCxfcBB2pgLIzNpk,694
139
141
  snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=0zazMgVNmBly7jKLGEwwjirb6VUsmA5bnplCzWxfTP8,7269
140
142
  snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=Y6Y8XSr7X7xAy1FvjPuHTb9Opy7tnGoCuOUBc5WEBJ4,3364
141
143
  snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=adbJH9BcD52Z1VbqoCE_9IexjIxERTXE8932Hz-gw3E,6482
142
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=SbjbDXBwXEd_buFk_7YM5NtzEuDxiuqFBYlpS4Md_fg,7580
144
+ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=xrayZRLP8_qrnfLJE4uPZ1uz0z3xy4Y5HrJqM3c7MA4,7831
143
145
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=QuXUeeFzktfxStkXFlFSzB7QAuaTG2mPQJVBlRkb0WI,3169
144
146
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=y9PZ3xgPGDHPBcNHY0f2Fk0nMZMRsPcLWy2cIDTALT4,4850
145
147
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
146
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=1kfwnUzaBFcxrN_YjWdlbT6ZR_vqcBjUwscwDzTsQyQ,54431
147
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=qtizLi4azYYCPL0BzuxohK81BpxRPidQQGhwVgp2bAQ,13590
148
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=baETLCVGDcaaGXwiOx6QyhaMX_zQ1Kt7xGjotd_MSKo,54368
149
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=8rVe366RSYYYAwGSqhKyxZYhW3nAqC7MiTucnFLvNQM,13616
148
150
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=w3zCrv-TwDB1o9eFppMaiXWmMeEPz_EAn_vl_2_6GL8,21699
149
151
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=VBYWGTy6ajQ-u2aiEvVU6NnKobEqJyz65oaHJS-ZjBs,17208
150
152
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
151
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=CYa8vxy0FEO76VsPNDjnk183YKgpOP50Nzyhjsgd1Aw,47625
153
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=jUlsmletPjnV8KYLJIoRkd8JrDO33F7VlEf-xpxXZ2s,51017
152
154
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
153
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=gUAcqg8CzIuSXS3hdDXlRhquBklZPCN6qDcOJ4G676o,45454
154
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=VmSjSA8_6i9A00ywPatvZQhImhK7EPgDfJS7MNc1j40,47491
155
- snowflake/ml/modeling/cluster/birch.py,sha256=cCGVrpCGXcAU_XJSJNDuARoc1ruBO5STLIeYfxMM4yw,45179
156
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=MlWzdj1r2e8YOyB1W7msjlQ-_LkL7gVsqphBma50W14,47878
157
- snowflake/ml/modeling/cluster/dbscan.py,sha256=oPFfugJCWvUhBjHa4-zsVb0DLV8cPWe8NzvmO35YO5I,45541
158
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=dzKHlkRqqaaX2-zS4tBJLChOkuWsxdqAqvSxvWRxKaI,48009
159
- snowflake/ml/modeling/cluster/k_means.py,sha256=Hwq8pyxvbOeNqzMJ8Hc5fRI0vGJmeZWJqkVVx8HDM3k,47434
160
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=GMbc6ZqZOxlin8Q-XHVGlYIqF1RJ256tUpiIeP7BaZY,45751
161
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=9z2CVgN-yoehFRmo1dn6VQzwxMJM_kk96RVZV6HknCM,48796
162
- snowflake/ml/modeling/cluster/optics.py,sha256=Zwp-FOOwW5YPQC9kpiBe0B99OXCQej_46Uq8kP__PYw,48855
163
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=kv1J6Tcl41wMBbvdMJwoWN0HC5mOFMtYA51jjU3wzLk,45750
164
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=g6nENhQm3PBZipUP2ijG5nbyTExMSPX9rZZpPghp0dU,48942
165
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=vKvl0uD79hazcX9stojTCS68mymYNz950elR20P6wJ8,44883
155
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=afp4K6VIXjph1oDxEDHbG_fHBlGo0qwM2ZXjl9Pe_90,48846
156
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=rmExcHQw4rkNruTRclVNfiGrcqqURsiYk3x9TO-IAqA,50883
157
+ snowflake/ml/modeling/cluster/birch.py,sha256=DCK5o2TSPwmBxxxZYgQsGuwIOErYu9jUAFnhHdTKJqY,48571
158
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=731dOd6cvOVDL2IFmY3yoPvUe-GvU7qdUdolCiZDhg0,51270
159
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=A9C_8_BB-KPvlvNtdVcHuMhga6pPG_IW-r8VwKdu3lE,48933
160
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=Q5gMSa-W-j9WMhYLcQDQVnI6ErcKYla_yavs9I9GTxs,51401
161
+ snowflake/ml/modeling/cluster/k_means.py,sha256=g2H5DwxAcmBfzs3dyHgNmkLLMqYNuerR-o0QWFTcQyc,50826
162
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=ycVAbdL14g_lR3gUlgaj0v1Lt8_eoJcrsXLySav1Vq4,49143
163
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=OOhW2gMlljzJWtI_61psJ2LOx95YSms2IDKnsVIHS0A,52188
164
+ snowflake/ml/modeling/cluster/optics.py,sha256=EngSMXX1eTLKJCmDZ8KjtBZElpnln_rnGyLnyHyaZ6k,52247
165
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=bk2PMHOMnJG6h0zSLyJplUKwGxmBjxdGNSHQBIXTpVU,49142
166
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=VZXmEOcb-E1o894iBhnFqqjMkShBEql5U2lb1OFkhTs,52334
167
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=rKhNgIitjXGupWfFqYjimk49nCXYS_j3I57m-OHpcso,48275
166
168
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
167
- snowflake/ml/modeling/compose/column_transformer.py,sha256=5dezU1RLj8FppvNQ2hQhWLpeS5XI6D8PMi6loH_1fHs,47449
168
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=U0qI1NxGGrHHaTQ1-T4LS29bkkP7zKP0qldS-SuExGs,45437
169
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=JM95YHKS1l7SPWIGjtkCfQefMo31X5idL7-RhFAiD8A,50841
170
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=9dwmnkydmJogcBcxn5ChMvYMQ9iaEySthbbwACg0sns,48829
169
171
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
170
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=gfXNdBaJVmDErpz0oFdQpk8xf-8X4GB9h2Nd5IBHFbQ,45775
171
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=vHPQGjQE985wdLD3KHul0NWOoAatH5djDSI8oamghw8,43583
172
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=1E9fhXKdhB_lC0e54fGws1AFfC2tAcMFFpZpsQbSdR8,45447
173
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=JA7hjBSi6cThyeBjDR8xDPenvZmpHNl5beWmgZN8AAY,46612
174
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=-S6mm2kUqXVKZrYuY1idk4DysuiCfxNp6g1UwUcUXMw,43721
175
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=sQcKR33Kp8Dkyd-fRrDtCfvxd-INOxN_HU-dDlnFTrc,44476
176
- snowflake/ml/modeling/covariance/oas.py,sha256=t8NqXHdtt0g6MvQKVsa7rx_ez6Dmvp1Xm3VjCTEJkfE,43362
177
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=yZUrXk41_YBY5Zow9hgTSEZMyYkI-V2IDtQMUWzpWFA,43738
172
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=4FesJyaTg4p7QEDA146Yah6qa6pITAydu3bjrWXpR9s,49167
173
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=MnAbsL383FamDGP-w75j0XNyKyWGZJVeiFox1IrnN18,46975
174
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=Wsx7XXEbk2mLihAGLD0-8JlDUt1PzU5ScNibIaPBYo4,48839
175
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=tpaXIOw2rcbn7PhTRLXPjYNZ8w0_YHOkZ44AYLApp-E,50004
176
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=1DjNUC6vyafLkS-FBByGJX2daB8GwV-nx_gp2MPoSTc,47113
177
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=4LRTnoNaQ8QMvLZ7rfV00oujVKKY9CqmfRBaX88Rw_g,47868
178
+ snowflake/ml/modeling/covariance/oas.py,sha256=b5aPAfCQZIW4VwRLIj06OcVPOABFx7wHwYxX89-bVdo,46754
179
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=t2faZLN_pr6tqN48gQvkaVBNuxq1PwIVroeE07CG-ws,47130
178
180
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
179
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=r0NAIdbDuWsoPLXe8ho9ePIGoHyDsRysYNxkHJoU4d0,48446
180
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=YIgvHrTVNNgmxJQK47skVy6OaEdaX4XQeY22tl3YZSg,46151
181
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=Azm2Kp5ud2vWP24sokMSd_h2BfsCtMtNTAiZJzWRiy4,46092
182
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=-1sGgytOyU0YQvDX7fLx0RV5pU12AatnVzY6kImOrgE,44445
183
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=qZoHKyfO3M8NtZ7cdEnmI34o7vBgnY-UpGvQDzllg_I,48444
184
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=0m-DxZfhfh7s7SWl3Q5gSkCH31pLEQxqbnnVsEexQG4,49490
185
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=2cZ6jyv6Taf_VM7_OsVe5GWq2rQCtXT8o6cGmCtIbdI,46782
186
- snowflake/ml/modeling/decomposition/pca.py,sha256=5KkbZdj1lzRAfuHiUS5LaxUM6jTu9-D9jq2RDHazlGU,47711
187
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=rb9r2g_KAIEEsgEVjn76AvV7JyquEsUG0TWbIyQ47ok,45614
188
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=FQdGcPCApnifH466AxtINz4QAmUdwOUz7ArGUGNGb6c,45202
181
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=LY-6TJJ9_m822mCAzkH-FqyI2LtGpOKg-pwfz_UViUQ,51838
182
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=J-c6ya1twEGf9oZnGWOruCZwMrDVG23sFesbdK2Thpo,49543
183
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=x6wJ-wKbLFAfwHgiacDbbyJZj82zz3LVfFDRUaYVAt0,49484
184
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=Isda0dKytZ4sWkj276Sfk7u4obj1ViRWmINfMDu1-8Y,47837
185
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=de5vTOkvpQebwJBGFzKWN3e4eDANiHcvYtNwUAsjxWc,51836
186
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=rceFeLfNzMkZJ7ZNM_D8rI6Z3Af6-4aBXYAZpY5-8Qg,52882
187
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=9uvLahexV7VCH6KD3i6DchRoulOOtK9IBpebB-NEZVE,50174
188
+ snowflake/ml/modeling/decomposition/pca.py,sha256=xOWvnQt7EFWjxB5HLc_61-k8t_d33fFTaD64NhCXais,51103
189
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=U52ueZYP3dsrGY8EgAiCWwXyHb7ZDGlx_YEBx6Sg9yI,49006
190
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=UOsph316mxYS6SsiVsM1hMkWF_X_jz2q4rYfkHQ6Wi4,48594
189
191
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
190
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=abn-yzfJ16XZsQJH--6BBcbo5Ax81OQJGd1UWohwyK0,47917
191
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=35r9I-WCd2Ky-YoR7YkpIf0qmDcfc7aIZrBTHDRUHR4,46006
192
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=2j10IY2v_XN-Couke3gXHuKYYxBfaGan9Td3dPv9cfQ,51309
193
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=0p1j-2tHGF63iNRH9Cu7Bpvx3F_Wnu7xZvSbGgixz3w,49398
192
194
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
193
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=1PKPXrtnBhySmddQbXbpmM-xoDYKvQCId9CWmugOWzk,46824
194
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=5Gq0tEGvkQBXFakDMLUP7_QgR9bPxIycMaFAlvxSwaQ,45715
195
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=YSPVn_QngReSIs7Np6iTP-h-jFe91l0TZNioK6hKrd4,47735
196
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=mF9t_6W6fAmyZjg-vk2lfqGiklmVuuWkXTkP8Q6edio,46971
197
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=rg0tcidpg4Vn3MkXmfM8tF8DRG39v4ljJr2a5dLGm7o,52655
198
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=dw45poTDCH59Jim7e2Q-jWbXG4kePxketH7_VCY56P0,51259
199
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=A2uCPa4zaO0N6u8x-5D5e2QJFwayithmrTJkoGDvNR0,54110
200
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=kfKVfNuF8esX9lems2osK95zVqhTW4iwTHv1UFnFYOo,53703
201
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=hPNwZIg9oKUOWUBFXLikwPHj5VcP60fQx6_dq4odtHg,53944
202
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=Ya1Z2TPM7HKkylfenLQ8vMGxxT53JyPISMvDPUncRKk,52429
203
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=tpqX98wl9sS06ZJQqNdW4kibFtwnqmuCulF6Vi143AE,46923
204
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=4caeketEZmxmjx_9KkqZfbRTkOsUU3VkqK_0o9QWjQE,52638
205
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=iWkEx6A5JlPex5tCaX0F2k2B9EZ0KfDxjG4xKOmpsbY,51230
206
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=PdKbG2Vc8uXxVI9O8gGNQoxibR24MnKWv-MJfAg8d0k,46668
207
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=K_BowzvqgiOM885UQCgEoYPmXkxLqtk72W4qjP1YDo0,46239
208
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=o7WKhzYZIRPsfyE7vnH9DQOkQzIComz3t0_biI5saMg,44768
195
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=VgxneH2u795BnWhSibz0WsFx6CrS9HNa5G3vDXLb1HA,50216
196
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=3ZD9rt4_BIb5UY5627iw2sAQ9nclCrr0gAERdJ-FUUY,49107
197
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=n-w6SXU9GAyiRzvVQzf41JTFuhMZTiNA2gfMAQdIwY8,51127
198
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=ba0Qk0sq6LkjyIMMYj4imuX3OGvoQVOZQ4HbSNq1JoE,50363
199
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=ao2055ldja5mNCArNlQiI7y5-EUrWNXpZs3oJ6DA5Lw,56047
200
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=wJ87KI6Zrcg1i8AULKYPJVwrrejrdZ5nSJp9G0-rnzk,54651
201
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=zwoNi8NL6kmAd5HuYmbKUC6cTr2q_5YX-eVf1xLyReg,57502
202
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=GNHEy6qKoj_LvbBXQHi9XWmroyvA037leP88ZWgYaKk,57095
203
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=fWpMe1KGXkgTyTtGZHCsy_CdIxUXYt5qcfqM-LrRHb0,57336
204
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=CevblPb_gRICCWI_-9-WX0bUU8xfHfzcOaNMgLcP2dE,55821
205
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=VxAodKDVI2zlGlDguAjcttkUIsCjbFMuv3buUkIIYTw,50315
206
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=cQPdeI3Z3pxFnEjy9qkOG3JTp--B1jogDZ22tlmDKgk,56030
207
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=gmDcsGH4Nfo1y-b5ISwBT9yfS1Qr6nImy4OYhlflkuo,54622
208
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=uvy-Lvv-JMKJB5-FBNSabuAKD5B--QFknm2GhLt0e8M,50060
209
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=hLDRXzIg3Ub-xWU5gTK2Qgyx2ojDS3sBGLy8mtORCd0,49631
210
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=0FFUoxzg0hcGjDlrU4wxFJZ3RWcoPulziiwT0WI43xQ,48160
209
211
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
210
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=w6yWOpJ81eD39Ff0_rjKRbkgb1kaCztejmQNUCpfDVA,44079
211
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=cxOdhyv-uExXTzQ5UX_wKzEHwRXrjoOqAp63Rt5iOeg,43722
212
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=GPmVENFXdZlb8msR1gGB2jPWMn-DWFDG35dGxgTFJcA,43716
213
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=7M-paZ2f_RuSCpcq2_BhxNRmMmPPvQEBMioeynEVjvg,43724
214
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=ca2AUtsUhmZLWR4eNIvhlRWRrkodYR85mRo2IBnyce4,43809
215
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=10-R2ijOsTVRGJiHL9rpSZNbQPPcZ2q-kBqe8jc-4KM,43849
216
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=kRZ4HPQgzawll6ZGZ76ZseVA3qhLYtNRFmq4d_9u0gc,46442
217
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=8i6_ALx-0XY2FxRGnBeOY2Jd29PYz6ALFDAouC6ysoQ,43402
218
- snowflake/ml/modeling/framework/_utils.py,sha256=85q83_QVwAQmnzMYefSE5FaxiGMYnOpRatyvdpemU6w,9974
219
- snowflake/ml/modeling/framework/base.py,sha256=PteCPFStrGyeH1HP3oQLkY7AaNoWj8abHYwZuLoHfso,30157
212
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=iEI1NAJRAYWbvV7W0JxCzHHxfTS4wHra7K4bas7lMYg,47471
213
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=s12RZaRVjthJPtF4gKTADmrAdUxmlDsoyy-SOhEDosY,47114
214
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=2yugXuswa1eryGuj5cEFTnLh78l4igRrX3QqqFRJ52c,47108
215
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=mBxNLyPeu6EC2YxELsAllAHAoDMw7g9phh-Jdo_qWC8,47116
216
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=ArGC7MVPil3_l-WEcFofOespzYuzqzAIjKpSJ6BOamE,47201
217
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=sodp-xs8NoBuveCiUlpOt6AW0cwFSQlA0SCqnIQqOwo,47241
218
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=3a9I2j7_EHTXnL4IuIYpIqzgeUtaHp__rfO5chONW_8,49834
219
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=H_S5UhsRwYRedSSx1c0fJnKcxeRmKLT5EU6kWJ8rDm0,46794
220
+ snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
221
+ snowflake/ml/modeling/framework/base.py,sha256=6ebxZIkUfDsLcEufokyN7XVKyvfvjhys3pFsUyQtfQ4,30470
220
222
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
221
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=igmWhHpuU27OtYDAHbduJHNltCTKwakCu5ch3Q0brew,49376
222
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=VXIWTMMM80zqzBBdwQLeEAdzf67jZ0pXhJ50O_do2UQ,48441
223
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=xoaQud9cg8-qNG65Zf1KkJdbcuBp8lR9uYxU7M5yhrE,52768
224
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=t_UPbZ9uR9mIYgoNlcBR9JEpcCBY_h3EzpmWgQV_nSg,51833
223
225
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
224
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=jF_H8WvECHavwzaOKYqsR0ijM3VnyWzBC3Gl70Qd4zc,49939
225
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=49U_EkD-kQ6uSIxC8BOKqc9IxS1IHuvW1gfOeGeEFCA,45696
226
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=sdwF5ip-u7g3ioeK7ImdEmvCZE-D6xigAbiXP4kkduc,44524
226
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=ShzrWrfRHN7U5OsWWpRnB_-yRe6i5pKCZWIOdCIVwJs,53331
227
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=oTwdqdnsDfdLcx9nb6Jqe9H71B-VutU0vaZrj8UrxaQ,49088
228
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=v0fSUO9hoQ9zk7121ZZhr8i1bo483IlHPcyZdMwkATo,47916
227
229
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=awM33HugS5jGs3JXud1U8eEMm2VLdIAf7z_eVXAzKD0,18499
228
230
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
229
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=McvxnMNfyv3O2fNXsIMmGFFWfbKnEulj11Z0D4X8bDo,43515
230
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=fMANo2btM_MaJRID8RrF7Ni66uwcsvmyUlOXPEgo_4w,45319
231
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=dH5PXUV9ucAUNK-s6BNazCKcidt2FrAf0Q5zhEcWqSA,44528
232
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=WCx417eh8aGpPQys35ExSO8nXIl-a_n2zd32f0EZT8E,43915
233
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=0kB3UCP7mKE6-jzznCunfVmO09_XESUyteJGRgrXjds,43942
231
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=SqtQEX4ez9km91JDYN2NcIHEAKT8lxKkEWlZX8HM9M4,46907
232
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=SZRx5NieE2Skj_6FvqiBXNQ3neaB3F3U874Avk7P3Zs,48711
233
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=eO2fS91GkcHfWTyxFNRQVdtPhNd21AuV1myUpks_Uiw,47920
234
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=c87jMzeIguq_CPsXN05hX5pKhU0WDLxEgOk3dsEJcR0,47307
235
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=BpOYKneZk8jwklR2hopITgnA3WVKBk5fgunzO1aonEw,47334
234
236
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
235
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=Hm9RoSJqOvd6xQrNByvKU3NAjGktUF__Txsj5HrO66s,45755
237
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=bvaF-kDn4wWUhijpH-J2IYhvdVjKWqJ3rSt4SQtO-tc,49147
236
238
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
237
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=tQWAMmWECo7i7q6L-RhzJZPTJ-EW90_U7VM0w7JCk5g,45323
238
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=llkP12nu04eOcC8DfeKyYx2YRLspxGXRP75V47YajSY,44826
239
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=DTK5Ja5jNtZueOCt_9_-tPWJCH7K9LS8qIG6Olpq8I0,48715
240
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=LgVfIPNhWLkvpwYcNmcSoh438EtfxMyc2rqf5nxQiK0,48218
239
241
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
240
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=BE0Mp7qtXFltlRrh25dytZla50nuyLeIvcE19wDsxDU,45700
241
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=qU5_D_0H34X14gZa4EAdlxluPXqQIe5tRPPRctiZzOY,46116
242
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=1qCqDfx12EiNxgVXS0j6VpxWK1H7axmQThFp2iNyCkE,46688
243
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=2xz6RbCi-KkpSU9XNIHBMzJr5EtEPgcOI6_kBuKUIbU,47956
244
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=XDY-b0Q_LrMz52OZE2l4Y8W7CXMCL6n_ieeJm2fEtRY,45768
245
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=DB-sSJb4HGqQG8vsP3zm7wUhVeM8yyBSx__GkUpIGX0,44965
246
- snowflake/ml/modeling/linear_model/lars.py,sha256=uRZKWVAaFskGIWA3JLwrOROYcfL2x9n9IsgeUWI7O58,46188
247
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Ql6yABd-lkV6zfgi8C1lPzhWHv3QLFm799abp_N4bMc,46409
248
- snowflake/ml/modeling/linear_model/lasso.py,sha256=zG7L6KjWEo8TSjsnVSZpiuMt62y9CP4xhmgxLWa-A-s,46294
249
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=uMAhsYh7FimkVht2XntX3zCGuL05-Mcpco-qYntfH_s,47079
250
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=sCvBslSN26bvq7d27ADRWtKRQkTe-5NmzEt3MoHr3xA,47324
251
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=2z3P2tQVw00JBwCjNNEehWB53uJzBOAGGaXmWK_HgMM,47285
252
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=fpORngW3p-9zSA2hkWqHCqXwEGj5Akb1a-ZdLCGoecI,46631
253
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=Zh56EYsMX7KqndtxAWx8ehS26GFS2cg2yHFRfAFN0fg,44507
254
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=IjNu9RIosJqIV-PaACdrvJqt6Q75FbLslFgWFuuBbvE,50762
255
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=Lj9hsheYdBuvn8cA7LtIrd25ckhOuGIhwi605rI5_Vs,51802
256
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=x-l-glEXz4VdbbbyVW1diRTcThbzfZYMVkyt4Car02g,45979
257
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=Z4xNGDpMeAWM_QrO8M-MOH-VruKhq9_MJ71qeM-mcik,47617
258
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=za5VRyA_cCXmhQxElgWpYqiiwcEiFg5JD2MZOzDfcIc,45527
259
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=dZxCUZn_CodKcd3f73PCgsrsModB-57JT17KEWxO2L8,46789
260
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=MdHMXDI9COycSuEcPoFJmLr1yGqvU-MWywpYYGQKb7Y,45134
261
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=g28wTZgL77CM63UjbEF9sk6Z-W9Otg7i77yz6bqtPDU,48490
262
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=eRk7Wx0Jdz9EOSykusi36ih3wcr7DpRWdOdPL_O-A0g,47557
263
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=aGZ9lcPnCge318q4mEhe4g33wf3tCFzhHLnSGG_O0aI,47874
264
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=d7HD5-Hfg2CC2mosQYTEcIcRM909XwynOHe1fWECVfg,45813
265
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=KLMKrF8zW6TkyLz1UUwrV6Ecua29NrnVpw_1y-56bII,48932
266
- snowflake/ml/modeling/linear_model/ridge.py,sha256=xXdVan8y3qCoeEguTLgq-YKVFcLuJcCPutE4V8E4b0g,47838
267
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=6csfmq367kThuwe33sRCYy5dxsO7NUzzFfZXg7AQsSM,48226
268
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=Y49MtT7og2PMkKe2MqQmdTj-8WhzKKU-Jfwrh5n1y8c,46221
269
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=xsBPpsxbqv5m7TKseRGzzm9qqmini3WSjj8v0Gr98b8,46922
270
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=WBlc9w1BUFBujfqhq1_c62CCjf_8EU59MxuT9_4ZPe0,53299
271
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=8NZImlxBOBT7qTypY0wgkPUCDQBxfXV_4yLPyD9Yduk,48097
272
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=3CfSJtIBYJ_00OHKW4qMJVFXtmUfb8CHeQU03oo_Uus,50770
273
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=BpQU_THSILO-jsm83FyGBUs6cDq4bQ0z4thj5TDWlkE,46248
274
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=xynomI6tbTDDSmxxoONY7NnByVnfuUApUHui3PLbdUA,47204
242
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=MBbPZEbrVKJFgVa4X_JWK7gOY5oyqJUJkA40uRHTA68,49092
243
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=-bMiotMYqoLRAd9qVkFFDPJKjJqKHoH5vDX1-rrpAMY,49508
244
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=gqv2mrTmcWrcxF2XDDoHEq3WQv2P5FwDLXz82hwseRE,50080
245
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=5ZtqlSMQTLP_DyUMPdrvPzgR40RvGW5iLnC2WP4qlyM,51348
246
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=p4oOBdWGqtoqrHxzhi793ST-MTs95IjW1k7gvwTWOX4,49160
247
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=pnkGNWrHDphyan52lFo7qfqDLqktq5QM7i7kd8Lz0SA,48357
248
+ snowflake/ml/modeling/linear_model/lars.py,sha256=Dg43PU2uhy-Z0TneRgc1EpaKGOKMc7BVHdJGEaYvVNQ,49580
249
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Vt_ll0a0Tgjf3ZZAHzssb-YN8iTti0CeX4JEmtjGAm8,49801
250
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=9789pUfQLG66ox4EaM4-W3-ay801yz4w8HxduGyRKi8,49686
251
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=TlzF3JRIdBqO1SZbmLvEe5GE_f2KaIiQBbw1ypar70E,50471
252
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=te8RfcaK3Fd493Vw4P7rh0Cq62Ow6GqePgEcePE7I58,50716
253
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=nVCYsE3kFLkeDov521rmusmdbqJtADFczI3DgciazIE,50677
254
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=ZAX7IbjPYwYNg8TO7Vwf7_rc-JZxqtAHOCNwqvXbFxg,50023
255
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=rjiPOnQrpzbBpH4v5z5lPDA9Q_M_zI9bGaX30iNwD30,47899
256
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=MiJcM0p2SZEv73NgCIym71ljk5F5rckyNSKXrdyKZQ0,54154
257
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=CNnWwT6pKuVKLVkiuYTMKDeVpYlz4sg4JOJv6mlEEng,55194
258
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=fg7lgy8vwQCaubDnxFB97Vgj0i_Jt9T2XG7q9eWRdwY,49371
259
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=qBdIWIkpZ7IKjimbx05Uj72Inh3Gwu_Wbv8vnctNGKk,51009
260
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=lIBHh_XaHP9DuJEOslATxa2VseaE47WI--Eo_5XBf0M,48919
261
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=Ki_CLjIKUzSHavZDwpmkoeRmIUmRHvp_Rz1fqYpFZk4,50181
262
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=jBRIMM96qihVhRkz4WqYSXQIhKvDGblwSN0pZSMh3XM,48526
263
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=TmKUYInBA5K8hURL7fjGKwGZ45LhiKUllyQzqlth1ps,51882
264
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=_H9FFj9TS8JrOfgF2g6TH_YBwxUirQMv5MW9LayfKgc,50949
265
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=r_iWf0r1H0uUWwJuVL1ln3-1odN8LLBnzrd4LEhQNTs,51266
266
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=CKXD2gLEsz8V5Xi7sKyAftiS352LpLYXyFu08Oinw08,49205
267
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=mYRyQgBTp45Wb4BeNSl6rTK_SzYvQVvzx8hpgOh57_M,52324
268
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=Mmhb3rQQgs2Nc5GYU88_lE_DGBUlKEQqr2z4TAa7cgE,51230
269
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=5wCXK6g-BlMUTc_PVuH44PMH6tzYC-KeUCnK7XS9pNE,51618
270
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=8RAc3tcTNjQ86kI9AOuwpheRqr0q76HA-o5DoRiQZOM,49613
271
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=PfIfSR3zKgdxGlkeTGFgbYAITtYkk0s6Q8Nz3QopVW0,50314
272
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=8TGJqBTXs0b_BVn7p2qRPAfMxenMQhGW914P_h7ThPs,56691
273
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=9seurHoZp5Ycd2qjNFmyyX5ijuY536h907WM3FL2iQ4,51489
274
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=BqnU5tr04mi2Kr0prb1bs0dArI8-2ZfQAEfAGkcEX-k,54162
275
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=oD3OXFHyiHqnVfzYgKRN9S9t1BmonmcZkSdvs8_yd0Y,49640
276
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=bhBMLULBc_sEdaKX7tAsdoyn_1FuK11X2oiXucb1_V8,50596
275
277
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
276
- snowflake/ml/modeling/manifold/isomap.py,sha256=OOtcC3LDWrzXA7DZu42VLrz-RtX_WxSQYjL3IIjwL8c,46208
277
- snowflake/ml/modeling/manifold/mds.py,sha256=4G58NMEKcl3Ng8ueyhQJQrss86sF9S_mvXs-HukRRj0,45422
278
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=_7EGlAPcs0ToL-GzpL25d4umIFljCG6Pn5LG1nOnGCs,46246
279
- snowflake/ml/modeling/manifold/tsne.py,sha256=LBM229aO0IpF4J5N3zZOtqYreMPVUj1wRP0bP9n0mRI,49205
278
+ snowflake/ml/modeling/manifold/isomap.py,sha256=60ASOONodAkjyhXRdFOy2APjUvCuMmrtT7KuMWXJXcY,49600
279
+ snowflake/ml/modeling/manifold/mds.py,sha256=VxHFQJc9JW-cUA35pxPmPXJwK0936HI95fp2Rb_gHNI,48814
280
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=L8OYTKQwqEWybCKyLnwWq7zPES7AtlWQIufDM076wZE,49638
281
+ snowflake/ml/modeling/manifold/tsne.py,sha256=wipO5HnzUQhfBC-6reP_JalRmrP9mNwdfhv0apss1nU,52597
280
282
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
281
283
  snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
282
284
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
@@ -285,70 +287,70 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuX
285
287
  snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
286
288
  snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
287
289
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
288
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=9J-6gUBFrSxwrmNVdcFKfsgoW9MjrCwK1PiU-akFJAY,51004
289
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=mcdhmU5IJjqGb9r2gtzFg0UEDwn6x8-Katl4Mbmmat0,48905
290
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=2TogPi_LioMVhi5Daldlvze_o-hD1WQpNnkTf5AkFxE,54396
291
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=Eh1N2aYsRnuFBxV2QTaVwrtlNRE1Cap3G0Aa-p2kYdU,52297
290
292
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
291
- snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=IvZrOqNYQmRLo_sRCq64tPYYLoURkq_cP7u06T1kBr4,37147
292
- snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=Ebub4ywRs6al_58mz4kQWFcaCBWRxbflaSYgMTvhJfk,37386
293
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=JyE8MHM0tiSdRFFzcTswhLk--n5yt-4yj6znx5EyoaQ,38453
294
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=3BmQQe23wvnHWN3-BfG7zzKiG-6X-FfVu0_2A9yhqdU,38692
293
295
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
294
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=fS6LyMAjpHVhdaxFPo_g2qnlnnCquunD-o7hUhoZBX0,44507
295
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=wNXTMaXGuc6lTY8G8208uVqsI9muciLLTB_hGouHpUM,45441
296
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=sORLKVTEZ7wel8L1DVfriEjUyqrsp-u_bjNhJhaspQY,44777
296
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=YV9-vVxIkQzcjAVauatxfoGx4mP7OvWUTD-pzh-oXt8,47899
297
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=Cc6v9n1bdIyFzqGSPnqFiHWZbofqDxAEiPCsW2zJ4hk,48833
298
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=6QtdMlV8VNGXgHzd-Lo3eszCRhFCz96PWurlbukifeU,48169
297
299
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
298
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=sO-cWHHYRrJMymLRClqDitRqeV02SCZywWPNXFRjqXg,45046
299
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=yIYE14LHQylypJYDaMc5lOelZiKj7DCSKpaNxDH2__8,45381
300
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=g0qYn1DFp_fIUHRIRrfPQuM84aaAR1REUvfu3c-kR4c,45061
301
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=l8-pVqGoeD-1Xw5y2-FzRNmq1he-3Gam1x8O2JCU1fk,44190
302
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=17w57d0HFqISjBSQlFm1k3t9eVe5Qadg3JIOj-iCf6I,44826
300
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=xus3Of6nKtPCJYsnWZf3gL42pdvfGnkEkq2yPj49mE0,48438
301
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=3JoeKRyn0CoAjA8Gk_2Uhk1wtj2FvbtXk2wNyaLnKlM,48773
302
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=BiegAGRFG92DLesOBTvbPZZZGovTC6_mHtksSraSxB8,48453
303
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=ebY5aK-nHoM9NKVlEO207JijRO2aI33cjqwO8qgOox4,47582
304
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=q_Q20vfh4OdUQ9U1XW9PNQt8XyB-mzYAAELhZTek28s,48218
303
305
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
304
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=YiYzAW-cm6NsiKO74k_lxLfRyva08NNCY20UQoX1iFE,47895
305
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=qLZRNBLwK1twwXdkT0eWuBvrV79EikZtm9om4UwpSrw,47366
306
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=Egnkug25GjYYj9bz7Yt8Fbkh0fA07EvDXIhShaK8_tE,45724
307
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=u8KJ2NVI2kIDMOdNowl8590GYLigSpeZ21wFL46ZexQ,48302
308
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=aaUYHHNWlfklScLFCiQfUBftvzjbonStKS8cpb_OoX8,44384
309
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=lNHrWL3sChKS-5mgTLwIzn-BURlYB0KUelxxT4Fs6Vc,46193
310
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=xRcDPKZRw6y7GBAnCb82zLg-qMLWschgFVmG7KgQZeA,47573
311
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=epGG4OVf-k6OD8qjQWAXXrVTePGPjb8hcUzAOivplA0,48308
312
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=smg-_1NYHB5ZtdWQXDYG8h1Y0Vh42YZhxKZW_aRx2yo,47189
306
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=EgOxWl3hJlhBGUh_ERzLgUpvbfSaEa9fmG9NwCvl-WU,51287
307
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=AnFJpXgQQyJqtJdHImbCsVBO9U6IEw4zsexvCYYayh8,50758
308
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=QSgpGXXEyrgjubKeophBMEppyfSEHjj0CFn-iHI6VHY,49116
309
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=PUR1R-jEc65iKofDnoPdwy3-RRNGPKJDY2akwKJHRuY,51694
310
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=DbntjDRekGwuGYq77BON-TX_1_oEFwPgcVpo00jrymk,47776
311
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=ncPlfTMY426L82uU7RRGivV-IBVc1BL61VDh91TY5E0,49585
312
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=VuIWZD8dy0C2SzSgTzA_lx-F_hQdWvAyXrkLSl1E0wU,50965
313
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=oHWTW1aGLHPqZMK7OGou5DeZEaIIXsW3nh-ep0nBquY,51700
314
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=z7aYidP3kmDJG61Jmv_x9QVHM5fNavqsEBy8KBsDJEo,50581
313
315
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
314
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=Of4lW-32n88fD91RDUf0P2YGKceFS3w27ItRJzZ1tUc,44688
315
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=8PxgFrqDezRQdubWhBzOfbo6NYHwx43epJ0WdElCnBY,52268
316
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=p3IQcDXOfLeuUzvreraoCzEPxLPp2x1zpDpfHCn7COg,51537
316
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=JDjwNsPZJcNjHgUkbNGM3LnQgFAQdbE5v_TJIcOGSdA,48080
317
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=etjW75x8b4iCFIM8lnuaZPLC5UakLzVDE8_LDr-EN3Q,55660
318
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=JheiwTgmArE_VX6OcXNvPFt0V2H_R-5rKcsHcZXuaHs,54929
317
319
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
318
320
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
319
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=jg8cwmE2mP_IcKUabjdXBtbtvr_AZME6ZaqgTf--r1w,25436
321
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=R5F0jVmKyVZWXHE64UQnBa2dVjSFZFQCYXlA_s1x5qg,25456
320
322
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
321
- snowflake/ml/modeling/preprocessing/binarizer.py,sha256=jc2ZhVaW6R6SH12di4W3J8Awgb8GhDBjCQbaH4bnaqc,7111
322
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=XUCGQlitkx3Tv794D4dLKu758EHN_PU6HWPh6U-_Eko,21082
323
- snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=z95P3umu9L4Uk4UlAGDOkRRs5h33RPVNeCHbJ1oqjdw,7517
324
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=U_QUzDVS6W4gd_uvt5iBZUQuDu60yFRHZvpk7Vqq1kY,8880
325
- snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=SRPvTPZtNKdpWFpX9eyRp9F11seFASPLzCuhX-BlUYU,11987
326
- snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rSn1c8n7sbIswlDrFdq1eaWRvW0nTrX1LF0IIHBWTJM,6696
327
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=0kX_H6dhjPiycUW0axCb_-Wbz37MhoAuMq33HHnuwWU,71691
328
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=rkY_9ANjLAfn1VNm3aowppLJBnHVDsAJRthtWCKFcTA,33388
329
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=vwjHs0PzoBF63Y_o6NQ5Hzvwv7SrOoWUiEuguhByGAQ,44599
330
- snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=SrQgRixonU2pwqfy3DVeBC3OiQ_0UeQpqNtEkn4Hr74,12510
331
- snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=Wol8YEr2JjqsbFrLk5A4MKcpXvLDScVtflnspOB-PSg,11197
323
+ snowflake/ml/modeling/preprocessing/binarizer.py,sha256=noHrlTqpI7RRzYbCSuCjKHxhL8NUCDKNw-kDNTwyY_U,6999
324
+ snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=g7kY0LHjnCaBzkslCkjdPV06eL2KRYwZuYKRmDef3ew,20970
325
+ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=C35I9biWxefltNmXzqaJoqVgOP8eOnTNP7NIsnfR2xE,7405
326
+ snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=xpuybHsjrL68u0qNe9DTrQOJsqzb8GOvHT0-_tIBzvM,8768
327
+ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=agZt9B37PsVhmS8AkH8ix0bZFsf-EGapeTp6-OD1pwI,12200
328
+ snowflake/ml/modeling/preprocessing/normalizer.py,sha256=iv3MgJZ4B9-X1fAlC0pWsrYuQvRz1iJrM0_f4XfZKc0,6584
329
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=Ro8Rjg4cqdGZgkyIbb4X75qEExVVztIzuIM6ndslZnQ,71579
330
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=3c6XnwnMpbHbAITzo5YoJoI86YI-Q_BBFajoEa-7q80,33276
331
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=nq4e1QC8R9-5m3UFNr4PBlo-HF7R7dbjIqIWe-RC2ro,47991
332
+ snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=iBwCP10CljdGmjEo-JEZMsHsk_3tccSXYbxN4xVq5Do,12398
333
+ snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=LxvcZ4a5xuHJLtIvkLafNjv0HsZd7mqzp_cdI378kkM,11395
332
334
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
333
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=ZyQpilq5ukHW2lCfYuDZe9IozokN6TKmGKNpwmCMoks,45283
334
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=3EY6_AxAxB0wvnLVJeiDkEvUtVZjWxLzoP9BWgxHaHI,45632
335
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=-PiLSdnYJUXbMuOGTZCxfI23MUtKZIrNCI8CkXefUqU,48675
336
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=RqwGkGNabLUdOZ_xT_o-JeoOpzCWD49MacGYf42sb7o,49024
335
337
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
336
- snowflake/ml/modeling/svm/linear_svc.py,sha256=Rj_WLjLVmi234auyXTIt6-e8LAka03Tmen48L0uZM3Y,48093
337
- snowflake/ml/modeling/svm/linear_svr.py,sha256=i0Ba_lO2l9fjc776q2uZ0t5MrETOFtoGqxx3bhNUOW8,46446
338
- snowflake/ml/modeling/svm/nu_svc.py,sha256=L7n7vks7VLSAg6TGGnePXhY_d7i44_uqk2NmvdlyyIY,48405
339
- snowflake/ml/modeling/svm/nu_svr.py,sha256=v3MmS_iuW5XDqyfISMb3rrDLIVgzP8HylwqF6ipoQeE,45484
340
- snowflake/ml/modeling/svm/svc.py,sha256=zhmbl0H0_1xXBI6TJyI8bw-4mHK6f25-cGMxCkQokm8,48554
341
- snowflake/ml/modeling/svm/svr.py,sha256=7ff4uS7UaUYmEV4PqwJwxBH2YZqA3Q9mzE-M3Uo2-es,45673
338
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=cg8XdIXUgCb2hqH6lUV_8SznsSYM_4Rv-Us6y_e_Uw4,51485
339
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=jsOCsb2YXGHjp5IvnHBLdXKL7LizM2YH6eTQydTDn_w,49838
340
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=edjqwhcv8H2NiK5QQds85D0fFXw54i53L6aF7fTLJKE,51797
341
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=A2DDWc8GO-M-2kKfbZbCM5g11UJUPoW_MVFHh7dFhak,48876
342
+ snowflake/ml/modeling/svm/svc.py,sha256=jJ7DwlXwmN0M0Jr3MN-ERrUsJzvX9IcTtSjGr_7z8wg,51946
343
+ snowflake/ml/modeling/svm/svr.py,sha256=Nhs16EL09Fpmciqj6h_U1CeVf4WV5fU5cJ_3PT8LFIM,49065
342
344
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
343
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=IIJEjjYX_ewLja7SwxCC20os0A6ZCKsmT1OsMUyxa4k,50830
344
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=YniyR5DwuFv5Wpi9V22O-liMc5TDcPs0JxambqLEXZw,49529
345
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=hv1iaImjrUYsOZ-G5ns7Jvt-6uyitxUOsI0Co2nxI7A,50172
346
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=x5jM42Pj5Tmje8fQLi4l7CQ4-VKrUmlJLY2JxLBeD-s,48880
345
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=bWkIi4j8PzPTP2djteY4rllrjiFdvIdpcyNdk9DULxM,54222
346
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=5NYUDCTEvQEg99b2CSBZjieh2Nqn5EyUwVH_Ybs5q74,52921
347
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=PzKYyjJod6_712C3cYg83kYXlXupnhq37mQasn_dgC0,53564
348
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=oh1D5gSzt9G4HwLX6KXniWh9Ur25Gc-XpagE8NJcg6k,52272
347
349
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
348
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=zDqXvGMjTz7p0O881qtWbU8kGyz_MTu6HWH3_LmfYb0,55828
349
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=anSx6zCl6fBs8RfXd9xiLgULaVpJOGP2y71W8gCK9UE,55327
350
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=5raynqG_fnksOVUsT57yFZ2SPr4o6VxYRc-2SiXb4fQ,56004
351
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=Z7-ReBZRrE9-G4XENdbFHXGKMwGAE-BmK0vuXzWYF1M,55530
350
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=GH12HzpDhIlyUf9goywmywndTczaPUyYIpsMveyGUC8,59220
351
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=ddmYxpexJsodWT6bTI8LG6wxGWpry1YdvfFUj76t_fA,58719
352
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=4gMA2jD7yi11YrR160FBfGDz4x2s-SSdvHaXXlTLE6E,59396
353
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=nXnnK26ORSy2exd0pTB4DmJJCeED5_vNQND0loagXI4,58922
352
354
  snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
353
355
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
354
356
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
@@ -359,12 +361,12 @@ snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZu
359
361
  snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
360
362
  snowflake/ml/registry/artifact.py,sha256=9JDcr4aaR0d4cp4YSRnGMFRIdu-k0tABbs6jDH4VDGQ,1263
361
363
  snowflake/ml/registry/model_registry.py,sha256=MgI4Dj9kvxfNd3kQ3tWY6ygmxUd6kzb430-GKkn4BA0,91007
362
- snowflake/ml/registry/registry.py,sha256=LIwExLFPMOvbJbB7nRToDkMk93wl1ZMhGiN1Mo5HRGk,10939
364
+ snowflake/ml/registry/registry.py,sha256=RxEM0xLWdF3kIPf5upJffaPPP9liNMMZOnVeSyYNIb8,10949
363
365
  snowflake/ml/registry/_manager/model_manager.py,sha256=LYX_nS_egwum7F_LCbz_a3hibIHOTDK8LO1DPOWxPrE,5809
364
366
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
365
367
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
366
- snowflake_ml_python-1.4.0.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
367
- snowflake_ml_python-1.4.0.dist-info/METADATA,sha256=g26kO8pTVbH7coUpl7H3P4ceLOBSnilZNkT6U5ZTxGA,46650
368
- snowflake_ml_python-1.4.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
369
- snowflake_ml_python-1.4.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
370
- snowflake_ml_python-1.4.0.dist-info/RECORD,,
368
+ snowflake_ml_python-1.4.1.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
369
+ snowflake_ml_python-1.4.1.dist-info/METADATA,sha256=dz4Jp2I7bs8n4X7l5EzuXLqsZq8F9fzZ8IyImn2SFII,47072
370
+ snowflake_ml_python-1.4.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
371
+ snowflake_ml_python-1.4.1.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
372
+ snowflake_ml_python-1.4.1.dist-info/RECORD,,