snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -242,12 +241,7 @@ class AffinityPropagation(BaseTransformer):
242
241
  )
243
242
  return selected_cols
244
243
 
245
- @telemetry.send_api_usage_telemetry(
246
- project=_PROJECT,
247
- subproject=_SUBPROJECT,
248
- custom_tags=dict([("autogen", True)]),
249
- )
250
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AffinityPropagation":
244
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AffinityPropagation":
251
245
  """Fit the clustering from features, or affinity matrix
252
246
  For more details on this function, see [sklearn.cluster.AffinityPropagation.fit]
253
247
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation.fit)
@@ -274,12 +268,14 @@ class AffinityPropagation(BaseTransformer):
274
268
 
275
269
  self._snowpark_cols = dataset.select(self.input_cols).columns
276
270
 
277
- # If we are already in a stored procedure, no need to kick off another one.
271
+ # If we are already in a stored procedure, no need to kick off another one.
278
272
  if SNOWML_SPROC_ENV in os.environ:
279
273
  statement_params = telemetry.get_function_usage_statement_params(
280
274
  project=_PROJECT,
281
275
  subproject=_SUBPROJECT,
282
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AffinityPropagation.__class__.__name__),
276
+ function_name=telemetry.get_statement_params_full_func_name(
277
+ inspect.currentframe(), AffinityPropagation.__class__.__name__
278
+ ),
283
279
  api_calls=[Session.call],
284
280
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
285
281
  )
@@ -300,7 +296,7 @@ class AffinityPropagation(BaseTransformer):
300
296
  )
301
297
  self._sklearn_object = model_trainer.train()
302
298
  self._is_fitted = True
303
- self._get_model_signatures(dataset)
299
+ self._generate_model_signatures(dataset)
304
300
  return self
305
301
 
306
302
  def _batch_inference_validate_snowpark(
@@ -376,7 +372,9 @@ class AffinityPropagation(BaseTransformer):
376
372
  # when it is classifier, infer the datatype from label columns
377
373
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
378
374
  # Batch inference takes a single expected output column type. Use the first columns type for now.
379
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
375
+ label_cols_signatures = [
376
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
377
+ ]
380
378
  if len(label_cols_signatures) == 0:
381
379
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
382
380
  raise exceptions.SnowflakeMLException(
@@ -384,25 +382,22 @@ class AffinityPropagation(BaseTransformer):
384
382
  original_exception=ValueError(error_str),
385
383
  )
386
384
 
387
- expected_type_inferred = convert_sp_to_sf_type(
388
- label_cols_signatures[0].as_snowpark_type()
389
- )
385
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
390
386
 
391
387
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
392
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
388
+ assert isinstance(
389
+ dataset._session, Session
390
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
393
391
 
394
392
  transform_kwargs = dict(
395
- session = dataset._session,
396
- dependencies = self._deps,
397
- drop_input_cols = self._drop_input_cols,
398
- expected_output_cols_type = expected_type_inferred,
393
+ session=dataset._session,
394
+ dependencies=self._deps,
395
+ drop_input_cols=self._drop_input_cols,
396
+ expected_output_cols_type=expected_type_inferred,
399
397
  )
400
398
 
401
399
  elif isinstance(dataset, pd.DataFrame):
402
- transform_kwargs = dict(
403
- snowpark_input_cols = self._snowpark_cols,
404
- drop_input_cols = self._drop_input_cols
405
- )
400
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
406
401
 
407
402
  transform_handlers = ModelTransformerBuilder.build(
408
403
  dataset=dataset,
@@ -442,7 +437,7 @@ class AffinityPropagation(BaseTransformer):
442
437
  Transformed dataset.
443
438
  """
444
439
  super()._check_dataset_type(dataset)
445
- inference_method="transform"
440
+ inference_method = "transform"
446
441
 
447
442
  # This dictionary contains optional kwargs for batch inference. These kwargs
448
443
  # are specific to the type of dataset used.
@@ -479,17 +474,14 @@ class AffinityPropagation(BaseTransformer):
479
474
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
480
475
 
481
476
  transform_kwargs = dict(
482
- session = dataset._session,
483
- dependencies = self._deps,
484
- drop_input_cols = self._drop_input_cols,
485
- expected_output_cols_type = expected_dtype,
477
+ session=dataset._session,
478
+ dependencies=self._deps,
479
+ drop_input_cols=self._drop_input_cols,
480
+ expected_output_cols_type=expected_dtype,
486
481
  )
487
482
 
488
483
  elif isinstance(dataset, pd.DataFrame):
489
- transform_kwargs = dict(
490
- snowpark_input_cols = self._snowpark_cols,
491
- drop_input_cols = self._drop_input_cols
492
- )
484
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
493
485
 
494
486
  transform_handlers = ModelTransformerBuilder.build(
495
487
  dataset=dataset,
@@ -508,7 +500,11 @@ class AffinityPropagation(BaseTransformer):
508
500
  return output_df
509
501
 
510
502
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
511
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
503
+ def fit_predict(
504
+ self,
505
+ dataset: Union[DataFrame, pd.DataFrame],
506
+ output_cols_prefix: str = "fit_predict_",
507
+ ) -> Union[DataFrame, pd.DataFrame]:
512
508
  """ Fit clustering from features/affinity matrix; return cluster labels
513
509
  For more details on this function, see [sklearn.cluster.AffinityPropagation.fit_predict]
514
510
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation.fit_predict)
@@ -535,7 +531,9 @@ class AffinityPropagation(BaseTransformer):
535
531
  )
536
532
  output_result, fitted_estimator = model_trainer.train_fit_predict(
537
533
  drop_input_cols=self._drop_input_cols,
538
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
534
+ expected_output_cols_list=(
535
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
536
+ ),
539
537
  )
540
538
  self._sklearn_object = fitted_estimator
541
539
  self._is_fitted = True
@@ -552,6 +550,62 @@ class AffinityPropagation(BaseTransformer):
552
550
  assert self._sklearn_object is not None
553
551
  return self._sklearn_object.embedding_
554
552
 
553
+
554
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
555
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
556
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
557
+ """
558
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
559
+ # The following condition is introduced for kneighbors methods, and not used in other methods
560
+ if output_cols:
561
+ output_cols = [
562
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
563
+ for c in output_cols
564
+ ]
565
+ elif getattr(self._sklearn_object, "classes_", None) is None:
566
+ output_cols = [output_cols_prefix]
567
+ elif self._sklearn_object is not None:
568
+ classes = self._sklearn_object.classes_
569
+ if isinstance(classes, numpy.ndarray):
570
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
571
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
572
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
573
+ output_cols = []
574
+ for i, cl in enumerate(classes):
575
+ # For binary classification, there is only one output column for each class
576
+ # ndarray as the two classes are complementary.
577
+ if len(cl) == 2:
578
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
579
+ else:
580
+ output_cols.extend([
581
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
582
+ ])
583
+ else:
584
+ output_cols = []
585
+
586
+ # Make sure column names are valid snowflake identifiers.
587
+ assert output_cols is not None # Make MyPy happy
588
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
589
+
590
+ return rv
591
+
592
+ def _align_expected_output_names(
593
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
594
+ ) -> List[str]:
595
+ # in case the inferred output column names dimension is different
596
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
597
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
598
+ output_df_columns = list(output_df_pd.columns)
599
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
600
+ if self.sample_weight_col:
601
+ output_df_columns_set -= set(self.sample_weight_col)
602
+ # if the dimension of inferred output column names is correct; use it
603
+ if len(expected_output_cols_list) == len(output_df_columns_set):
604
+ return expected_output_cols_list
605
+ # otherwise, use the sklearn estimator's output
606
+ else:
607
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
608
+
555
609
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
556
610
  @telemetry.send_api_usage_telemetry(
557
611
  project=_PROJECT,
@@ -582,24 +636,28 @@ class AffinityPropagation(BaseTransformer):
582
636
  # are specific to the type of dataset used.
583
637
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
584
638
 
639
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
640
+
585
641
  if isinstance(dataset, DataFrame):
586
642
  self._deps = self._batch_inference_validate_snowpark(
587
643
  dataset=dataset,
588
644
  inference_method=inference_method,
589
645
  )
590
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
646
+ assert isinstance(
647
+ dataset._session, Session
648
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
591
649
  transform_kwargs = dict(
592
650
  session=dataset._session,
593
651
  dependencies=self._deps,
594
- drop_input_cols = self._drop_input_cols,
652
+ drop_input_cols=self._drop_input_cols,
595
653
  expected_output_cols_type="float",
596
654
  )
655
+ expected_output_cols = self._align_expected_output_names(
656
+ inference_method, dataset, expected_output_cols, output_cols_prefix
657
+ )
597
658
 
598
659
  elif isinstance(dataset, pd.DataFrame):
599
- transform_kwargs = dict(
600
- snowpark_input_cols = self._snowpark_cols,
601
- drop_input_cols = self._drop_input_cols
602
- )
660
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
603
661
 
604
662
  transform_handlers = ModelTransformerBuilder.build(
605
663
  dataset=dataset,
@@ -611,7 +669,7 @@ class AffinityPropagation(BaseTransformer):
611
669
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
612
670
  inference_method=inference_method,
613
671
  input_cols=self.input_cols,
614
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
672
+ expected_output_cols=expected_output_cols,
615
673
  **transform_kwargs
616
674
  )
617
675
  return output_df
@@ -641,7 +699,8 @@ class AffinityPropagation(BaseTransformer):
641
699
  Output dataset with log probability of the sample for each class in the model.
642
700
  """
643
701
  super()._check_dataset_type(dataset)
644
- inference_method="predict_log_proba"
702
+ inference_method = "predict_log_proba"
703
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
645
704
 
646
705
  # This dictionary contains optional kwargs for batch inference. These kwargs
647
706
  # are specific to the type of dataset used.
@@ -652,18 +711,20 @@ class AffinityPropagation(BaseTransformer):
652
711
  dataset=dataset,
653
712
  inference_method=inference_method,
654
713
  )
655
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
714
+ assert isinstance(
715
+ dataset._session, Session
716
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
656
717
  transform_kwargs = dict(
657
718
  session=dataset._session,
658
719
  dependencies=self._deps,
659
- drop_input_cols = self._drop_input_cols,
720
+ drop_input_cols=self._drop_input_cols,
660
721
  expected_output_cols_type="float",
661
722
  )
723
+ expected_output_cols = self._align_expected_output_names(
724
+ inference_method, dataset, expected_output_cols, output_cols_prefix
725
+ )
662
726
  elif isinstance(dataset, pd.DataFrame):
663
- transform_kwargs = dict(
664
- snowpark_input_cols = self._snowpark_cols,
665
- drop_input_cols = self._drop_input_cols
666
- )
727
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
667
728
 
668
729
  transform_handlers = ModelTransformerBuilder.build(
669
730
  dataset=dataset,
@@ -676,7 +737,7 @@ class AffinityPropagation(BaseTransformer):
676
737
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
677
738
  inference_method=inference_method,
678
739
  input_cols=self.input_cols,
679
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
740
+ expected_output_cols=expected_output_cols,
680
741
  **transform_kwargs
681
742
  )
682
743
  return output_df
@@ -702,30 +763,34 @@ class AffinityPropagation(BaseTransformer):
702
763
  Output dataset with results of the decision function for the samples in input dataset.
703
764
  """
704
765
  super()._check_dataset_type(dataset)
705
- inference_method="decision_function"
766
+ inference_method = "decision_function"
706
767
 
707
768
  # This dictionary contains optional kwargs for batch inference. These kwargs
708
769
  # are specific to the type of dataset used.
709
770
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
710
771
 
772
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
773
+
711
774
  if isinstance(dataset, DataFrame):
712
775
  self._deps = self._batch_inference_validate_snowpark(
713
776
  dataset=dataset,
714
777
  inference_method=inference_method,
715
778
  )
716
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
779
+ assert isinstance(
780
+ dataset._session, Session
781
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
717
782
  transform_kwargs = dict(
718
783
  session=dataset._session,
719
784
  dependencies=self._deps,
720
- drop_input_cols = self._drop_input_cols,
785
+ drop_input_cols=self._drop_input_cols,
721
786
  expected_output_cols_type="float",
722
787
  )
788
+ expected_output_cols = self._align_expected_output_names(
789
+ inference_method, dataset, expected_output_cols, output_cols_prefix
790
+ )
723
791
 
724
792
  elif isinstance(dataset, pd.DataFrame):
725
- transform_kwargs = dict(
726
- snowpark_input_cols = self._snowpark_cols,
727
- drop_input_cols = self._drop_input_cols
728
- )
793
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
729
794
 
730
795
  transform_handlers = ModelTransformerBuilder.build(
731
796
  dataset=dataset,
@@ -738,7 +803,7 @@ class AffinityPropagation(BaseTransformer):
738
803
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
739
804
  inference_method=inference_method,
740
805
  input_cols=self.input_cols,
741
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
806
+ expected_output_cols=expected_output_cols,
742
807
  **transform_kwargs
743
808
  )
744
809
  return output_df
@@ -767,12 +832,14 @@ class AffinityPropagation(BaseTransformer):
767
832
  Output dataset with probability of the sample for each class in the model.
768
833
  """
769
834
  super()._check_dataset_type(dataset)
770
- inference_method="score_samples"
835
+ inference_method = "score_samples"
771
836
 
772
837
  # This dictionary contains optional kwargs for batch inference. These kwargs
773
838
  # are specific to the type of dataset used.
774
839
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
775
840
 
841
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
842
+
776
843
  if isinstance(dataset, DataFrame):
777
844
  self._deps = self._batch_inference_validate_snowpark(
778
845
  dataset=dataset,
@@ -785,6 +852,9 @@ class AffinityPropagation(BaseTransformer):
785
852
  drop_input_cols = self._drop_input_cols,
786
853
  expected_output_cols_type="float",
787
854
  )
855
+ expected_output_cols = self._align_expected_output_names(
856
+ inference_method, dataset, expected_output_cols, output_cols_prefix
857
+ )
788
858
 
789
859
  elif isinstance(dataset, pd.DataFrame):
790
860
  transform_kwargs = dict(
@@ -803,7 +873,7 @@ class AffinityPropagation(BaseTransformer):
803
873
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
804
874
  inference_method=inference_method,
805
875
  input_cols=self.input_cols,
806
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
876
+ expected_output_cols=expected_output_cols,
807
877
  **transform_kwargs
808
878
  )
809
879
  return output_df
@@ -948,50 +1018,84 @@ class AffinityPropagation(BaseTransformer):
948
1018
  )
949
1019
  return output_df
950
1020
 
1021
+
1022
+
1023
+ def to_sklearn(self) -> Any:
1024
+ """Get sklearn.cluster.AffinityPropagation object.
1025
+ """
1026
+ if self._sklearn_object is None:
1027
+ self._sklearn_object = self._create_sklearn_object()
1028
+ return self._sklearn_object
1029
+
1030
+ def to_xgboost(self) -> Any:
1031
+ raise exceptions.SnowflakeMLException(
1032
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1033
+ original_exception=AttributeError(
1034
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1035
+ "to_xgboost()",
1036
+ "to_sklearn()"
1037
+ )
1038
+ ),
1039
+ )
1040
+
1041
+ def to_lightgbm(self) -> Any:
1042
+ raise exceptions.SnowflakeMLException(
1043
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1044
+ original_exception=AttributeError(
1045
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1046
+ "to_lightgbm()",
1047
+ "to_sklearn()"
1048
+ )
1049
+ ),
1050
+ )
951
1051
 
952
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1052
+ def _get_dependencies(self) -> List[str]:
1053
+ return self._deps
1054
+
1055
+
1056
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
953
1057
  self._model_signature_dict = dict()
954
1058
 
955
1059
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
956
1060
 
957
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1061
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
958
1062
  outputs: List[BaseFeatureSpec] = []
959
1063
  if hasattr(self, "predict"):
960
1064
  # keep mypy happy
961
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1065
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
962
1066
  # For classifier, the type of predict is the same as the type of label
963
- if self._sklearn_object._estimator_type == 'classifier':
964
- # label columns is the desired type for output
1067
+ if self._sklearn_object._estimator_type == "classifier":
1068
+ # label columns is the desired type for output
965
1069
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
966
1070
  # rename the output columns
967
1071
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
968
- self._model_signature_dict["predict"] = ModelSignature(inputs,
969
- ([] if self._drop_input_cols else inputs)
970
- + outputs)
1072
+ self._model_signature_dict["predict"] = ModelSignature(
1073
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1074
+ )
971
1075
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
972
1076
  # For outlier models, returns -1 for outliers and 1 for inliers.
973
- # Clusterer returns int64 cluster labels.
1077
+ # Clusterer returns int64 cluster labels.
974
1078
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
975
1079
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
976
- self._model_signature_dict["predict"] = ModelSignature(inputs,
977
- ([] if self._drop_input_cols else inputs)
978
- + outputs)
979
-
1080
+ self._model_signature_dict["predict"] = ModelSignature(
1081
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1082
+ )
1083
+
980
1084
  # For regressor, the type of predict is float64
981
- elif self._sklearn_object._estimator_type == 'regressor':
1085
+ elif self._sklearn_object._estimator_type == "regressor":
982
1086
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
983
- self._model_signature_dict["predict"] = ModelSignature(inputs,
984
- ([] if self._drop_input_cols else inputs)
985
- + outputs)
986
-
1087
+ self._model_signature_dict["predict"] = ModelSignature(
1088
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1089
+ )
1090
+
987
1091
  for prob_func in PROB_FUNCTIONS:
988
1092
  if hasattr(self, prob_func):
989
1093
  output_cols_prefix: str = f"{prob_func}_"
990
1094
  output_column_names = self._get_output_column_names(output_cols_prefix)
991
1095
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
992
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
993
- ([] if self._drop_input_cols else inputs)
994
- + outputs)
1096
+ self._model_signature_dict[prob_func] = ModelSignature(
1097
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1098
+ )
995
1099
 
996
1100
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
997
1101
  items = list(self._model_signature_dict.items())
@@ -1004,10 +1108,10 @@ class AffinityPropagation(BaseTransformer):
1004
1108
  """Returns model signature of current class.
1005
1109
 
1006
1110
  Raises:
1007
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1111
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1008
1112
 
1009
1113
  Returns:
1010
- Dict[str, ModelSignature]: each method and its input output signature
1114
+ Dict with each method and its input output signature
1011
1115
  """
1012
1116
  if self._model_signature_dict is None:
1013
1117
  raise exceptions.SnowflakeMLException(
@@ -1015,35 +1119,3 @@ class AffinityPropagation(BaseTransformer):
1015
1119
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1016
1120
  )
1017
1121
  return self._model_signature_dict
1018
-
1019
- def to_sklearn(self) -> Any:
1020
- """Get sklearn.cluster.AffinityPropagation object.
1021
- """
1022
- if self._sklearn_object is None:
1023
- self._sklearn_object = self._create_sklearn_object()
1024
- return self._sklearn_object
1025
-
1026
- def to_xgboost(self) -> Any:
1027
- raise exceptions.SnowflakeMLException(
1028
- error_code=error_codes.METHOD_NOT_ALLOWED,
1029
- original_exception=AttributeError(
1030
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1031
- "to_xgboost()",
1032
- "to_sklearn()"
1033
- )
1034
- ),
1035
- )
1036
-
1037
- def to_lightgbm(self) -> Any:
1038
- raise exceptions.SnowflakeMLException(
1039
- error_code=error_codes.METHOD_NOT_ALLOWED,
1040
- original_exception=AttributeError(
1041
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1042
- "to_lightgbm()",
1043
- "to_sklearn()"
1044
- )
1045
- ),
1046
- )
1047
-
1048
- def _get_dependencies(self) -> List[str]:
1049
- return self._deps