snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -233,12 +232,7 @@ class LGBMRegressor(BaseTransformer):
233
232
  )
234
233
  return selected_cols
235
234
 
236
- @telemetry.send_api_usage_telemetry(
237
- project=_PROJECT,
238
- subproject=_SUBPROJECT,
239
- custom_tags=dict([("autogen", True)]),
240
- )
241
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMRegressor":
235
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMRegressor":
242
236
  """Build a gradient boosting model from the training set (X, y)
243
237
  For more details on this function, see [lightgbm.LGBMRegressor.fit]
244
238
  (https://lightgbm.readthedocs.io/en/v3.3.2/pythonapi/lightgbm.LGBMRegressor.html#lightgbm.LGBMRegressor.fit)
@@ -265,12 +259,14 @@ class LGBMRegressor(BaseTransformer):
265
259
 
266
260
  self._snowpark_cols = dataset.select(self.input_cols).columns
267
261
 
268
- # If we are already in a stored procedure, no need to kick off another one.
262
+ # If we are already in a stored procedure, no need to kick off another one.
269
263
  if SNOWML_SPROC_ENV in os.environ:
270
264
  statement_params = telemetry.get_function_usage_statement_params(
271
265
  project=_PROJECT,
272
266
  subproject=_SUBPROJECT,
273
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LGBMRegressor.__class__.__name__),
267
+ function_name=telemetry.get_statement_params_full_func_name(
268
+ inspect.currentframe(), LGBMRegressor.__class__.__name__
269
+ ),
274
270
  api_calls=[Session.call],
275
271
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
276
272
  )
@@ -291,7 +287,7 @@ class LGBMRegressor(BaseTransformer):
291
287
  )
292
288
  self._sklearn_object = model_trainer.train()
293
289
  self._is_fitted = True
294
- self._get_model_signatures(dataset)
290
+ self._generate_model_signatures(dataset)
295
291
  return self
296
292
 
297
293
  def _batch_inference_validate_snowpark(
@@ -367,7 +363,9 @@ class LGBMRegressor(BaseTransformer):
367
363
  # when it is classifier, infer the datatype from label columns
368
364
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
369
365
  # Batch inference takes a single expected output column type. Use the first columns type for now.
370
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
366
+ label_cols_signatures = [
367
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
368
+ ]
371
369
  if len(label_cols_signatures) == 0:
372
370
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
373
371
  raise exceptions.SnowflakeMLException(
@@ -375,25 +373,22 @@ class LGBMRegressor(BaseTransformer):
375
373
  original_exception=ValueError(error_str),
376
374
  )
377
375
 
378
- expected_type_inferred = convert_sp_to_sf_type(
379
- label_cols_signatures[0].as_snowpark_type()
380
- )
376
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
381
377
 
382
378
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
383
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
379
+ assert isinstance(
380
+ dataset._session, Session
381
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
384
382
 
385
383
  transform_kwargs = dict(
386
- session = dataset._session,
387
- dependencies = self._deps,
388
- drop_input_cols = self._drop_input_cols,
389
- expected_output_cols_type = expected_type_inferred,
384
+ session=dataset._session,
385
+ dependencies=self._deps,
386
+ drop_input_cols=self._drop_input_cols,
387
+ expected_output_cols_type=expected_type_inferred,
390
388
  )
391
389
 
392
390
  elif isinstance(dataset, pd.DataFrame):
393
- transform_kwargs = dict(
394
- snowpark_input_cols = self._snowpark_cols,
395
- drop_input_cols = self._drop_input_cols
396
- )
391
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
397
392
 
398
393
  transform_handlers = ModelTransformerBuilder.build(
399
394
  dataset=dataset,
@@ -433,7 +428,7 @@ class LGBMRegressor(BaseTransformer):
433
428
  Transformed dataset.
434
429
  """
435
430
  super()._check_dataset_type(dataset)
436
- inference_method="transform"
431
+ inference_method = "transform"
437
432
 
438
433
  # This dictionary contains optional kwargs for batch inference. These kwargs
439
434
  # are specific to the type of dataset used.
@@ -470,17 +465,14 @@ class LGBMRegressor(BaseTransformer):
470
465
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
471
466
 
472
467
  transform_kwargs = dict(
473
- session = dataset._session,
474
- dependencies = self._deps,
475
- drop_input_cols = self._drop_input_cols,
476
- expected_output_cols_type = expected_dtype,
468
+ session=dataset._session,
469
+ dependencies=self._deps,
470
+ drop_input_cols=self._drop_input_cols,
471
+ expected_output_cols_type=expected_dtype,
477
472
  )
478
473
 
479
474
  elif isinstance(dataset, pd.DataFrame):
480
- transform_kwargs = dict(
481
- snowpark_input_cols = self._snowpark_cols,
482
- drop_input_cols = self._drop_input_cols
483
- )
475
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
484
476
 
485
477
  transform_handlers = ModelTransformerBuilder.build(
486
478
  dataset=dataset,
@@ -499,7 +491,11 @@ class LGBMRegressor(BaseTransformer):
499
491
  return output_df
500
492
 
501
493
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
502
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
494
+ def fit_predict(
495
+ self,
496
+ dataset: Union[DataFrame, pd.DataFrame],
497
+ output_cols_prefix: str = "fit_predict_",
498
+ ) -> Union[DataFrame, pd.DataFrame]:
503
499
  """ Method not supported for this class.
504
500
 
505
501
 
@@ -524,7 +520,9 @@ class LGBMRegressor(BaseTransformer):
524
520
  )
525
521
  output_result, fitted_estimator = model_trainer.train_fit_predict(
526
522
  drop_input_cols=self._drop_input_cols,
527
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
523
+ expected_output_cols_list=(
524
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
525
+ ),
528
526
  )
529
527
  self._sklearn_object = fitted_estimator
530
528
  self._is_fitted = True
@@ -541,6 +539,62 @@ class LGBMRegressor(BaseTransformer):
541
539
  assert self._sklearn_object is not None
542
540
  return self._sklearn_object.embedding_
543
541
 
542
+
543
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
544
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
545
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
546
+ """
547
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
548
+ # The following condition is introduced for kneighbors methods, and not used in other methods
549
+ if output_cols:
550
+ output_cols = [
551
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
552
+ for c in output_cols
553
+ ]
554
+ elif getattr(self._sklearn_object, "classes_", None) is None:
555
+ output_cols = [output_cols_prefix]
556
+ elif self._sklearn_object is not None:
557
+ classes = self._sklearn_object.classes_
558
+ if isinstance(classes, numpy.ndarray):
559
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
560
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
561
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
562
+ output_cols = []
563
+ for i, cl in enumerate(classes):
564
+ # For binary classification, there is only one output column for each class
565
+ # ndarray as the two classes are complementary.
566
+ if len(cl) == 2:
567
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
568
+ else:
569
+ output_cols.extend([
570
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
571
+ ])
572
+ else:
573
+ output_cols = []
574
+
575
+ # Make sure column names are valid snowflake identifiers.
576
+ assert output_cols is not None # Make MyPy happy
577
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
578
+
579
+ return rv
580
+
581
+ def _align_expected_output_names(
582
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
583
+ ) -> List[str]:
584
+ # in case the inferred output column names dimension is different
585
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
586
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
587
+ output_df_columns = list(output_df_pd.columns)
588
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
589
+ if self.sample_weight_col:
590
+ output_df_columns_set -= set(self.sample_weight_col)
591
+ # if the dimension of inferred output column names is correct; use it
592
+ if len(expected_output_cols_list) == len(output_df_columns_set):
593
+ return expected_output_cols_list
594
+ # otherwise, use the sklearn estimator's output
595
+ else:
596
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
597
+
544
598
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
545
599
  @telemetry.send_api_usage_telemetry(
546
600
  project=_PROJECT,
@@ -571,24 +625,28 @@ class LGBMRegressor(BaseTransformer):
571
625
  # are specific to the type of dataset used.
572
626
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
573
627
 
628
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
629
+
574
630
  if isinstance(dataset, DataFrame):
575
631
  self._deps = self._batch_inference_validate_snowpark(
576
632
  dataset=dataset,
577
633
  inference_method=inference_method,
578
634
  )
579
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
635
+ assert isinstance(
636
+ dataset._session, Session
637
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
580
638
  transform_kwargs = dict(
581
639
  session=dataset._session,
582
640
  dependencies=self._deps,
583
- drop_input_cols = self._drop_input_cols,
641
+ drop_input_cols=self._drop_input_cols,
584
642
  expected_output_cols_type="float",
585
643
  )
644
+ expected_output_cols = self._align_expected_output_names(
645
+ inference_method, dataset, expected_output_cols, output_cols_prefix
646
+ )
586
647
 
587
648
  elif isinstance(dataset, pd.DataFrame):
588
- transform_kwargs = dict(
589
- snowpark_input_cols = self._snowpark_cols,
590
- drop_input_cols = self._drop_input_cols
591
- )
649
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
592
650
 
593
651
  transform_handlers = ModelTransformerBuilder.build(
594
652
  dataset=dataset,
@@ -600,7 +658,7 @@ class LGBMRegressor(BaseTransformer):
600
658
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
601
659
  inference_method=inference_method,
602
660
  input_cols=self.input_cols,
603
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
661
+ expected_output_cols=expected_output_cols,
604
662
  **transform_kwargs
605
663
  )
606
664
  return output_df
@@ -630,7 +688,8 @@ class LGBMRegressor(BaseTransformer):
630
688
  Output dataset with log probability of the sample for each class in the model.
631
689
  """
632
690
  super()._check_dataset_type(dataset)
633
- inference_method="predict_log_proba"
691
+ inference_method = "predict_log_proba"
692
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
634
693
 
635
694
  # This dictionary contains optional kwargs for batch inference. These kwargs
636
695
  # are specific to the type of dataset used.
@@ -641,18 +700,20 @@ class LGBMRegressor(BaseTransformer):
641
700
  dataset=dataset,
642
701
  inference_method=inference_method,
643
702
  )
644
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
703
+ assert isinstance(
704
+ dataset._session, Session
705
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
645
706
  transform_kwargs = dict(
646
707
  session=dataset._session,
647
708
  dependencies=self._deps,
648
- drop_input_cols = self._drop_input_cols,
709
+ drop_input_cols=self._drop_input_cols,
649
710
  expected_output_cols_type="float",
650
711
  )
712
+ expected_output_cols = self._align_expected_output_names(
713
+ inference_method, dataset, expected_output_cols, output_cols_prefix
714
+ )
651
715
  elif isinstance(dataset, pd.DataFrame):
652
- transform_kwargs = dict(
653
- snowpark_input_cols = self._snowpark_cols,
654
- drop_input_cols = self._drop_input_cols
655
- )
716
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
656
717
 
657
718
  transform_handlers = ModelTransformerBuilder.build(
658
719
  dataset=dataset,
@@ -665,7 +726,7 @@ class LGBMRegressor(BaseTransformer):
665
726
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
666
727
  inference_method=inference_method,
667
728
  input_cols=self.input_cols,
668
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
729
+ expected_output_cols=expected_output_cols,
669
730
  **transform_kwargs
670
731
  )
671
732
  return output_df
@@ -691,30 +752,34 @@ class LGBMRegressor(BaseTransformer):
691
752
  Output dataset with results of the decision function for the samples in input dataset.
692
753
  """
693
754
  super()._check_dataset_type(dataset)
694
- inference_method="decision_function"
755
+ inference_method = "decision_function"
695
756
 
696
757
  # This dictionary contains optional kwargs for batch inference. These kwargs
697
758
  # are specific to the type of dataset used.
698
759
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
699
760
 
761
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
762
+
700
763
  if isinstance(dataset, DataFrame):
701
764
  self._deps = self._batch_inference_validate_snowpark(
702
765
  dataset=dataset,
703
766
  inference_method=inference_method,
704
767
  )
705
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
768
+ assert isinstance(
769
+ dataset._session, Session
770
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
706
771
  transform_kwargs = dict(
707
772
  session=dataset._session,
708
773
  dependencies=self._deps,
709
- drop_input_cols = self._drop_input_cols,
774
+ drop_input_cols=self._drop_input_cols,
710
775
  expected_output_cols_type="float",
711
776
  )
777
+ expected_output_cols = self._align_expected_output_names(
778
+ inference_method, dataset, expected_output_cols, output_cols_prefix
779
+ )
712
780
 
713
781
  elif isinstance(dataset, pd.DataFrame):
714
- transform_kwargs = dict(
715
- snowpark_input_cols = self._snowpark_cols,
716
- drop_input_cols = self._drop_input_cols
717
- )
782
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
718
783
 
719
784
  transform_handlers = ModelTransformerBuilder.build(
720
785
  dataset=dataset,
@@ -727,7 +792,7 @@ class LGBMRegressor(BaseTransformer):
727
792
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
728
793
  inference_method=inference_method,
729
794
  input_cols=self.input_cols,
730
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
795
+ expected_output_cols=expected_output_cols,
731
796
  **transform_kwargs
732
797
  )
733
798
  return output_df
@@ -756,12 +821,14 @@ class LGBMRegressor(BaseTransformer):
756
821
  Output dataset with probability of the sample for each class in the model.
757
822
  """
758
823
  super()._check_dataset_type(dataset)
759
- inference_method="score_samples"
824
+ inference_method = "score_samples"
760
825
 
761
826
  # This dictionary contains optional kwargs for batch inference. These kwargs
762
827
  # are specific to the type of dataset used.
763
828
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
764
829
 
830
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
831
+
765
832
  if isinstance(dataset, DataFrame):
766
833
  self._deps = self._batch_inference_validate_snowpark(
767
834
  dataset=dataset,
@@ -774,6 +841,9 @@ class LGBMRegressor(BaseTransformer):
774
841
  drop_input_cols = self._drop_input_cols,
775
842
  expected_output_cols_type="float",
776
843
  )
844
+ expected_output_cols = self._align_expected_output_names(
845
+ inference_method, dataset, expected_output_cols, output_cols_prefix
846
+ )
777
847
 
778
848
  elif isinstance(dataset, pd.DataFrame):
779
849
  transform_kwargs = dict(
@@ -792,7 +862,7 @@ class LGBMRegressor(BaseTransformer):
792
862
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
793
863
  inference_method=inference_method,
794
864
  input_cols=self.input_cols,
795
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
865
+ expected_output_cols=expected_output_cols,
796
866
  **transform_kwargs
797
867
  )
798
868
  return output_df
@@ -939,50 +1009,84 @@ class LGBMRegressor(BaseTransformer):
939
1009
  )
940
1010
  return output_df
941
1011
 
1012
+
1013
+
1014
+ def to_lightgbm(self) -> Any:
1015
+ """Get lightgbm.LGBMRegressor object.
1016
+ """
1017
+ if self._sklearn_object is None:
1018
+ self._sklearn_object = self._create_sklearn_object()
1019
+ return self._sklearn_object
1020
+
1021
+ def to_sklearn(self) -> Any:
1022
+ raise exceptions.SnowflakeMLException(
1023
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1024
+ original_exception=AttributeError(
1025
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1026
+ "to_sklearn()",
1027
+ "to_lightgbm()"
1028
+ )
1029
+ ),
1030
+ )
1031
+
1032
+ def to_xgboost(self) -> Any:
1033
+ raise exceptions.SnowflakeMLException(
1034
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1035
+ original_exception=AttributeError(
1036
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1037
+ "to_xgboost()",
1038
+ "to_lightgbm()"
1039
+ )
1040
+ ),
1041
+ )
942
1042
 
943
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1043
+ def _get_dependencies(self) -> List[str]:
1044
+ return self._deps
1045
+
1046
+
1047
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
944
1048
  self._model_signature_dict = dict()
945
1049
 
946
1050
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
947
1051
 
948
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1052
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
949
1053
  outputs: List[BaseFeatureSpec] = []
950
1054
  if hasattr(self, "predict"):
951
1055
  # keep mypy happy
952
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1056
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
953
1057
  # For classifier, the type of predict is the same as the type of label
954
- if self._sklearn_object._estimator_type == 'classifier':
955
- # label columns is the desired type for output
1058
+ if self._sklearn_object._estimator_type == "classifier":
1059
+ # label columns is the desired type for output
956
1060
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
957
1061
  # rename the output columns
958
1062
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
959
- self._model_signature_dict["predict"] = ModelSignature(inputs,
960
- ([] if self._drop_input_cols else inputs)
961
- + outputs)
1063
+ self._model_signature_dict["predict"] = ModelSignature(
1064
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1065
+ )
962
1066
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
963
1067
  # For outlier models, returns -1 for outliers and 1 for inliers.
964
- # Clusterer returns int64 cluster labels.
1068
+ # Clusterer returns int64 cluster labels.
965
1069
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
966
1070
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
967
- self._model_signature_dict["predict"] = ModelSignature(inputs,
968
- ([] if self._drop_input_cols else inputs)
969
- + outputs)
970
-
1071
+ self._model_signature_dict["predict"] = ModelSignature(
1072
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1073
+ )
1074
+
971
1075
  # For regressor, the type of predict is float64
972
- elif self._sklearn_object._estimator_type == 'regressor':
1076
+ elif self._sklearn_object._estimator_type == "regressor":
973
1077
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
974
- self._model_signature_dict["predict"] = ModelSignature(inputs,
975
- ([] if self._drop_input_cols else inputs)
976
- + outputs)
977
-
1078
+ self._model_signature_dict["predict"] = ModelSignature(
1079
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1080
+ )
1081
+
978
1082
  for prob_func in PROB_FUNCTIONS:
979
1083
  if hasattr(self, prob_func):
980
1084
  output_cols_prefix: str = f"{prob_func}_"
981
1085
  output_column_names = self._get_output_column_names(output_cols_prefix)
982
1086
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
983
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
984
- ([] if self._drop_input_cols else inputs)
985
- + outputs)
1087
+ self._model_signature_dict[prob_func] = ModelSignature(
1088
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1089
+ )
986
1090
 
987
1091
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
988
1092
  items = list(self._model_signature_dict.items())
@@ -995,10 +1099,10 @@ class LGBMRegressor(BaseTransformer):
995
1099
  """Returns model signature of current class.
996
1100
 
997
1101
  Raises:
998
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1102
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
999
1103
 
1000
1104
  Returns:
1001
- Dict[str, ModelSignature]: each method and its input output signature
1105
+ Dict with each method and its input output signature
1002
1106
  """
1003
1107
  if self._model_signature_dict is None:
1004
1108
  raise exceptions.SnowflakeMLException(
@@ -1006,35 +1110,3 @@ class LGBMRegressor(BaseTransformer):
1006
1110
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1007
1111
  )
1008
1112
  return self._model_signature_dict
1009
-
1010
- def to_lightgbm(self) -> Any:
1011
- """Get lightgbm.LGBMRegressor object.
1012
- """
1013
- if self._sklearn_object is None:
1014
- self._sklearn_object = self._create_sklearn_object()
1015
- return self._sklearn_object
1016
-
1017
- def to_sklearn(self) -> Any:
1018
- raise exceptions.SnowflakeMLException(
1019
- error_code=error_codes.METHOD_NOT_ALLOWED,
1020
- original_exception=AttributeError(
1021
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1022
- "to_sklearn()",
1023
- "to_lightgbm()"
1024
- )
1025
- ),
1026
- )
1027
-
1028
- def to_xgboost(self) -> Any:
1029
- raise exceptions.SnowflakeMLException(
1030
- error_code=error_codes.METHOD_NOT_ALLOWED,
1031
- original_exception=AttributeError(
1032
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1033
- "to_xgboost()",
1034
- "to_lightgbm()"
1035
- )
1036
- ),
1037
- )
1038
-
1039
- def _get_dependencies(self) -> List[str]:
1040
- return self._deps