snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -261,12 +260,7 @@ class MDS(BaseTransformer):
261
260
  )
262
261
  return selected_cols
263
262
 
264
- @telemetry.send_api_usage_telemetry(
265
- project=_PROJECT,
266
- subproject=_SUBPROJECT,
267
- custom_tags=dict([("autogen", True)]),
268
- )
269
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MDS":
263
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MDS":
270
264
  """Compute the position of the points in the embedding space
271
265
  For more details on this function, see [sklearn.manifold.MDS.fit]
272
266
  (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html#sklearn.manifold.MDS.fit)
@@ -293,12 +287,14 @@ class MDS(BaseTransformer):
293
287
 
294
288
  self._snowpark_cols = dataset.select(self.input_cols).columns
295
289
 
296
- # If we are already in a stored procedure, no need to kick off another one.
290
+ # If we are already in a stored procedure, no need to kick off another one.
297
291
  if SNOWML_SPROC_ENV in os.environ:
298
292
  statement_params = telemetry.get_function_usage_statement_params(
299
293
  project=_PROJECT,
300
294
  subproject=_SUBPROJECT,
301
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MDS.__class__.__name__),
295
+ function_name=telemetry.get_statement_params_full_func_name(
296
+ inspect.currentframe(), MDS.__class__.__name__
297
+ ),
302
298
  api_calls=[Session.call],
303
299
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
304
300
  )
@@ -319,7 +315,7 @@ class MDS(BaseTransformer):
319
315
  )
320
316
  self._sklearn_object = model_trainer.train()
321
317
  self._is_fitted = True
322
- self._get_model_signatures(dataset)
318
+ self._generate_model_signatures(dataset)
323
319
  return self
324
320
 
325
321
  def _batch_inference_validate_snowpark(
@@ -393,7 +389,9 @@ class MDS(BaseTransformer):
393
389
  # when it is classifier, infer the datatype from label columns
394
390
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
395
391
  # Batch inference takes a single expected output column type. Use the first columns type for now.
396
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
392
+ label_cols_signatures = [
393
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
394
+ ]
397
395
  if len(label_cols_signatures) == 0:
398
396
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
399
397
  raise exceptions.SnowflakeMLException(
@@ -401,25 +399,22 @@ class MDS(BaseTransformer):
401
399
  original_exception=ValueError(error_str),
402
400
  )
403
401
 
404
- expected_type_inferred = convert_sp_to_sf_type(
405
- label_cols_signatures[0].as_snowpark_type()
406
- )
402
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
407
403
 
408
404
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
409
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
405
+ assert isinstance(
406
+ dataset._session, Session
407
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
410
408
 
411
409
  transform_kwargs = dict(
412
- session = dataset._session,
413
- dependencies = self._deps,
414
- drop_input_cols = self._drop_input_cols,
415
- expected_output_cols_type = expected_type_inferred,
410
+ session=dataset._session,
411
+ dependencies=self._deps,
412
+ drop_input_cols=self._drop_input_cols,
413
+ expected_output_cols_type=expected_type_inferred,
416
414
  )
417
415
 
418
416
  elif isinstance(dataset, pd.DataFrame):
419
- transform_kwargs = dict(
420
- snowpark_input_cols = self._snowpark_cols,
421
- drop_input_cols = self._drop_input_cols
422
- )
417
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
423
418
 
424
419
  transform_handlers = ModelTransformerBuilder.build(
425
420
  dataset=dataset,
@@ -459,7 +454,7 @@ class MDS(BaseTransformer):
459
454
  Transformed dataset.
460
455
  """
461
456
  super()._check_dataset_type(dataset)
462
- inference_method="transform"
457
+ inference_method = "transform"
463
458
 
464
459
  # This dictionary contains optional kwargs for batch inference. These kwargs
465
460
  # are specific to the type of dataset used.
@@ -496,17 +491,14 @@ class MDS(BaseTransformer):
496
491
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
497
492
 
498
493
  transform_kwargs = dict(
499
- session = dataset._session,
500
- dependencies = self._deps,
501
- drop_input_cols = self._drop_input_cols,
502
- expected_output_cols_type = expected_dtype,
494
+ session=dataset._session,
495
+ dependencies=self._deps,
496
+ drop_input_cols=self._drop_input_cols,
497
+ expected_output_cols_type=expected_dtype,
503
498
  )
504
499
 
505
500
  elif isinstance(dataset, pd.DataFrame):
506
- transform_kwargs = dict(
507
- snowpark_input_cols = self._snowpark_cols,
508
- drop_input_cols = self._drop_input_cols
509
- )
501
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
510
502
 
511
503
  transform_handlers = ModelTransformerBuilder.build(
512
504
  dataset=dataset,
@@ -525,7 +517,11 @@ class MDS(BaseTransformer):
525
517
  return output_df
526
518
 
527
519
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
528
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
520
+ def fit_predict(
521
+ self,
522
+ dataset: Union[DataFrame, pd.DataFrame],
523
+ output_cols_prefix: str = "fit_predict_",
524
+ ) -> Union[DataFrame, pd.DataFrame]:
529
525
  """ Method not supported for this class.
530
526
 
531
527
 
@@ -550,7 +546,9 @@ class MDS(BaseTransformer):
550
546
  )
551
547
  output_result, fitted_estimator = model_trainer.train_fit_predict(
552
548
  drop_input_cols=self._drop_input_cols,
553
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
549
+ expected_output_cols_list=(
550
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
551
+ ),
554
552
  )
555
553
  self._sklearn_object = fitted_estimator
556
554
  self._is_fitted = True
@@ -567,6 +565,62 @@ class MDS(BaseTransformer):
567
565
  assert self._sklearn_object is not None
568
566
  return self._sklearn_object.embedding_
569
567
 
568
+
569
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
570
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
571
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
572
+ """
573
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
574
+ # The following condition is introduced for kneighbors methods, and not used in other methods
575
+ if output_cols:
576
+ output_cols = [
577
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
578
+ for c in output_cols
579
+ ]
580
+ elif getattr(self._sklearn_object, "classes_", None) is None:
581
+ output_cols = [output_cols_prefix]
582
+ elif self._sklearn_object is not None:
583
+ classes = self._sklearn_object.classes_
584
+ if isinstance(classes, numpy.ndarray):
585
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
586
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
587
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
588
+ output_cols = []
589
+ for i, cl in enumerate(classes):
590
+ # For binary classification, there is only one output column for each class
591
+ # ndarray as the two classes are complementary.
592
+ if len(cl) == 2:
593
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
594
+ else:
595
+ output_cols.extend([
596
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
597
+ ])
598
+ else:
599
+ output_cols = []
600
+
601
+ # Make sure column names are valid snowflake identifiers.
602
+ assert output_cols is not None # Make MyPy happy
603
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
604
+
605
+ return rv
606
+
607
+ def _align_expected_output_names(
608
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
609
+ ) -> List[str]:
610
+ # in case the inferred output column names dimension is different
611
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
612
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
613
+ output_df_columns = list(output_df_pd.columns)
614
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
615
+ if self.sample_weight_col:
616
+ output_df_columns_set -= set(self.sample_weight_col)
617
+ # if the dimension of inferred output column names is correct; use it
618
+ if len(expected_output_cols_list) == len(output_df_columns_set):
619
+ return expected_output_cols_list
620
+ # otherwise, use the sklearn estimator's output
621
+ else:
622
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
623
+
570
624
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
571
625
  @telemetry.send_api_usage_telemetry(
572
626
  project=_PROJECT,
@@ -597,24 +651,28 @@ class MDS(BaseTransformer):
597
651
  # are specific to the type of dataset used.
598
652
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
599
653
 
654
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
655
+
600
656
  if isinstance(dataset, DataFrame):
601
657
  self._deps = self._batch_inference_validate_snowpark(
602
658
  dataset=dataset,
603
659
  inference_method=inference_method,
604
660
  )
605
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
661
+ assert isinstance(
662
+ dataset._session, Session
663
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
606
664
  transform_kwargs = dict(
607
665
  session=dataset._session,
608
666
  dependencies=self._deps,
609
- drop_input_cols = self._drop_input_cols,
667
+ drop_input_cols=self._drop_input_cols,
610
668
  expected_output_cols_type="float",
611
669
  )
670
+ expected_output_cols = self._align_expected_output_names(
671
+ inference_method, dataset, expected_output_cols, output_cols_prefix
672
+ )
612
673
 
613
674
  elif isinstance(dataset, pd.DataFrame):
614
- transform_kwargs = dict(
615
- snowpark_input_cols = self._snowpark_cols,
616
- drop_input_cols = self._drop_input_cols
617
- )
675
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
618
676
 
619
677
  transform_handlers = ModelTransformerBuilder.build(
620
678
  dataset=dataset,
@@ -626,7 +684,7 @@ class MDS(BaseTransformer):
626
684
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
627
685
  inference_method=inference_method,
628
686
  input_cols=self.input_cols,
629
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
687
+ expected_output_cols=expected_output_cols,
630
688
  **transform_kwargs
631
689
  )
632
690
  return output_df
@@ -656,7 +714,8 @@ class MDS(BaseTransformer):
656
714
  Output dataset with log probability of the sample for each class in the model.
657
715
  """
658
716
  super()._check_dataset_type(dataset)
659
- inference_method="predict_log_proba"
717
+ inference_method = "predict_log_proba"
718
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
660
719
 
661
720
  # This dictionary contains optional kwargs for batch inference. These kwargs
662
721
  # are specific to the type of dataset used.
@@ -667,18 +726,20 @@ class MDS(BaseTransformer):
667
726
  dataset=dataset,
668
727
  inference_method=inference_method,
669
728
  )
670
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
729
+ assert isinstance(
730
+ dataset._session, Session
731
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
671
732
  transform_kwargs = dict(
672
733
  session=dataset._session,
673
734
  dependencies=self._deps,
674
- drop_input_cols = self._drop_input_cols,
735
+ drop_input_cols=self._drop_input_cols,
675
736
  expected_output_cols_type="float",
676
737
  )
738
+ expected_output_cols = self._align_expected_output_names(
739
+ inference_method, dataset, expected_output_cols, output_cols_prefix
740
+ )
677
741
  elif isinstance(dataset, pd.DataFrame):
678
- transform_kwargs = dict(
679
- snowpark_input_cols = self._snowpark_cols,
680
- drop_input_cols = self._drop_input_cols
681
- )
742
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
682
743
 
683
744
  transform_handlers = ModelTransformerBuilder.build(
684
745
  dataset=dataset,
@@ -691,7 +752,7 @@ class MDS(BaseTransformer):
691
752
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
692
753
  inference_method=inference_method,
693
754
  input_cols=self.input_cols,
694
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
755
+ expected_output_cols=expected_output_cols,
695
756
  **transform_kwargs
696
757
  )
697
758
  return output_df
@@ -717,30 +778,34 @@ class MDS(BaseTransformer):
717
778
  Output dataset with results of the decision function for the samples in input dataset.
718
779
  """
719
780
  super()._check_dataset_type(dataset)
720
- inference_method="decision_function"
781
+ inference_method = "decision_function"
721
782
 
722
783
  # This dictionary contains optional kwargs for batch inference. These kwargs
723
784
  # are specific to the type of dataset used.
724
785
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
725
786
 
787
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
788
+
726
789
  if isinstance(dataset, DataFrame):
727
790
  self._deps = self._batch_inference_validate_snowpark(
728
791
  dataset=dataset,
729
792
  inference_method=inference_method,
730
793
  )
731
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
794
+ assert isinstance(
795
+ dataset._session, Session
796
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
732
797
  transform_kwargs = dict(
733
798
  session=dataset._session,
734
799
  dependencies=self._deps,
735
- drop_input_cols = self._drop_input_cols,
800
+ drop_input_cols=self._drop_input_cols,
736
801
  expected_output_cols_type="float",
737
802
  )
803
+ expected_output_cols = self._align_expected_output_names(
804
+ inference_method, dataset, expected_output_cols, output_cols_prefix
805
+ )
738
806
 
739
807
  elif isinstance(dataset, pd.DataFrame):
740
- transform_kwargs = dict(
741
- snowpark_input_cols = self._snowpark_cols,
742
- drop_input_cols = self._drop_input_cols
743
- )
808
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
744
809
 
745
810
  transform_handlers = ModelTransformerBuilder.build(
746
811
  dataset=dataset,
@@ -753,7 +818,7 @@ class MDS(BaseTransformer):
753
818
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
754
819
  inference_method=inference_method,
755
820
  input_cols=self.input_cols,
756
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
821
+ expected_output_cols=expected_output_cols,
757
822
  **transform_kwargs
758
823
  )
759
824
  return output_df
@@ -782,12 +847,14 @@ class MDS(BaseTransformer):
782
847
  Output dataset with probability of the sample for each class in the model.
783
848
  """
784
849
  super()._check_dataset_type(dataset)
785
- inference_method="score_samples"
850
+ inference_method = "score_samples"
786
851
 
787
852
  # This dictionary contains optional kwargs for batch inference. These kwargs
788
853
  # are specific to the type of dataset used.
789
854
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
790
855
 
856
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
857
+
791
858
  if isinstance(dataset, DataFrame):
792
859
  self._deps = self._batch_inference_validate_snowpark(
793
860
  dataset=dataset,
@@ -800,6 +867,9 @@ class MDS(BaseTransformer):
800
867
  drop_input_cols = self._drop_input_cols,
801
868
  expected_output_cols_type="float",
802
869
  )
870
+ expected_output_cols = self._align_expected_output_names(
871
+ inference_method, dataset, expected_output_cols, output_cols_prefix
872
+ )
803
873
 
804
874
  elif isinstance(dataset, pd.DataFrame):
805
875
  transform_kwargs = dict(
@@ -818,7 +888,7 @@ class MDS(BaseTransformer):
818
888
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
819
889
  inference_method=inference_method,
820
890
  input_cols=self.input_cols,
821
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
891
+ expected_output_cols=expected_output_cols,
822
892
  **transform_kwargs
823
893
  )
824
894
  return output_df
@@ -963,50 +1033,84 @@ class MDS(BaseTransformer):
963
1033
  )
964
1034
  return output_df
965
1035
 
1036
+
1037
+
1038
+ def to_sklearn(self) -> Any:
1039
+ """Get sklearn.manifold.MDS object.
1040
+ """
1041
+ if self._sklearn_object is None:
1042
+ self._sklearn_object = self._create_sklearn_object()
1043
+ return self._sklearn_object
1044
+
1045
+ def to_xgboost(self) -> Any:
1046
+ raise exceptions.SnowflakeMLException(
1047
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1048
+ original_exception=AttributeError(
1049
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1050
+ "to_xgboost()",
1051
+ "to_sklearn()"
1052
+ )
1053
+ ),
1054
+ )
1055
+
1056
+ def to_lightgbm(self) -> Any:
1057
+ raise exceptions.SnowflakeMLException(
1058
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1059
+ original_exception=AttributeError(
1060
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1061
+ "to_lightgbm()",
1062
+ "to_sklearn()"
1063
+ )
1064
+ ),
1065
+ )
966
1066
 
967
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1067
+ def _get_dependencies(self) -> List[str]:
1068
+ return self._deps
1069
+
1070
+
1071
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
968
1072
  self._model_signature_dict = dict()
969
1073
 
970
1074
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
971
1075
 
972
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1076
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
973
1077
  outputs: List[BaseFeatureSpec] = []
974
1078
  if hasattr(self, "predict"):
975
1079
  # keep mypy happy
976
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1080
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
977
1081
  # For classifier, the type of predict is the same as the type of label
978
- if self._sklearn_object._estimator_type == 'classifier':
979
- # label columns is the desired type for output
1082
+ if self._sklearn_object._estimator_type == "classifier":
1083
+ # label columns is the desired type for output
980
1084
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
981
1085
  # rename the output columns
982
1086
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
983
- self._model_signature_dict["predict"] = ModelSignature(inputs,
984
- ([] if self._drop_input_cols else inputs)
985
- + outputs)
1087
+ self._model_signature_dict["predict"] = ModelSignature(
1088
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1089
+ )
986
1090
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
987
1091
  # For outlier models, returns -1 for outliers and 1 for inliers.
988
- # Clusterer returns int64 cluster labels.
1092
+ # Clusterer returns int64 cluster labels.
989
1093
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
990
1094
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
994
-
1095
+ self._model_signature_dict["predict"] = ModelSignature(
1096
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1097
+ )
1098
+
995
1099
  # For regressor, the type of predict is float64
996
- elif self._sklearn_object._estimator_type == 'regressor':
1100
+ elif self._sklearn_object._estimator_type == "regressor":
997
1101
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
998
- self._model_signature_dict["predict"] = ModelSignature(inputs,
999
- ([] if self._drop_input_cols else inputs)
1000
- + outputs)
1001
-
1102
+ self._model_signature_dict["predict"] = ModelSignature(
1103
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1104
+ )
1105
+
1002
1106
  for prob_func in PROB_FUNCTIONS:
1003
1107
  if hasattr(self, prob_func):
1004
1108
  output_cols_prefix: str = f"{prob_func}_"
1005
1109
  output_column_names = self._get_output_column_names(output_cols_prefix)
1006
1110
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1007
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1008
- ([] if self._drop_input_cols else inputs)
1009
- + outputs)
1111
+ self._model_signature_dict[prob_func] = ModelSignature(
1112
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1113
+ )
1010
1114
 
1011
1115
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1012
1116
  items = list(self._model_signature_dict.items())
@@ -1019,10 +1123,10 @@ class MDS(BaseTransformer):
1019
1123
  """Returns model signature of current class.
1020
1124
 
1021
1125
  Raises:
1022
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1126
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1023
1127
 
1024
1128
  Returns:
1025
- Dict[str, ModelSignature]: each method and its input output signature
1129
+ Dict with each method and its input output signature
1026
1130
  """
1027
1131
  if self._model_signature_dict is None:
1028
1132
  raise exceptions.SnowflakeMLException(
@@ -1030,35 +1134,3 @@ class MDS(BaseTransformer):
1030
1134
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1031
1135
  )
1032
1136
  return self._model_signature_dict
1033
-
1034
- def to_sklearn(self) -> Any:
1035
- """Get sklearn.manifold.MDS object.
1036
- """
1037
- if self._sklearn_object is None:
1038
- self._sklearn_object = self._create_sklearn_object()
1039
- return self._sklearn_object
1040
-
1041
- def to_xgboost(self) -> Any:
1042
- raise exceptions.SnowflakeMLException(
1043
- error_code=error_codes.METHOD_NOT_ALLOWED,
1044
- original_exception=AttributeError(
1045
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1046
- "to_xgboost()",
1047
- "to_sklearn()"
1048
- )
1049
- ),
1050
- )
1051
-
1052
- def to_lightgbm(self) -> Any:
1053
- raise exceptions.SnowflakeMLException(
1054
- error_code=error_codes.METHOD_NOT_ALLOWED,
1055
- original_exception=AttributeError(
1056
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1057
- "to_lightgbm()",
1058
- "to_sklearn()"
1059
- )
1060
- ),
1061
- )
1062
-
1063
- def _get_dependencies(self) -> List[str]:
1064
- return self._deps