snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -249,12 +248,7 @@ class GammaRegressor(BaseTransformer):
249
248
  )
250
249
  return selected_cols
251
250
 
252
- @telemetry.send_api_usage_telemetry(
253
- project=_PROJECT,
254
- subproject=_SUBPROJECT,
255
- custom_tags=dict([("autogen", True)]),
256
- )
257
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GammaRegressor":
251
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GammaRegressor":
258
252
  """Fit a Generalized Linear Model
259
253
  For more details on this function, see [sklearn.linear_model.GammaRegressor.fit]
260
254
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.GammaRegressor.html#sklearn.linear_model.GammaRegressor.fit)
@@ -281,12 +275,14 @@ class GammaRegressor(BaseTransformer):
281
275
 
282
276
  self._snowpark_cols = dataset.select(self.input_cols).columns
283
277
 
284
- # If we are already in a stored procedure, no need to kick off another one.
278
+ # If we are already in a stored procedure, no need to kick off another one.
285
279
  if SNOWML_SPROC_ENV in os.environ:
286
280
  statement_params = telemetry.get_function_usage_statement_params(
287
281
  project=_PROJECT,
288
282
  subproject=_SUBPROJECT,
289
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GammaRegressor.__class__.__name__),
283
+ function_name=telemetry.get_statement_params_full_func_name(
284
+ inspect.currentframe(), GammaRegressor.__class__.__name__
285
+ ),
290
286
  api_calls=[Session.call],
291
287
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
292
288
  )
@@ -307,7 +303,7 @@ class GammaRegressor(BaseTransformer):
307
303
  )
308
304
  self._sklearn_object = model_trainer.train()
309
305
  self._is_fitted = True
310
- self._get_model_signatures(dataset)
306
+ self._generate_model_signatures(dataset)
311
307
  return self
312
308
 
313
309
  def _batch_inference_validate_snowpark(
@@ -383,7 +379,9 @@ class GammaRegressor(BaseTransformer):
383
379
  # when it is classifier, infer the datatype from label columns
384
380
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
385
381
  # Batch inference takes a single expected output column type. Use the first columns type for now.
386
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
382
+ label_cols_signatures = [
383
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
384
+ ]
387
385
  if len(label_cols_signatures) == 0:
388
386
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
389
387
  raise exceptions.SnowflakeMLException(
@@ -391,25 +389,22 @@ class GammaRegressor(BaseTransformer):
391
389
  original_exception=ValueError(error_str),
392
390
  )
393
391
 
394
- expected_type_inferred = convert_sp_to_sf_type(
395
- label_cols_signatures[0].as_snowpark_type()
396
- )
392
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
397
393
 
398
394
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
399
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
395
+ assert isinstance(
396
+ dataset._session, Session
397
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
400
398
 
401
399
  transform_kwargs = dict(
402
- session = dataset._session,
403
- dependencies = self._deps,
404
- drop_input_cols = self._drop_input_cols,
405
- expected_output_cols_type = expected_type_inferred,
400
+ session=dataset._session,
401
+ dependencies=self._deps,
402
+ drop_input_cols=self._drop_input_cols,
403
+ expected_output_cols_type=expected_type_inferred,
406
404
  )
407
405
 
408
406
  elif isinstance(dataset, pd.DataFrame):
409
- transform_kwargs = dict(
410
- snowpark_input_cols = self._snowpark_cols,
411
- drop_input_cols = self._drop_input_cols
412
- )
407
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
413
408
 
414
409
  transform_handlers = ModelTransformerBuilder.build(
415
410
  dataset=dataset,
@@ -449,7 +444,7 @@ class GammaRegressor(BaseTransformer):
449
444
  Transformed dataset.
450
445
  """
451
446
  super()._check_dataset_type(dataset)
452
- inference_method="transform"
447
+ inference_method = "transform"
453
448
 
454
449
  # This dictionary contains optional kwargs for batch inference. These kwargs
455
450
  # are specific to the type of dataset used.
@@ -486,17 +481,14 @@ class GammaRegressor(BaseTransformer):
486
481
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
487
482
 
488
483
  transform_kwargs = dict(
489
- session = dataset._session,
490
- dependencies = self._deps,
491
- drop_input_cols = self._drop_input_cols,
492
- expected_output_cols_type = expected_dtype,
484
+ session=dataset._session,
485
+ dependencies=self._deps,
486
+ drop_input_cols=self._drop_input_cols,
487
+ expected_output_cols_type=expected_dtype,
493
488
  )
494
489
 
495
490
  elif isinstance(dataset, pd.DataFrame):
496
- transform_kwargs = dict(
497
- snowpark_input_cols = self._snowpark_cols,
498
- drop_input_cols = self._drop_input_cols
499
- )
491
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
500
492
 
501
493
  transform_handlers = ModelTransformerBuilder.build(
502
494
  dataset=dataset,
@@ -515,7 +507,11 @@ class GammaRegressor(BaseTransformer):
515
507
  return output_df
516
508
 
517
509
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
518
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
510
+ def fit_predict(
511
+ self,
512
+ dataset: Union[DataFrame, pd.DataFrame],
513
+ output_cols_prefix: str = "fit_predict_",
514
+ ) -> Union[DataFrame, pd.DataFrame]:
519
515
  """ Method not supported for this class.
520
516
 
521
517
 
@@ -540,7 +536,9 @@ class GammaRegressor(BaseTransformer):
540
536
  )
541
537
  output_result, fitted_estimator = model_trainer.train_fit_predict(
542
538
  drop_input_cols=self._drop_input_cols,
543
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
539
+ expected_output_cols_list=(
540
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
541
+ ),
544
542
  )
545
543
  self._sklearn_object = fitted_estimator
546
544
  self._is_fitted = True
@@ -557,6 +555,62 @@ class GammaRegressor(BaseTransformer):
557
555
  assert self._sklearn_object is not None
558
556
  return self._sklearn_object.embedding_
559
557
 
558
+
559
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
560
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
561
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
562
+ """
563
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
564
+ # The following condition is introduced for kneighbors methods, and not used in other methods
565
+ if output_cols:
566
+ output_cols = [
567
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
568
+ for c in output_cols
569
+ ]
570
+ elif getattr(self._sklearn_object, "classes_", None) is None:
571
+ output_cols = [output_cols_prefix]
572
+ elif self._sklearn_object is not None:
573
+ classes = self._sklearn_object.classes_
574
+ if isinstance(classes, numpy.ndarray):
575
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
576
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
577
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
578
+ output_cols = []
579
+ for i, cl in enumerate(classes):
580
+ # For binary classification, there is only one output column for each class
581
+ # ndarray as the two classes are complementary.
582
+ if len(cl) == 2:
583
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
584
+ else:
585
+ output_cols.extend([
586
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
587
+ ])
588
+ else:
589
+ output_cols = []
590
+
591
+ # Make sure column names are valid snowflake identifiers.
592
+ assert output_cols is not None # Make MyPy happy
593
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
594
+
595
+ return rv
596
+
597
+ def _align_expected_output_names(
598
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
599
+ ) -> List[str]:
600
+ # in case the inferred output column names dimension is different
601
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
602
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
603
+ output_df_columns = list(output_df_pd.columns)
604
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
605
+ if self.sample_weight_col:
606
+ output_df_columns_set -= set(self.sample_weight_col)
607
+ # if the dimension of inferred output column names is correct; use it
608
+ if len(expected_output_cols_list) == len(output_df_columns_set):
609
+ return expected_output_cols_list
610
+ # otherwise, use the sklearn estimator's output
611
+ else:
612
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
613
+
560
614
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
561
615
  @telemetry.send_api_usage_telemetry(
562
616
  project=_PROJECT,
@@ -587,24 +641,28 @@ class GammaRegressor(BaseTransformer):
587
641
  # are specific to the type of dataset used.
588
642
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
589
643
 
644
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
645
+
590
646
  if isinstance(dataset, DataFrame):
591
647
  self._deps = self._batch_inference_validate_snowpark(
592
648
  dataset=dataset,
593
649
  inference_method=inference_method,
594
650
  )
595
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
651
+ assert isinstance(
652
+ dataset._session, Session
653
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
596
654
  transform_kwargs = dict(
597
655
  session=dataset._session,
598
656
  dependencies=self._deps,
599
- drop_input_cols = self._drop_input_cols,
657
+ drop_input_cols=self._drop_input_cols,
600
658
  expected_output_cols_type="float",
601
659
  )
660
+ expected_output_cols = self._align_expected_output_names(
661
+ inference_method, dataset, expected_output_cols, output_cols_prefix
662
+ )
602
663
 
603
664
  elif isinstance(dataset, pd.DataFrame):
604
- transform_kwargs = dict(
605
- snowpark_input_cols = self._snowpark_cols,
606
- drop_input_cols = self._drop_input_cols
607
- )
665
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
608
666
 
609
667
  transform_handlers = ModelTransformerBuilder.build(
610
668
  dataset=dataset,
@@ -616,7 +674,7 @@ class GammaRegressor(BaseTransformer):
616
674
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
617
675
  inference_method=inference_method,
618
676
  input_cols=self.input_cols,
619
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
677
+ expected_output_cols=expected_output_cols,
620
678
  **transform_kwargs
621
679
  )
622
680
  return output_df
@@ -646,7 +704,8 @@ class GammaRegressor(BaseTransformer):
646
704
  Output dataset with log probability of the sample for each class in the model.
647
705
  """
648
706
  super()._check_dataset_type(dataset)
649
- inference_method="predict_log_proba"
707
+ inference_method = "predict_log_proba"
708
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
650
709
 
651
710
  # This dictionary contains optional kwargs for batch inference. These kwargs
652
711
  # are specific to the type of dataset used.
@@ -657,18 +716,20 @@ class GammaRegressor(BaseTransformer):
657
716
  dataset=dataset,
658
717
  inference_method=inference_method,
659
718
  )
660
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
719
+ assert isinstance(
720
+ dataset._session, Session
721
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
661
722
  transform_kwargs = dict(
662
723
  session=dataset._session,
663
724
  dependencies=self._deps,
664
- drop_input_cols = self._drop_input_cols,
725
+ drop_input_cols=self._drop_input_cols,
665
726
  expected_output_cols_type="float",
666
727
  )
728
+ expected_output_cols = self._align_expected_output_names(
729
+ inference_method, dataset, expected_output_cols, output_cols_prefix
730
+ )
667
731
  elif isinstance(dataset, pd.DataFrame):
668
- transform_kwargs = dict(
669
- snowpark_input_cols = self._snowpark_cols,
670
- drop_input_cols = self._drop_input_cols
671
- )
732
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
672
733
 
673
734
  transform_handlers = ModelTransformerBuilder.build(
674
735
  dataset=dataset,
@@ -681,7 +742,7 @@ class GammaRegressor(BaseTransformer):
681
742
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
682
743
  inference_method=inference_method,
683
744
  input_cols=self.input_cols,
684
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
745
+ expected_output_cols=expected_output_cols,
685
746
  **transform_kwargs
686
747
  )
687
748
  return output_df
@@ -707,30 +768,34 @@ class GammaRegressor(BaseTransformer):
707
768
  Output dataset with results of the decision function for the samples in input dataset.
708
769
  """
709
770
  super()._check_dataset_type(dataset)
710
- inference_method="decision_function"
771
+ inference_method = "decision_function"
711
772
 
712
773
  # This dictionary contains optional kwargs for batch inference. These kwargs
713
774
  # are specific to the type of dataset used.
714
775
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
715
776
 
777
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
778
+
716
779
  if isinstance(dataset, DataFrame):
717
780
  self._deps = self._batch_inference_validate_snowpark(
718
781
  dataset=dataset,
719
782
  inference_method=inference_method,
720
783
  )
721
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
784
+ assert isinstance(
785
+ dataset._session, Session
786
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
722
787
  transform_kwargs = dict(
723
788
  session=dataset._session,
724
789
  dependencies=self._deps,
725
- drop_input_cols = self._drop_input_cols,
790
+ drop_input_cols=self._drop_input_cols,
726
791
  expected_output_cols_type="float",
727
792
  )
793
+ expected_output_cols = self._align_expected_output_names(
794
+ inference_method, dataset, expected_output_cols, output_cols_prefix
795
+ )
728
796
 
729
797
  elif isinstance(dataset, pd.DataFrame):
730
- transform_kwargs = dict(
731
- snowpark_input_cols = self._snowpark_cols,
732
- drop_input_cols = self._drop_input_cols
733
- )
798
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
734
799
 
735
800
  transform_handlers = ModelTransformerBuilder.build(
736
801
  dataset=dataset,
@@ -743,7 +808,7 @@ class GammaRegressor(BaseTransformer):
743
808
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
744
809
  inference_method=inference_method,
745
810
  input_cols=self.input_cols,
746
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
811
+ expected_output_cols=expected_output_cols,
747
812
  **transform_kwargs
748
813
  )
749
814
  return output_df
@@ -772,12 +837,14 @@ class GammaRegressor(BaseTransformer):
772
837
  Output dataset with probability of the sample for each class in the model.
773
838
  """
774
839
  super()._check_dataset_type(dataset)
775
- inference_method="score_samples"
840
+ inference_method = "score_samples"
776
841
 
777
842
  # This dictionary contains optional kwargs for batch inference. These kwargs
778
843
  # are specific to the type of dataset used.
779
844
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
780
845
 
846
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
847
+
781
848
  if isinstance(dataset, DataFrame):
782
849
  self._deps = self._batch_inference_validate_snowpark(
783
850
  dataset=dataset,
@@ -790,6 +857,9 @@ class GammaRegressor(BaseTransformer):
790
857
  drop_input_cols = self._drop_input_cols,
791
858
  expected_output_cols_type="float",
792
859
  )
860
+ expected_output_cols = self._align_expected_output_names(
861
+ inference_method, dataset, expected_output_cols, output_cols_prefix
862
+ )
793
863
 
794
864
  elif isinstance(dataset, pd.DataFrame):
795
865
  transform_kwargs = dict(
@@ -808,7 +878,7 @@ class GammaRegressor(BaseTransformer):
808
878
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
809
879
  inference_method=inference_method,
810
880
  input_cols=self.input_cols,
811
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
881
+ expected_output_cols=expected_output_cols,
812
882
  **transform_kwargs
813
883
  )
814
884
  return output_df
@@ -955,50 +1025,84 @@ class GammaRegressor(BaseTransformer):
955
1025
  )
956
1026
  return output_df
957
1027
 
1028
+
1029
+
1030
+ def to_sklearn(self) -> Any:
1031
+ """Get sklearn.linear_model.GammaRegressor object.
1032
+ """
1033
+ if self._sklearn_object is None:
1034
+ self._sklearn_object = self._create_sklearn_object()
1035
+ return self._sklearn_object
1036
+
1037
+ def to_xgboost(self) -> Any:
1038
+ raise exceptions.SnowflakeMLException(
1039
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1040
+ original_exception=AttributeError(
1041
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1042
+ "to_xgboost()",
1043
+ "to_sklearn()"
1044
+ )
1045
+ ),
1046
+ )
1047
+
1048
+ def to_lightgbm(self) -> Any:
1049
+ raise exceptions.SnowflakeMLException(
1050
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1051
+ original_exception=AttributeError(
1052
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1053
+ "to_lightgbm()",
1054
+ "to_sklearn()"
1055
+ )
1056
+ ),
1057
+ )
958
1058
 
959
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1059
+ def _get_dependencies(self) -> List[str]:
1060
+ return self._deps
1061
+
1062
+
1063
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
960
1064
  self._model_signature_dict = dict()
961
1065
 
962
1066
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
963
1067
 
964
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1068
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
965
1069
  outputs: List[BaseFeatureSpec] = []
966
1070
  if hasattr(self, "predict"):
967
1071
  # keep mypy happy
968
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1072
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
969
1073
  # For classifier, the type of predict is the same as the type of label
970
- if self._sklearn_object._estimator_type == 'classifier':
971
- # label columns is the desired type for output
1074
+ if self._sklearn_object._estimator_type == "classifier":
1075
+ # label columns is the desired type for output
972
1076
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
973
1077
  # rename the output columns
974
1078
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
975
- self._model_signature_dict["predict"] = ModelSignature(inputs,
976
- ([] if self._drop_input_cols else inputs)
977
- + outputs)
1079
+ self._model_signature_dict["predict"] = ModelSignature(
1080
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1081
+ )
978
1082
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
979
1083
  # For outlier models, returns -1 for outliers and 1 for inliers.
980
- # Clusterer returns int64 cluster labels.
1084
+ # Clusterer returns int64 cluster labels.
981
1085
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
982
1086
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
983
- self._model_signature_dict["predict"] = ModelSignature(inputs,
984
- ([] if self._drop_input_cols else inputs)
985
- + outputs)
986
-
1087
+ self._model_signature_dict["predict"] = ModelSignature(
1088
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1089
+ )
1090
+
987
1091
  # For regressor, the type of predict is float64
988
- elif self._sklearn_object._estimator_type == 'regressor':
1092
+ elif self._sklearn_object._estimator_type == "regressor":
989
1093
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
990
- self._model_signature_dict["predict"] = ModelSignature(inputs,
991
- ([] if self._drop_input_cols else inputs)
992
- + outputs)
993
-
1094
+ self._model_signature_dict["predict"] = ModelSignature(
1095
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1096
+ )
1097
+
994
1098
  for prob_func in PROB_FUNCTIONS:
995
1099
  if hasattr(self, prob_func):
996
1100
  output_cols_prefix: str = f"{prob_func}_"
997
1101
  output_column_names = self._get_output_column_names(output_cols_prefix)
998
1102
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
999
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1000
- ([] if self._drop_input_cols else inputs)
1001
- + outputs)
1103
+ self._model_signature_dict[prob_func] = ModelSignature(
1104
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1105
+ )
1002
1106
 
1003
1107
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1004
1108
  items = list(self._model_signature_dict.items())
@@ -1011,10 +1115,10 @@ class GammaRegressor(BaseTransformer):
1011
1115
  """Returns model signature of current class.
1012
1116
 
1013
1117
  Raises:
1014
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1118
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1015
1119
 
1016
1120
  Returns:
1017
- Dict[str, ModelSignature]: each method and its input output signature
1121
+ Dict with each method and its input output signature
1018
1122
  """
1019
1123
  if self._model_signature_dict is None:
1020
1124
  raise exceptions.SnowflakeMLException(
@@ -1022,35 +1126,3 @@ class GammaRegressor(BaseTransformer):
1022
1126
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1023
1127
  )
1024
1128
  return self._model_signature_dict
1025
-
1026
- def to_sklearn(self) -> Any:
1027
- """Get sklearn.linear_model.GammaRegressor object.
1028
- """
1029
- if self._sklearn_object is None:
1030
- self._sklearn_object = self._create_sklearn_object()
1031
- return self._sklearn_object
1032
-
1033
- def to_xgboost(self) -> Any:
1034
- raise exceptions.SnowflakeMLException(
1035
- error_code=error_codes.METHOD_NOT_ALLOWED,
1036
- original_exception=AttributeError(
1037
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1038
- "to_xgboost()",
1039
- "to_sklearn()"
1040
- )
1041
- ),
1042
- )
1043
-
1044
- def to_lightgbm(self) -> Any:
1045
- raise exceptions.SnowflakeMLException(
1046
- error_code=error_codes.METHOD_NOT_ALLOWED,
1047
- original_exception=AttributeError(
1048
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1049
- "to_lightgbm()",
1050
- "to_sklearn()"
1051
- )
1052
- ),
1053
- )
1054
-
1055
- def _get_dependencies(self) -> List[str]:
1056
- return self._deps