snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -270,12 +269,7 @@ class ColumnTransformer(BaseTransformer):
270
269
  )
271
270
  return selected_cols
272
271
 
273
- @telemetry.send_api_usage_telemetry(
274
- project=_PROJECT,
275
- subproject=_SUBPROJECT,
276
- custom_tags=dict([("autogen", True)]),
277
- )
278
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ColumnTransformer":
272
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ColumnTransformer":
279
273
  """Fit all transformers using X
280
274
  For more details on this function, see [sklearn.compose.ColumnTransformer.fit]
281
275
  (https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html#sklearn.compose.ColumnTransformer.fit)
@@ -302,12 +296,14 @@ class ColumnTransformer(BaseTransformer):
302
296
 
303
297
  self._snowpark_cols = dataset.select(self.input_cols).columns
304
298
 
305
- # If we are already in a stored procedure, no need to kick off another one.
299
+ # If we are already in a stored procedure, no need to kick off another one.
306
300
  if SNOWML_SPROC_ENV in os.environ:
307
301
  statement_params = telemetry.get_function_usage_statement_params(
308
302
  project=_PROJECT,
309
303
  subproject=_SUBPROJECT,
310
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ColumnTransformer.__class__.__name__),
304
+ function_name=telemetry.get_statement_params_full_func_name(
305
+ inspect.currentframe(), ColumnTransformer.__class__.__name__
306
+ ),
311
307
  api_calls=[Session.call],
312
308
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
313
309
  )
@@ -328,7 +324,7 @@ class ColumnTransformer(BaseTransformer):
328
324
  )
329
325
  self._sklearn_object = model_trainer.train()
330
326
  self._is_fitted = True
331
- self._get_model_signatures(dataset)
327
+ self._generate_model_signatures(dataset)
332
328
  return self
333
329
 
334
330
  def _batch_inference_validate_snowpark(
@@ -402,7 +398,9 @@ class ColumnTransformer(BaseTransformer):
402
398
  # when it is classifier, infer the datatype from label columns
403
399
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
404
400
  # Batch inference takes a single expected output column type. Use the first columns type for now.
405
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
401
+ label_cols_signatures = [
402
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
403
+ ]
406
404
  if len(label_cols_signatures) == 0:
407
405
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
408
406
  raise exceptions.SnowflakeMLException(
@@ -410,25 +408,22 @@ class ColumnTransformer(BaseTransformer):
410
408
  original_exception=ValueError(error_str),
411
409
  )
412
410
 
413
- expected_type_inferred = convert_sp_to_sf_type(
414
- label_cols_signatures[0].as_snowpark_type()
415
- )
411
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
416
412
 
417
413
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
418
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
414
+ assert isinstance(
415
+ dataset._session, Session
416
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
419
417
 
420
418
  transform_kwargs = dict(
421
- session = dataset._session,
422
- dependencies = self._deps,
423
- drop_input_cols = self._drop_input_cols,
424
- expected_output_cols_type = expected_type_inferred,
419
+ session=dataset._session,
420
+ dependencies=self._deps,
421
+ drop_input_cols=self._drop_input_cols,
422
+ expected_output_cols_type=expected_type_inferred,
425
423
  )
426
424
 
427
425
  elif isinstance(dataset, pd.DataFrame):
428
- transform_kwargs = dict(
429
- snowpark_input_cols = self._snowpark_cols,
430
- drop_input_cols = self._drop_input_cols
431
- )
426
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
432
427
 
433
428
  transform_handlers = ModelTransformerBuilder.build(
434
429
  dataset=dataset,
@@ -470,7 +465,7 @@ class ColumnTransformer(BaseTransformer):
470
465
  Transformed dataset.
471
466
  """
472
467
  super()._check_dataset_type(dataset)
473
- inference_method="transform"
468
+ inference_method = "transform"
474
469
 
475
470
  # This dictionary contains optional kwargs for batch inference. These kwargs
476
471
  # are specific to the type of dataset used.
@@ -507,17 +502,14 @@ class ColumnTransformer(BaseTransformer):
507
502
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
508
503
 
509
504
  transform_kwargs = dict(
510
- session = dataset._session,
511
- dependencies = self._deps,
512
- drop_input_cols = self._drop_input_cols,
513
- expected_output_cols_type = expected_dtype,
505
+ session=dataset._session,
506
+ dependencies=self._deps,
507
+ drop_input_cols=self._drop_input_cols,
508
+ expected_output_cols_type=expected_dtype,
514
509
  )
515
510
 
516
511
  elif isinstance(dataset, pd.DataFrame):
517
- transform_kwargs = dict(
518
- snowpark_input_cols = self._snowpark_cols,
519
- drop_input_cols = self._drop_input_cols
520
- )
512
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
521
513
 
522
514
  transform_handlers = ModelTransformerBuilder.build(
523
515
  dataset=dataset,
@@ -536,7 +528,11 @@ class ColumnTransformer(BaseTransformer):
536
528
  return output_df
537
529
 
538
530
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
539
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
531
+ def fit_predict(
532
+ self,
533
+ dataset: Union[DataFrame, pd.DataFrame],
534
+ output_cols_prefix: str = "fit_predict_",
535
+ ) -> Union[DataFrame, pd.DataFrame]:
540
536
  """ Method not supported for this class.
541
537
 
542
538
 
@@ -561,7 +557,9 @@ class ColumnTransformer(BaseTransformer):
561
557
  )
562
558
  output_result, fitted_estimator = model_trainer.train_fit_predict(
563
559
  drop_input_cols=self._drop_input_cols,
564
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
560
+ expected_output_cols_list=(
561
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
562
+ ),
565
563
  )
566
564
  self._sklearn_object = fitted_estimator
567
565
  self._is_fitted = True
@@ -578,6 +576,62 @@ class ColumnTransformer(BaseTransformer):
578
576
  assert self._sklearn_object is not None
579
577
  return self._sklearn_object.embedding_
580
578
 
579
+
580
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
581
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
582
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
583
+ """
584
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
585
+ # The following condition is introduced for kneighbors methods, and not used in other methods
586
+ if output_cols:
587
+ output_cols = [
588
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
589
+ for c in output_cols
590
+ ]
591
+ elif getattr(self._sklearn_object, "classes_", None) is None:
592
+ output_cols = [output_cols_prefix]
593
+ elif self._sklearn_object is not None:
594
+ classes = self._sklearn_object.classes_
595
+ if isinstance(classes, numpy.ndarray):
596
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
597
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
598
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
599
+ output_cols = []
600
+ for i, cl in enumerate(classes):
601
+ # For binary classification, there is only one output column for each class
602
+ # ndarray as the two classes are complementary.
603
+ if len(cl) == 2:
604
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
605
+ else:
606
+ output_cols.extend([
607
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
608
+ ])
609
+ else:
610
+ output_cols = []
611
+
612
+ # Make sure column names are valid snowflake identifiers.
613
+ assert output_cols is not None # Make MyPy happy
614
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
615
+
616
+ return rv
617
+
618
+ def _align_expected_output_names(
619
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
620
+ ) -> List[str]:
621
+ # in case the inferred output column names dimension is different
622
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
623
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
624
+ output_df_columns = list(output_df_pd.columns)
625
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
626
+ if self.sample_weight_col:
627
+ output_df_columns_set -= set(self.sample_weight_col)
628
+ # if the dimension of inferred output column names is correct; use it
629
+ if len(expected_output_cols_list) == len(output_df_columns_set):
630
+ return expected_output_cols_list
631
+ # otherwise, use the sklearn estimator's output
632
+ else:
633
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
634
+
581
635
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
582
636
  @telemetry.send_api_usage_telemetry(
583
637
  project=_PROJECT,
@@ -608,24 +662,28 @@ class ColumnTransformer(BaseTransformer):
608
662
  # are specific to the type of dataset used.
609
663
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
610
664
 
665
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
666
+
611
667
  if isinstance(dataset, DataFrame):
612
668
  self._deps = self._batch_inference_validate_snowpark(
613
669
  dataset=dataset,
614
670
  inference_method=inference_method,
615
671
  )
616
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
672
+ assert isinstance(
673
+ dataset._session, Session
674
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
617
675
  transform_kwargs = dict(
618
676
  session=dataset._session,
619
677
  dependencies=self._deps,
620
- drop_input_cols = self._drop_input_cols,
678
+ drop_input_cols=self._drop_input_cols,
621
679
  expected_output_cols_type="float",
622
680
  )
681
+ expected_output_cols = self._align_expected_output_names(
682
+ inference_method, dataset, expected_output_cols, output_cols_prefix
683
+ )
623
684
 
624
685
  elif isinstance(dataset, pd.DataFrame):
625
- transform_kwargs = dict(
626
- snowpark_input_cols = self._snowpark_cols,
627
- drop_input_cols = self._drop_input_cols
628
- )
686
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
629
687
 
630
688
  transform_handlers = ModelTransformerBuilder.build(
631
689
  dataset=dataset,
@@ -637,7 +695,7 @@ class ColumnTransformer(BaseTransformer):
637
695
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
638
696
  inference_method=inference_method,
639
697
  input_cols=self.input_cols,
640
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
698
+ expected_output_cols=expected_output_cols,
641
699
  **transform_kwargs
642
700
  )
643
701
  return output_df
@@ -667,7 +725,8 @@ class ColumnTransformer(BaseTransformer):
667
725
  Output dataset with log probability of the sample for each class in the model.
668
726
  """
669
727
  super()._check_dataset_type(dataset)
670
- inference_method="predict_log_proba"
728
+ inference_method = "predict_log_proba"
729
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
671
730
 
672
731
  # This dictionary contains optional kwargs for batch inference. These kwargs
673
732
  # are specific to the type of dataset used.
@@ -678,18 +737,20 @@ class ColumnTransformer(BaseTransformer):
678
737
  dataset=dataset,
679
738
  inference_method=inference_method,
680
739
  )
681
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
740
+ assert isinstance(
741
+ dataset._session, Session
742
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
682
743
  transform_kwargs = dict(
683
744
  session=dataset._session,
684
745
  dependencies=self._deps,
685
- drop_input_cols = self._drop_input_cols,
746
+ drop_input_cols=self._drop_input_cols,
686
747
  expected_output_cols_type="float",
687
748
  )
749
+ expected_output_cols = self._align_expected_output_names(
750
+ inference_method, dataset, expected_output_cols, output_cols_prefix
751
+ )
688
752
  elif isinstance(dataset, pd.DataFrame):
689
- transform_kwargs = dict(
690
- snowpark_input_cols = self._snowpark_cols,
691
- drop_input_cols = self._drop_input_cols
692
- )
753
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
693
754
 
694
755
  transform_handlers = ModelTransformerBuilder.build(
695
756
  dataset=dataset,
@@ -702,7 +763,7 @@ class ColumnTransformer(BaseTransformer):
702
763
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
703
764
  inference_method=inference_method,
704
765
  input_cols=self.input_cols,
705
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
766
+ expected_output_cols=expected_output_cols,
706
767
  **transform_kwargs
707
768
  )
708
769
  return output_df
@@ -728,30 +789,34 @@ class ColumnTransformer(BaseTransformer):
728
789
  Output dataset with results of the decision function for the samples in input dataset.
729
790
  """
730
791
  super()._check_dataset_type(dataset)
731
- inference_method="decision_function"
792
+ inference_method = "decision_function"
732
793
 
733
794
  # This dictionary contains optional kwargs for batch inference. These kwargs
734
795
  # are specific to the type of dataset used.
735
796
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
736
797
 
798
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
799
+
737
800
  if isinstance(dataset, DataFrame):
738
801
  self._deps = self._batch_inference_validate_snowpark(
739
802
  dataset=dataset,
740
803
  inference_method=inference_method,
741
804
  )
742
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
805
+ assert isinstance(
806
+ dataset._session, Session
807
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
743
808
  transform_kwargs = dict(
744
809
  session=dataset._session,
745
810
  dependencies=self._deps,
746
- drop_input_cols = self._drop_input_cols,
811
+ drop_input_cols=self._drop_input_cols,
747
812
  expected_output_cols_type="float",
748
813
  )
814
+ expected_output_cols = self._align_expected_output_names(
815
+ inference_method, dataset, expected_output_cols, output_cols_prefix
816
+ )
749
817
 
750
818
  elif isinstance(dataset, pd.DataFrame):
751
- transform_kwargs = dict(
752
- snowpark_input_cols = self._snowpark_cols,
753
- drop_input_cols = self._drop_input_cols
754
- )
819
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
755
820
 
756
821
  transform_handlers = ModelTransformerBuilder.build(
757
822
  dataset=dataset,
@@ -764,7 +829,7 @@ class ColumnTransformer(BaseTransformer):
764
829
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
765
830
  inference_method=inference_method,
766
831
  input_cols=self.input_cols,
767
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
832
+ expected_output_cols=expected_output_cols,
768
833
  **transform_kwargs
769
834
  )
770
835
  return output_df
@@ -793,12 +858,14 @@ class ColumnTransformer(BaseTransformer):
793
858
  Output dataset with probability of the sample for each class in the model.
794
859
  """
795
860
  super()._check_dataset_type(dataset)
796
- inference_method="score_samples"
861
+ inference_method = "score_samples"
797
862
 
798
863
  # This dictionary contains optional kwargs for batch inference. These kwargs
799
864
  # are specific to the type of dataset used.
800
865
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
801
866
 
867
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
868
+
802
869
  if isinstance(dataset, DataFrame):
803
870
  self._deps = self._batch_inference_validate_snowpark(
804
871
  dataset=dataset,
@@ -811,6 +878,9 @@ class ColumnTransformer(BaseTransformer):
811
878
  drop_input_cols = self._drop_input_cols,
812
879
  expected_output_cols_type="float",
813
880
  )
881
+ expected_output_cols = self._align_expected_output_names(
882
+ inference_method, dataset, expected_output_cols, output_cols_prefix
883
+ )
814
884
 
815
885
  elif isinstance(dataset, pd.DataFrame):
816
886
  transform_kwargs = dict(
@@ -829,7 +899,7 @@ class ColumnTransformer(BaseTransformer):
829
899
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
830
900
  inference_method=inference_method,
831
901
  input_cols=self.input_cols,
832
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
902
+ expected_output_cols=expected_output_cols,
833
903
  **transform_kwargs
834
904
  )
835
905
  return output_df
@@ -974,50 +1044,84 @@ class ColumnTransformer(BaseTransformer):
974
1044
  )
975
1045
  return output_df
976
1046
 
1047
+
1048
+
1049
+ def to_sklearn(self) -> Any:
1050
+ """Get sklearn.compose.ColumnTransformer object.
1051
+ """
1052
+ if self._sklearn_object is None:
1053
+ self._sklearn_object = self._create_sklearn_object()
1054
+ return self._sklearn_object
1055
+
1056
+ def to_xgboost(self) -> Any:
1057
+ raise exceptions.SnowflakeMLException(
1058
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1059
+ original_exception=AttributeError(
1060
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1061
+ "to_xgboost()",
1062
+ "to_sklearn()"
1063
+ )
1064
+ ),
1065
+ )
1066
+
1067
+ def to_lightgbm(self) -> Any:
1068
+ raise exceptions.SnowflakeMLException(
1069
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1070
+ original_exception=AttributeError(
1071
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1072
+ "to_lightgbm()",
1073
+ "to_sklearn()"
1074
+ )
1075
+ ),
1076
+ )
977
1077
 
978
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1078
+ def _get_dependencies(self) -> List[str]:
1079
+ return self._deps
1080
+
1081
+
1082
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
979
1083
  self._model_signature_dict = dict()
980
1084
 
981
1085
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
982
1086
 
983
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1087
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
984
1088
  outputs: List[BaseFeatureSpec] = []
985
1089
  if hasattr(self, "predict"):
986
1090
  # keep mypy happy
987
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1091
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
988
1092
  # For classifier, the type of predict is the same as the type of label
989
- if self._sklearn_object._estimator_type == 'classifier':
990
- # label columns is the desired type for output
1093
+ if self._sklearn_object._estimator_type == "classifier":
1094
+ # label columns is the desired type for output
991
1095
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
992
1096
  # rename the output columns
993
1097
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
994
- self._model_signature_dict["predict"] = ModelSignature(inputs,
995
- ([] if self._drop_input_cols else inputs)
996
- + outputs)
1098
+ self._model_signature_dict["predict"] = ModelSignature(
1099
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1100
+ )
997
1101
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
998
1102
  # For outlier models, returns -1 for outliers and 1 for inliers.
999
- # Clusterer returns int64 cluster labels.
1103
+ # Clusterer returns int64 cluster labels.
1000
1104
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1001
1105
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1002
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1005
-
1106
+ self._model_signature_dict["predict"] = ModelSignature(
1107
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1108
+ )
1109
+
1006
1110
  # For regressor, the type of predict is float64
1007
- elif self._sklearn_object._estimator_type == 'regressor':
1111
+ elif self._sklearn_object._estimator_type == "regressor":
1008
1112
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1009
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1010
- ([] if self._drop_input_cols else inputs)
1011
- + outputs)
1012
-
1113
+ self._model_signature_dict["predict"] = ModelSignature(
1114
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1115
+ )
1116
+
1013
1117
  for prob_func in PROB_FUNCTIONS:
1014
1118
  if hasattr(self, prob_func):
1015
1119
  output_cols_prefix: str = f"{prob_func}_"
1016
1120
  output_column_names = self._get_output_column_names(output_cols_prefix)
1017
1121
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1018
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1019
- ([] if self._drop_input_cols else inputs)
1020
- + outputs)
1122
+ self._model_signature_dict[prob_func] = ModelSignature(
1123
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1124
+ )
1021
1125
 
1022
1126
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1023
1127
  items = list(self._model_signature_dict.items())
@@ -1030,10 +1134,10 @@ class ColumnTransformer(BaseTransformer):
1030
1134
  """Returns model signature of current class.
1031
1135
 
1032
1136
  Raises:
1033
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1137
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1034
1138
 
1035
1139
  Returns:
1036
- Dict[str, ModelSignature]: each method and its input output signature
1140
+ Dict with each method and its input output signature
1037
1141
  """
1038
1142
  if self._model_signature_dict is None:
1039
1143
  raise exceptions.SnowflakeMLException(
@@ -1041,35 +1145,3 @@ class ColumnTransformer(BaseTransformer):
1041
1145
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1042
1146
  )
1043
1147
  return self._model_signature_dict
1044
-
1045
- def to_sklearn(self) -> Any:
1046
- """Get sklearn.compose.ColumnTransformer object.
1047
- """
1048
- if self._sklearn_object is None:
1049
- self._sklearn_object = self._create_sklearn_object()
1050
- return self._sklearn_object
1051
-
1052
- def to_xgboost(self) -> Any:
1053
- raise exceptions.SnowflakeMLException(
1054
- error_code=error_codes.METHOD_NOT_ALLOWED,
1055
- original_exception=AttributeError(
1056
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1057
- "to_xgboost()",
1058
- "to_sklearn()"
1059
- )
1060
- ),
1061
- )
1062
-
1063
- def to_lightgbm(self) -> Any:
1064
- raise exceptions.SnowflakeMLException(
1065
- error_code=error_codes.METHOD_NOT_ALLOWED,
1066
- original_exception=AttributeError(
1067
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1068
- "to_lightgbm()",
1069
- "to_sklearn()"
1070
- )
1071
- ),
1072
- )
1073
-
1074
- def _get_dependencies(self) -> List[str]:
1075
- return self._deps