snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -300,12 +299,7 @@ class Perceptron(BaseTransformer):
300
299
  )
301
300
  return selected_cols
302
301
 
303
- @telemetry.send_api_usage_telemetry(
304
- project=_PROJECT,
305
- subproject=_SUBPROJECT,
306
- custom_tags=dict([("autogen", True)]),
307
- )
308
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Perceptron":
302
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Perceptron":
309
303
  """Fit linear model with Stochastic Gradient Descent
310
304
  For more details on this function, see [sklearn.linear_model.Perceptron.fit]
311
305
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html#sklearn.linear_model.Perceptron.fit)
@@ -332,12 +326,14 @@ class Perceptron(BaseTransformer):
332
326
 
333
327
  self._snowpark_cols = dataset.select(self.input_cols).columns
334
328
 
335
- # If we are already in a stored procedure, no need to kick off another one.
329
+ # If we are already in a stored procedure, no need to kick off another one.
336
330
  if SNOWML_SPROC_ENV in os.environ:
337
331
  statement_params = telemetry.get_function_usage_statement_params(
338
332
  project=_PROJECT,
339
333
  subproject=_SUBPROJECT,
340
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Perceptron.__class__.__name__),
334
+ function_name=telemetry.get_statement_params_full_func_name(
335
+ inspect.currentframe(), Perceptron.__class__.__name__
336
+ ),
341
337
  api_calls=[Session.call],
342
338
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
343
339
  )
@@ -358,7 +354,7 @@ class Perceptron(BaseTransformer):
358
354
  )
359
355
  self._sklearn_object = model_trainer.train()
360
356
  self._is_fitted = True
361
- self._get_model_signatures(dataset)
357
+ self._generate_model_signatures(dataset)
362
358
  return self
363
359
 
364
360
  def _batch_inference_validate_snowpark(
@@ -434,7 +430,9 @@ class Perceptron(BaseTransformer):
434
430
  # when it is classifier, infer the datatype from label columns
435
431
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
436
432
  # Batch inference takes a single expected output column type. Use the first columns type for now.
437
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
433
+ label_cols_signatures = [
434
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
435
+ ]
438
436
  if len(label_cols_signatures) == 0:
439
437
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
440
438
  raise exceptions.SnowflakeMLException(
@@ -442,25 +440,22 @@ class Perceptron(BaseTransformer):
442
440
  original_exception=ValueError(error_str),
443
441
  )
444
442
 
445
- expected_type_inferred = convert_sp_to_sf_type(
446
- label_cols_signatures[0].as_snowpark_type()
447
- )
443
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
448
444
 
449
445
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
450
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
446
+ assert isinstance(
447
+ dataset._session, Session
448
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
451
449
 
452
450
  transform_kwargs = dict(
453
- session = dataset._session,
454
- dependencies = self._deps,
455
- drop_input_cols = self._drop_input_cols,
456
- expected_output_cols_type = expected_type_inferred,
451
+ session=dataset._session,
452
+ dependencies=self._deps,
453
+ drop_input_cols=self._drop_input_cols,
454
+ expected_output_cols_type=expected_type_inferred,
457
455
  )
458
456
 
459
457
  elif isinstance(dataset, pd.DataFrame):
460
- transform_kwargs = dict(
461
- snowpark_input_cols = self._snowpark_cols,
462
- drop_input_cols = self._drop_input_cols
463
- )
458
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
464
459
 
465
460
  transform_handlers = ModelTransformerBuilder.build(
466
461
  dataset=dataset,
@@ -500,7 +495,7 @@ class Perceptron(BaseTransformer):
500
495
  Transformed dataset.
501
496
  """
502
497
  super()._check_dataset_type(dataset)
503
- inference_method="transform"
498
+ inference_method = "transform"
504
499
 
505
500
  # This dictionary contains optional kwargs for batch inference. These kwargs
506
501
  # are specific to the type of dataset used.
@@ -537,17 +532,14 @@ class Perceptron(BaseTransformer):
537
532
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
538
533
 
539
534
  transform_kwargs = dict(
540
- session = dataset._session,
541
- dependencies = self._deps,
542
- drop_input_cols = self._drop_input_cols,
543
- expected_output_cols_type = expected_dtype,
535
+ session=dataset._session,
536
+ dependencies=self._deps,
537
+ drop_input_cols=self._drop_input_cols,
538
+ expected_output_cols_type=expected_dtype,
544
539
  )
545
540
 
546
541
  elif isinstance(dataset, pd.DataFrame):
547
- transform_kwargs = dict(
548
- snowpark_input_cols = self._snowpark_cols,
549
- drop_input_cols = self._drop_input_cols
550
- )
542
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
551
543
 
552
544
  transform_handlers = ModelTransformerBuilder.build(
553
545
  dataset=dataset,
@@ -566,7 +558,11 @@ class Perceptron(BaseTransformer):
566
558
  return output_df
567
559
 
568
560
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
569
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
561
+ def fit_predict(
562
+ self,
563
+ dataset: Union[DataFrame, pd.DataFrame],
564
+ output_cols_prefix: str = "fit_predict_",
565
+ ) -> Union[DataFrame, pd.DataFrame]:
570
566
  """ Method not supported for this class.
571
567
 
572
568
 
@@ -591,7 +587,9 @@ class Perceptron(BaseTransformer):
591
587
  )
592
588
  output_result, fitted_estimator = model_trainer.train_fit_predict(
593
589
  drop_input_cols=self._drop_input_cols,
594
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
590
+ expected_output_cols_list=(
591
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
592
+ ),
595
593
  )
596
594
  self._sklearn_object = fitted_estimator
597
595
  self._is_fitted = True
@@ -608,6 +606,62 @@ class Perceptron(BaseTransformer):
608
606
  assert self._sklearn_object is not None
609
607
  return self._sklearn_object.embedding_
610
608
 
609
+
610
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
611
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
612
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
613
+ """
614
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
615
+ # The following condition is introduced for kneighbors methods, and not used in other methods
616
+ if output_cols:
617
+ output_cols = [
618
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
619
+ for c in output_cols
620
+ ]
621
+ elif getattr(self._sklearn_object, "classes_", None) is None:
622
+ output_cols = [output_cols_prefix]
623
+ elif self._sklearn_object is not None:
624
+ classes = self._sklearn_object.classes_
625
+ if isinstance(classes, numpy.ndarray):
626
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
627
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
628
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
629
+ output_cols = []
630
+ for i, cl in enumerate(classes):
631
+ # For binary classification, there is only one output column for each class
632
+ # ndarray as the two classes are complementary.
633
+ if len(cl) == 2:
634
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
635
+ else:
636
+ output_cols.extend([
637
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
638
+ ])
639
+ else:
640
+ output_cols = []
641
+
642
+ # Make sure column names are valid snowflake identifiers.
643
+ assert output_cols is not None # Make MyPy happy
644
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
645
+
646
+ return rv
647
+
648
+ def _align_expected_output_names(
649
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
650
+ ) -> List[str]:
651
+ # in case the inferred output column names dimension is different
652
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
653
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
654
+ output_df_columns = list(output_df_pd.columns)
655
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
656
+ if self.sample_weight_col:
657
+ output_df_columns_set -= set(self.sample_weight_col)
658
+ # if the dimension of inferred output column names is correct; use it
659
+ if len(expected_output_cols_list) == len(output_df_columns_set):
660
+ return expected_output_cols_list
661
+ # otherwise, use the sklearn estimator's output
662
+ else:
663
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
664
+
611
665
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
612
666
  @telemetry.send_api_usage_telemetry(
613
667
  project=_PROJECT,
@@ -638,24 +692,28 @@ class Perceptron(BaseTransformer):
638
692
  # are specific to the type of dataset used.
639
693
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
640
694
 
695
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
696
+
641
697
  if isinstance(dataset, DataFrame):
642
698
  self._deps = self._batch_inference_validate_snowpark(
643
699
  dataset=dataset,
644
700
  inference_method=inference_method,
645
701
  )
646
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
702
+ assert isinstance(
703
+ dataset._session, Session
704
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
647
705
  transform_kwargs = dict(
648
706
  session=dataset._session,
649
707
  dependencies=self._deps,
650
- drop_input_cols = self._drop_input_cols,
708
+ drop_input_cols=self._drop_input_cols,
651
709
  expected_output_cols_type="float",
652
710
  )
711
+ expected_output_cols = self._align_expected_output_names(
712
+ inference_method, dataset, expected_output_cols, output_cols_prefix
713
+ )
653
714
 
654
715
  elif isinstance(dataset, pd.DataFrame):
655
- transform_kwargs = dict(
656
- snowpark_input_cols = self._snowpark_cols,
657
- drop_input_cols = self._drop_input_cols
658
- )
716
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
659
717
 
660
718
  transform_handlers = ModelTransformerBuilder.build(
661
719
  dataset=dataset,
@@ -667,7 +725,7 @@ class Perceptron(BaseTransformer):
667
725
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
668
726
  inference_method=inference_method,
669
727
  input_cols=self.input_cols,
670
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
728
+ expected_output_cols=expected_output_cols,
671
729
  **transform_kwargs
672
730
  )
673
731
  return output_df
@@ -697,7 +755,8 @@ class Perceptron(BaseTransformer):
697
755
  Output dataset with log probability of the sample for each class in the model.
698
756
  """
699
757
  super()._check_dataset_type(dataset)
700
- inference_method="predict_log_proba"
758
+ inference_method = "predict_log_proba"
759
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
701
760
 
702
761
  # This dictionary contains optional kwargs for batch inference. These kwargs
703
762
  # are specific to the type of dataset used.
@@ -708,18 +767,20 @@ class Perceptron(BaseTransformer):
708
767
  dataset=dataset,
709
768
  inference_method=inference_method,
710
769
  )
711
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
770
+ assert isinstance(
771
+ dataset._session, Session
772
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
712
773
  transform_kwargs = dict(
713
774
  session=dataset._session,
714
775
  dependencies=self._deps,
715
- drop_input_cols = self._drop_input_cols,
776
+ drop_input_cols=self._drop_input_cols,
716
777
  expected_output_cols_type="float",
717
778
  )
779
+ expected_output_cols = self._align_expected_output_names(
780
+ inference_method, dataset, expected_output_cols, output_cols_prefix
781
+ )
718
782
  elif isinstance(dataset, pd.DataFrame):
719
- transform_kwargs = dict(
720
- snowpark_input_cols = self._snowpark_cols,
721
- drop_input_cols = self._drop_input_cols
722
- )
783
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
723
784
 
724
785
  transform_handlers = ModelTransformerBuilder.build(
725
786
  dataset=dataset,
@@ -732,7 +793,7 @@ class Perceptron(BaseTransformer):
732
793
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
733
794
  inference_method=inference_method,
734
795
  input_cols=self.input_cols,
735
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
796
+ expected_output_cols=expected_output_cols,
736
797
  **transform_kwargs
737
798
  )
738
799
  return output_df
@@ -760,30 +821,34 @@ class Perceptron(BaseTransformer):
760
821
  Output dataset with results of the decision function for the samples in input dataset.
761
822
  """
762
823
  super()._check_dataset_type(dataset)
763
- inference_method="decision_function"
824
+ inference_method = "decision_function"
764
825
 
765
826
  # This dictionary contains optional kwargs for batch inference. These kwargs
766
827
  # are specific to the type of dataset used.
767
828
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
768
829
 
830
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
831
+
769
832
  if isinstance(dataset, DataFrame):
770
833
  self._deps = self._batch_inference_validate_snowpark(
771
834
  dataset=dataset,
772
835
  inference_method=inference_method,
773
836
  )
774
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
837
+ assert isinstance(
838
+ dataset._session, Session
839
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
775
840
  transform_kwargs = dict(
776
841
  session=dataset._session,
777
842
  dependencies=self._deps,
778
- drop_input_cols = self._drop_input_cols,
843
+ drop_input_cols=self._drop_input_cols,
779
844
  expected_output_cols_type="float",
780
845
  )
846
+ expected_output_cols = self._align_expected_output_names(
847
+ inference_method, dataset, expected_output_cols, output_cols_prefix
848
+ )
781
849
 
782
850
  elif isinstance(dataset, pd.DataFrame):
783
- transform_kwargs = dict(
784
- snowpark_input_cols = self._snowpark_cols,
785
- drop_input_cols = self._drop_input_cols
786
- )
851
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
787
852
 
788
853
  transform_handlers = ModelTransformerBuilder.build(
789
854
  dataset=dataset,
@@ -796,7 +861,7 @@ class Perceptron(BaseTransformer):
796
861
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
797
862
  inference_method=inference_method,
798
863
  input_cols=self.input_cols,
799
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
864
+ expected_output_cols=expected_output_cols,
800
865
  **transform_kwargs
801
866
  )
802
867
  return output_df
@@ -825,12 +890,14 @@ class Perceptron(BaseTransformer):
825
890
  Output dataset with probability of the sample for each class in the model.
826
891
  """
827
892
  super()._check_dataset_type(dataset)
828
- inference_method="score_samples"
893
+ inference_method = "score_samples"
829
894
 
830
895
  # This dictionary contains optional kwargs for batch inference. These kwargs
831
896
  # are specific to the type of dataset used.
832
897
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
833
898
 
899
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
900
+
834
901
  if isinstance(dataset, DataFrame):
835
902
  self._deps = self._batch_inference_validate_snowpark(
836
903
  dataset=dataset,
@@ -843,6 +910,9 @@ class Perceptron(BaseTransformer):
843
910
  drop_input_cols = self._drop_input_cols,
844
911
  expected_output_cols_type="float",
845
912
  )
913
+ expected_output_cols = self._align_expected_output_names(
914
+ inference_method, dataset, expected_output_cols, output_cols_prefix
915
+ )
846
916
 
847
917
  elif isinstance(dataset, pd.DataFrame):
848
918
  transform_kwargs = dict(
@@ -861,7 +931,7 @@ class Perceptron(BaseTransformer):
861
931
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
862
932
  inference_method=inference_method,
863
933
  input_cols=self.input_cols,
864
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
934
+ expected_output_cols=expected_output_cols,
865
935
  **transform_kwargs
866
936
  )
867
937
  return output_df
@@ -1008,50 +1078,84 @@ class Perceptron(BaseTransformer):
1008
1078
  )
1009
1079
  return output_df
1010
1080
 
1081
+
1082
+
1083
+ def to_sklearn(self) -> Any:
1084
+ """Get sklearn.linear_model.Perceptron object.
1085
+ """
1086
+ if self._sklearn_object is None:
1087
+ self._sklearn_object = self._create_sklearn_object()
1088
+ return self._sklearn_object
1089
+
1090
+ def to_xgboost(self) -> Any:
1091
+ raise exceptions.SnowflakeMLException(
1092
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1093
+ original_exception=AttributeError(
1094
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1095
+ "to_xgboost()",
1096
+ "to_sklearn()"
1097
+ )
1098
+ ),
1099
+ )
1100
+
1101
+ def to_lightgbm(self) -> Any:
1102
+ raise exceptions.SnowflakeMLException(
1103
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1104
+ original_exception=AttributeError(
1105
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1106
+ "to_lightgbm()",
1107
+ "to_sklearn()"
1108
+ )
1109
+ ),
1110
+ )
1011
1111
 
1012
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1112
+ def _get_dependencies(self) -> List[str]:
1113
+ return self._deps
1114
+
1115
+
1116
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1013
1117
  self._model_signature_dict = dict()
1014
1118
 
1015
1119
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1016
1120
 
1017
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1121
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1018
1122
  outputs: List[BaseFeatureSpec] = []
1019
1123
  if hasattr(self, "predict"):
1020
1124
  # keep mypy happy
1021
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1125
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1022
1126
  # For classifier, the type of predict is the same as the type of label
1023
- if self._sklearn_object._estimator_type == 'classifier':
1024
- # label columns is the desired type for output
1127
+ if self._sklearn_object._estimator_type == "classifier":
1128
+ # label columns is the desired type for output
1025
1129
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1026
1130
  # rename the output columns
1027
1131
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1028
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1029
- ([] if self._drop_input_cols else inputs)
1030
- + outputs)
1132
+ self._model_signature_dict["predict"] = ModelSignature(
1133
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1134
+ )
1031
1135
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1032
1136
  # For outlier models, returns -1 for outliers and 1 for inliers.
1033
- # Clusterer returns int64 cluster labels.
1137
+ # Clusterer returns int64 cluster labels.
1034
1138
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1035
1139
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1036
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1037
- ([] if self._drop_input_cols else inputs)
1038
- + outputs)
1039
-
1140
+ self._model_signature_dict["predict"] = ModelSignature(
1141
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1142
+ )
1143
+
1040
1144
  # For regressor, the type of predict is float64
1041
- elif self._sklearn_object._estimator_type == 'regressor':
1145
+ elif self._sklearn_object._estimator_type == "regressor":
1042
1146
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1043
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1044
- ([] if self._drop_input_cols else inputs)
1045
- + outputs)
1046
-
1147
+ self._model_signature_dict["predict"] = ModelSignature(
1148
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1149
+ )
1150
+
1047
1151
  for prob_func in PROB_FUNCTIONS:
1048
1152
  if hasattr(self, prob_func):
1049
1153
  output_cols_prefix: str = f"{prob_func}_"
1050
1154
  output_column_names = self._get_output_column_names(output_cols_prefix)
1051
1155
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1052
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1053
- ([] if self._drop_input_cols else inputs)
1054
- + outputs)
1156
+ self._model_signature_dict[prob_func] = ModelSignature(
1157
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1158
+ )
1055
1159
 
1056
1160
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1057
1161
  items = list(self._model_signature_dict.items())
@@ -1064,10 +1168,10 @@ class Perceptron(BaseTransformer):
1064
1168
  """Returns model signature of current class.
1065
1169
 
1066
1170
  Raises:
1067
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1171
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1068
1172
 
1069
1173
  Returns:
1070
- Dict[str, ModelSignature]: each method and its input output signature
1174
+ Dict with each method and its input output signature
1071
1175
  """
1072
1176
  if self._model_signature_dict is None:
1073
1177
  raise exceptions.SnowflakeMLException(
@@ -1075,35 +1179,3 @@ class Perceptron(BaseTransformer):
1075
1179
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1076
1180
  )
1077
1181
  return self._model_signature_dict
1078
-
1079
- def to_sklearn(self) -> Any:
1080
- """Get sklearn.linear_model.Perceptron object.
1081
- """
1082
- if self._sklearn_object is None:
1083
- self._sklearn_object = self._create_sklearn_object()
1084
- return self._sklearn_object
1085
-
1086
- def to_xgboost(self) -> Any:
1087
- raise exceptions.SnowflakeMLException(
1088
- error_code=error_codes.METHOD_NOT_ALLOWED,
1089
- original_exception=AttributeError(
1090
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1091
- "to_xgboost()",
1092
- "to_sklearn()"
1093
- )
1094
- ),
1095
- )
1096
-
1097
- def to_lightgbm(self) -> Any:
1098
- raise exceptions.SnowflakeMLException(
1099
- error_code=error_codes.METHOD_NOT_ALLOWED,
1100
- original_exception=AttributeError(
1101
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1102
- "to_lightgbm()",
1103
- "to_sklearn()"
1104
- )
1105
- ),
1106
- )
1107
-
1108
- def _get_dependencies(self) -> List[str]:
1109
- return self._deps