snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -199,12 +198,7 @@ class AdditiveChi2Sampler(BaseTransformer):
199
198
  )
200
199
  return selected_cols
201
200
 
202
- @telemetry.send_api_usage_telemetry(
203
- project=_PROJECT,
204
- subproject=_SUBPROJECT,
205
- custom_tags=dict([("autogen", True)]),
206
- )
207
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AdditiveChi2Sampler":
201
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AdditiveChi2Sampler":
208
202
  """Only validates estimator's parameters
209
203
  For more details on this function, see [sklearn.kernel_approximation.AdditiveChi2Sampler.fit]
210
204
  (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.AdditiveChi2Sampler.html#sklearn.kernel_approximation.AdditiveChi2Sampler.fit)
@@ -231,12 +225,14 @@ class AdditiveChi2Sampler(BaseTransformer):
231
225
 
232
226
  self._snowpark_cols = dataset.select(self.input_cols).columns
233
227
 
234
- # If we are already in a stored procedure, no need to kick off another one.
228
+ # If we are already in a stored procedure, no need to kick off another one.
235
229
  if SNOWML_SPROC_ENV in os.environ:
236
230
  statement_params = telemetry.get_function_usage_statement_params(
237
231
  project=_PROJECT,
238
232
  subproject=_SUBPROJECT,
239
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AdditiveChi2Sampler.__class__.__name__),
233
+ function_name=telemetry.get_statement_params_full_func_name(
234
+ inspect.currentframe(), AdditiveChi2Sampler.__class__.__name__
235
+ ),
240
236
  api_calls=[Session.call],
241
237
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
242
238
  )
@@ -257,7 +253,7 @@ class AdditiveChi2Sampler(BaseTransformer):
257
253
  )
258
254
  self._sklearn_object = model_trainer.train()
259
255
  self._is_fitted = True
260
- self._get_model_signatures(dataset)
256
+ self._generate_model_signatures(dataset)
261
257
  return self
262
258
 
263
259
  def _batch_inference_validate_snowpark(
@@ -331,7 +327,9 @@ class AdditiveChi2Sampler(BaseTransformer):
331
327
  # when it is classifier, infer the datatype from label columns
332
328
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
333
329
  # Batch inference takes a single expected output column type. Use the first columns type for now.
334
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
330
+ label_cols_signatures = [
331
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
332
+ ]
335
333
  if len(label_cols_signatures) == 0:
336
334
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
337
335
  raise exceptions.SnowflakeMLException(
@@ -339,25 +337,22 @@ class AdditiveChi2Sampler(BaseTransformer):
339
337
  original_exception=ValueError(error_str),
340
338
  )
341
339
 
342
- expected_type_inferred = convert_sp_to_sf_type(
343
- label_cols_signatures[0].as_snowpark_type()
344
- )
340
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
345
341
 
346
342
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
347
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
343
+ assert isinstance(
344
+ dataset._session, Session
345
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
348
346
 
349
347
  transform_kwargs = dict(
350
- session = dataset._session,
351
- dependencies = self._deps,
352
- drop_input_cols = self._drop_input_cols,
353
- expected_output_cols_type = expected_type_inferred,
348
+ session=dataset._session,
349
+ dependencies=self._deps,
350
+ drop_input_cols=self._drop_input_cols,
351
+ expected_output_cols_type=expected_type_inferred,
354
352
  )
355
353
 
356
354
  elif isinstance(dataset, pd.DataFrame):
357
- transform_kwargs = dict(
358
- snowpark_input_cols = self._snowpark_cols,
359
- drop_input_cols = self._drop_input_cols
360
- )
355
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
361
356
 
362
357
  transform_handlers = ModelTransformerBuilder.build(
363
358
  dataset=dataset,
@@ -399,7 +394,7 @@ class AdditiveChi2Sampler(BaseTransformer):
399
394
  Transformed dataset.
400
395
  """
401
396
  super()._check_dataset_type(dataset)
402
- inference_method="transform"
397
+ inference_method = "transform"
403
398
 
404
399
  # This dictionary contains optional kwargs for batch inference. These kwargs
405
400
  # are specific to the type of dataset used.
@@ -436,17 +431,14 @@ class AdditiveChi2Sampler(BaseTransformer):
436
431
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
437
432
 
438
433
  transform_kwargs = dict(
439
- session = dataset._session,
440
- dependencies = self._deps,
441
- drop_input_cols = self._drop_input_cols,
442
- expected_output_cols_type = expected_dtype,
434
+ session=dataset._session,
435
+ dependencies=self._deps,
436
+ drop_input_cols=self._drop_input_cols,
437
+ expected_output_cols_type=expected_dtype,
443
438
  )
444
439
 
445
440
  elif isinstance(dataset, pd.DataFrame):
446
- transform_kwargs = dict(
447
- snowpark_input_cols = self._snowpark_cols,
448
- drop_input_cols = self._drop_input_cols
449
- )
441
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
450
442
 
451
443
  transform_handlers = ModelTransformerBuilder.build(
452
444
  dataset=dataset,
@@ -465,7 +457,11 @@ class AdditiveChi2Sampler(BaseTransformer):
465
457
  return output_df
466
458
 
467
459
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
468
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
460
+ def fit_predict(
461
+ self,
462
+ dataset: Union[DataFrame, pd.DataFrame],
463
+ output_cols_prefix: str = "fit_predict_",
464
+ ) -> Union[DataFrame, pd.DataFrame]:
469
465
  """ Method not supported for this class.
470
466
 
471
467
 
@@ -490,7 +486,9 @@ class AdditiveChi2Sampler(BaseTransformer):
490
486
  )
491
487
  output_result, fitted_estimator = model_trainer.train_fit_predict(
492
488
  drop_input_cols=self._drop_input_cols,
493
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
489
+ expected_output_cols_list=(
490
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
491
+ ),
494
492
  )
495
493
  self._sklearn_object = fitted_estimator
496
494
  self._is_fitted = True
@@ -507,6 +505,62 @@ class AdditiveChi2Sampler(BaseTransformer):
507
505
  assert self._sklearn_object is not None
508
506
  return self._sklearn_object.embedding_
509
507
 
508
+
509
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
510
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
511
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
512
+ """
513
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
514
+ # The following condition is introduced for kneighbors methods, and not used in other methods
515
+ if output_cols:
516
+ output_cols = [
517
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
518
+ for c in output_cols
519
+ ]
520
+ elif getattr(self._sklearn_object, "classes_", None) is None:
521
+ output_cols = [output_cols_prefix]
522
+ elif self._sklearn_object is not None:
523
+ classes = self._sklearn_object.classes_
524
+ if isinstance(classes, numpy.ndarray):
525
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
526
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
527
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
528
+ output_cols = []
529
+ for i, cl in enumerate(classes):
530
+ # For binary classification, there is only one output column for each class
531
+ # ndarray as the two classes are complementary.
532
+ if len(cl) == 2:
533
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
534
+ else:
535
+ output_cols.extend([
536
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
537
+ ])
538
+ else:
539
+ output_cols = []
540
+
541
+ # Make sure column names are valid snowflake identifiers.
542
+ assert output_cols is not None # Make MyPy happy
543
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
544
+
545
+ return rv
546
+
547
+ def _align_expected_output_names(
548
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
549
+ ) -> List[str]:
550
+ # in case the inferred output column names dimension is different
551
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
552
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
553
+ output_df_columns = list(output_df_pd.columns)
554
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
555
+ if self.sample_weight_col:
556
+ output_df_columns_set -= set(self.sample_weight_col)
557
+ # if the dimension of inferred output column names is correct; use it
558
+ if len(expected_output_cols_list) == len(output_df_columns_set):
559
+ return expected_output_cols_list
560
+ # otherwise, use the sklearn estimator's output
561
+ else:
562
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
563
+
510
564
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
511
565
  @telemetry.send_api_usage_telemetry(
512
566
  project=_PROJECT,
@@ -537,24 +591,28 @@ class AdditiveChi2Sampler(BaseTransformer):
537
591
  # are specific to the type of dataset used.
538
592
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
539
593
 
594
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
595
+
540
596
  if isinstance(dataset, DataFrame):
541
597
  self._deps = self._batch_inference_validate_snowpark(
542
598
  dataset=dataset,
543
599
  inference_method=inference_method,
544
600
  )
545
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
601
+ assert isinstance(
602
+ dataset._session, Session
603
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
546
604
  transform_kwargs = dict(
547
605
  session=dataset._session,
548
606
  dependencies=self._deps,
549
- drop_input_cols = self._drop_input_cols,
607
+ drop_input_cols=self._drop_input_cols,
550
608
  expected_output_cols_type="float",
551
609
  )
610
+ expected_output_cols = self._align_expected_output_names(
611
+ inference_method, dataset, expected_output_cols, output_cols_prefix
612
+ )
552
613
 
553
614
  elif isinstance(dataset, pd.DataFrame):
554
- transform_kwargs = dict(
555
- snowpark_input_cols = self._snowpark_cols,
556
- drop_input_cols = self._drop_input_cols
557
- )
615
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
558
616
 
559
617
  transform_handlers = ModelTransformerBuilder.build(
560
618
  dataset=dataset,
@@ -566,7 +624,7 @@ class AdditiveChi2Sampler(BaseTransformer):
566
624
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
567
625
  inference_method=inference_method,
568
626
  input_cols=self.input_cols,
569
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
627
+ expected_output_cols=expected_output_cols,
570
628
  **transform_kwargs
571
629
  )
572
630
  return output_df
@@ -596,7 +654,8 @@ class AdditiveChi2Sampler(BaseTransformer):
596
654
  Output dataset with log probability of the sample for each class in the model.
597
655
  """
598
656
  super()._check_dataset_type(dataset)
599
- inference_method="predict_log_proba"
657
+ inference_method = "predict_log_proba"
658
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
600
659
 
601
660
  # This dictionary contains optional kwargs for batch inference. These kwargs
602
661
  # are specific to the type of dataset used.
@@ -607,18 +666,20 @@ class AdditiveChi2Sampler(BaseTransformer):
607
666
  dataset=dataset,
608
667
  inference_method=inference_method,
609
668
  )
610
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
669
+ assert isinstance(
670
+ dataset._session, Session
671
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
611
672
  transform_kwargs = dict(
612
673
  session=dataset._session,
613
674
  dependencies=self._deps,
614
- drop_input_cols = self._drop_input_cols,
675
+ drop_input_cols=self._drop_input_cols,
615
676
  expected_output_cols_type="float",
616
677
  )
678
+ expected_output_cols = self._align_expected_output_names(
679
+ inference_method, dataset, expected_output_cols, output_cols_prefix
680
+ )
617
681
  elif isinstance(dataset, pd.DataFrame):
618
- transform_kwargs = dict(
619
- snowpark_input_cols = self._snowpark_cols,
620
- drop_input_cols = self._drop_input_cols
621
- )
682
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
622
683
 
623
684
  transform_handlers = ModelTransformerBuilder.build(
624
685
  dataset=dataset,
@@ -631,7 +692,7 @@ class AdditiveChi2Sampler(BaseTransformer):
631
692
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
632
693
  inference_method=inference_method,
633
694
  input_cols=self.input_cols,
634
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
695
+ expected_output_cols=expected_output_cols,
635
696
  **transform_kwargs
636
697
  )
637
698
  return output_df
@@ -657,30 +718,34 @@ class AdditiveChi2Sampler(BaseTransformer):
657
718
  Output dataset with results of the decision function for the samples in input dataset.
658
719
  """
659
720
  super()._check_dataset_type(dataset)
660
- inference_method="decision_function"
721
+ inference_method = "decision_function"
661
722
 
662
723
  # This dictionary contains optional kwargs for batch inference. These kwargs
663
724
  # are specific to the type of dataset used.
664
725
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
665
726
 
727
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
728
+
666
729
  if isinstance(dataset, DataFrame):
667
730
  self._deps = self._batch_inference_validate_snowpark(
668
731
  dataset=dataset,
669
732
  inference_method=inference_method,
670
733
  )
671
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
734
+ assert isinstance(
735
+ dataset._session, Session
736
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
672
737
  transform_kwargs = dict(
673
738
  session=dataset._session,
674
739
  dependencies=self._deps,
675
- drop_input_cols = self._drop_input_cols,
740
+ drop_input_cols=self._drop_input_cols,
676
741
  expected_output_cols_type="float",
677
742
  )
743
+ expected_output_cols = self._align_expected_output_names(
744
+ inference_method, dataset, expected_output_cols, output_cols_prefix
745
+ )
678
746
 
679
747
  elif isinstance(dataset, pd.DataFrame):
680
- transform_kwargs = dict(
681
- snowpark_input_cols = self._snowpark_cols,
682
- drop_input_cols = self._drop_input_cols
683
- )
748
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
684
749
 
685
750
  transform_handlers = ModelTransformerBuilder.build(
686
751
  dataset=dataset,
@@ -693,7 +758,7 @@ class AdditiveChi2Sampler(BaseTransformer):
693
758
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
694
759
  inference_method=inference_method,
695
760
  input_cols=self.input_cols,
696
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
761
+ expected_output_cols=expected_output_cols,
697
762
  **transform_kwargs
698
763
  )
699
764
  return output_df
@@ -722,12 +787,14 @@ class AdditiveChi2Sampler(BaseTransformer):
722
787
  Output dataset with probability of the sample for each class in the model.
723
788
  """
724
789
  super()._check_dataset_type(dataset)
725
- inference_method="score_samples"
790
+ inference_method = "score_samples"
726
791
 
727
792
  # This dictionary contains optional kwargs for batch inference. These kwargs
728
793
  # are specific to the type of dataset used.
729
794
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
730
795
 
796
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
797
+
731
798
  if isinstance(dataset, DataFrame):
732
799
  self._deps = self._batch_inference_validate_snowpark(
733
800
  dataset=dataset,
@@ -740,6 +807,9 @@ class AdditiveChi2Sampler(BaseTransformer):
740
807
  drop_input_cols = self._drop_input_cols,
741
808
  expected_output_cols_type="float",
742
809
  )
810
+ expected_output_cols = self._align_expected_output_names(
811
+ inference_method, dataset, expected_output_cols, output_cols_prefix
812
+ )
743
813
 
744
814
  elif isinstance(dataset, pd.DataFrame):
745
815
  transform_kwargs = dict(
@@ -758,7 +828,7 @@ class AdditiveChi2Sampler(BaseTransformer):
758
828
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
759
829
  inference_method=inference_method,
760
830
  input_cols=self.input_cols,
761
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
831
+ expected_output_cols=expected_output_cols,
762
832
  **transform_kwargs
763
833
  )
764
834
  return output_df
@@ -903,50 +973,84 @@ class AdditiveChi2Sampler(BaseTransformer):
903
973
  )
904
974
  return output_df
905
975
 
976
+
977
+
978
+ def to_sklearn(self) -> Any:
979
+ """Get sklearn.kernel_approximation.AdditiveChi2Sampler object.
980
+ """
981
+ if self._sklearn_object is None:
982
+ self._sklearn_object = self._create_sklearn_object()
983
+ return self._sklearn_object
984
+
985
+ def to_xgboost(self) -> Any:
986
+ raise exceptions.SnowflakeMLException(
987
+ error_code=error_codes.METHOD_NOT_ALLOWED,
988
+ original_exception=AttributeError(
989
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
990
+ "to_xgboost()",
991
+ "to_sklearn()"
992
+ )
993
+ ),
994
+ )
995
+
996
+ def to_lightgbm(self) -> Any:
997
+ raise exceptions.SnowflakeMLException(
998
+ error_code=error_codes.METHOD_NOT_ALLOWED,
999
+ original_exception=AttributeError(
1000
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1001
+ "to_lightgbm()",
1002
+ "to_sklearn()"
1003
+ )
1004
+ ),
1005
+ )
906
1006
 
907
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1007
+ def _get_dependencies(self) -> List[str]:
1008
+ return self._deps
1009
+
1010
+
1011
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
908
1012
  self._model_signature_dict = dict()
909
1013
 
910
1014
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
911
1015
 
912
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1016
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
913
1017
  outputs: List[BaseFeatureSpec] = []
914
1018
  if hasattr(self, "predict"):
915
1019
  # keep mypy happy
916
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1020
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
917
1021
  # For classifier, the type of predict is the same as the type of label
918
- if self._sklearn_object._estimator_type == 'classifier':
919
- # label columns is the desired type for output
1022
+ if self._sklearn_object._estimator_type == "classifier":
1023
+ # label columns is the desired type for output
920
1024
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
921
1025
  # rename the output columns
922
1026
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
923
- self._model_signature_dict["predict"] = ModelSignature(inputs,
924
- ([] if self._drop_input_cols else inputs)
925
- + outputs)
1027
+ self._model_signature_dict["predict"] = ModelSignature(
1028
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1029
+ )
926
1030
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
927
1031
  # For outlier models, returns -1 for outliers and 1 for inliers.
928
- # Clusterer returns int64 cluster labels.
1032
+ # Clusterer returns int64 cluster labels.
929
1033
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
930
1034
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
931
- self._model_signature_dict["predict"] = ModelSignature(inputs,
932
- ([] if self._drop_input_cols else inputs)
933
- + outputs)
934
-
1035
+ self._model_signature_dict["predict"] = ModelSignature(
1036
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1037
+ )
1038
+
935
1039
  # For regressor, the type of predict is float64
936
- elif self._sklearn_object._estimator_type == 'regressor':
1040
+ elif self._sklearn_object._estimator_type == "regressor":
937
1041
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
938
- self._model_signature_dict["predict"] = ModelSignature(inputs,
939
- ([] if self._drop_input_cols else inputs)
940
- + outputs)
941
-
1042
+ self._model_signature_dict["predict"] = ModelSignature(
1043
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1044
+ )
1045
+
942
1046
  for prob_func in PROB_FUNCTIONS:
943
1047
  if hasattr(self, prob_func):
944
1048
  output_cols_prefix: str = f"{prob_func}_"
945
1049
  output_column_names = self._get_output_column_names(output_cols_prefix)
946
1050
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
947
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
948
- ([] if self._drop_input_cols else inputs)
949
- + outputs)
1051
+ self._model_signature_dict[prob_func] = ModelSignature(
1052
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1053
+ )
950
1054
 
951
1055
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
952
1056
  items = list(self._model_signature_dict.items())
@@ -959,10 +1063,10 @@ class AdditiveChi2Sampler(BaseTransformer):
959
1063
  """Returns model signature of current class.
960
1064
 
961
1065
  Raises:
962
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1066
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
963
1067
 
964
1068
  Returns:
965
- Dict[str, ModelSignature]: each method and its input output signature
1069
+ Dict with each method and its input output signature
966
1070
  """
967
1071
  if self._model_signature_dict is None:
968
1072
  raise exceptions.SnowflakeMLException(
@@ -970,35 +1074,3 @@ class AdditiveChi2Sampler(BaseTransformer):
970
1074
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
971
1075
  )
972
1076
  return self._model_signature_dict
973
-
974
- def to_sklearn(self) -> Any:
975
- """Get sklearn.kernel_approximation.AdditiveChi2Sampler object.
976
- """
977
- if self._sklearn_object is None:
978
- self._sklearn_object = self._create_sklearn_object()
979
- return self._sklearn_object
980
-
981
- def to_xgboost(self) -> Any:
982
- raise exceptions.SnowflakeMLException(
983
- error_code=error_codes.METHOD_NOT_ALLOWED,
984
- original_exception=AttributeError(
985
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
986
- "to_xgboost()",
987
- "to_sklearn()"
988
- )
989
- ),
990
- )
991
-
992
- def to_lightgbm(self) -> Any:
993
- raise exceptions.SnowflakeMLException(
994
- error_code=error_codes.METHOD_NOT_ALLOWED,
995
- original_exception=AttributeError(
996
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
997
- "to_lightgbm()",
998
- "to_sklearn()"
999
- )
1000
- ),
1001
- )
1002
-
1003
- def _get_dependencies(self) -> List[str]:
1004
- return self._deps