snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -372,12 +371,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
372
371
  )
373
372
  return selected_cols
374
373
 
375
- @telemetry.send_api_usage_telemetry(
376
- project=_PROJECT,
377
- subproject=_SUBPROJECT,
378
- custom_tags=dict([("autogen", True)]),
379
- )
380
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "HistGradientBoostingClassifier":
374
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "HistGradientBoostingClassifier":
381
375
  """Fit the gradient boosting model
382
376
  For more details on this function, see [sklearn.ensemble.HistGradientBoostingClassifier.fit]
383
377
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html#sklearn.ensemble.HistGradientBoostingClassifier.fit)
@@ -404,12 +398,14 @@ class HistGradientBoostingClassifier(BaseTransformer):
404
398
 
405
399
  self._snowpark_cols = dataset.select(self.input_cols).columns
406
400
 
407
- # If we are already in a stored procedure, no need to kick off another one.
401
+ # If we are already in a stored procedure, no need to kick off another one.
408
402
  if SNOWML_SPROC_ENV in os.environ:
409
403
  statement_params = telemetry.get_function_usage_statement_params(
410
404
  project=_PROJECT,
411
405
  subproject=_SUBPROJECT,
412
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HistGradientBoostingClassifier.__class__.__name__),
406
+ function_name=telemetry.get_statement_params_full_func_name(
407
+ inspect.currentframe(), HistGradientBoostingClassifier.__class__.__name__
408
+ ),
413
409
  api_calls=[Session.call],
414
410
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
415
411
  )
@@ -430,7 +426,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
430
426
  )
431
427
  self._sklearn_object = model_trainer.train()
432
428
  self._is_fitted = True
433
- self._get_model_signatures(dataset)
429
+ self._generate_model_signatures(dataset)
434
430
  return self
435
431
 
436
432
  def _batch_inference_validate_snowpark(
@@ -506,7 +502,9 @@ class HistGradientBoostingClassifier(BaseTransformer):
506
502
  # when it is classifier, infer the datatype from label columns
507
503
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
508
504
  # Batch inference takes a single expected output column type. Use the first columns type for now.
509
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
505
+ label_cols_signatures = [
506
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
507
+ ]
510
508
  if len(label_cols_signatures) == 0:
511
509
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
512
510
  raise exceptions.SnowflakeMLException(
@@ -514,25 +512,22 @@ class HistGradientBoostingClassifier(BaseTransformer):
514
512
  original_exception=ValueError(error_str),
515
513
  )
516
514
 
517
- expected_type_inferred = convert_sp_to_sf_type(
518
- label_cols_signatures[0].as_snowpark_type()
519
- )
515
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
520
516
 
521
517
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
522
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
518
+ assert isinstance(
519
+ dataset._session, Session
520
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
523
521
 
524
522
  transform_kwargs = dict(
525
- session = dataset._session,
526
- dependencies = self._deps,
527
- drop_input_cols = self._drop_input_cols,
528
- expected_output_cols_type = expected_type_inferred,
523
+ session=dataset._session,
524
+ dependencies=self._deps,
525
+ drop_input_cols=self._drop_input_cols,
526
+ expected_output_cols_type=expected_type_inferred,
529
527
  )
530
528
 
531
529
  elif isinstance(dataset, pd.DataFrame):
532
- transform_kwargs = dict(
533
- snowpark_input_cols = self._snowpark_cols,
534
- drop_input_cols = self._drop_input_cols
535
- )
530
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
536
531
 
537
532
  transform_handlers = ModelTransformerBuilder.build(
538
533
  dataset=dataset,
@@ -572,7 +567,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
572
567
  Transformed dataset.
573
568
  """
574
569
  super()._check_dataset_type(dataset)
575
- inference_method="transform"
570
+ inference_method = "transform"
576
571
 
577
572
  # This dictionary contains optional kwargs for batch inference. These kwargs
578
573
  # are specific to the type of dataset used.
@@ -609,17 +604,14 @@ class HistGradientBoostingClassifier(BaseTransformer):
609
604
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
610
605
 
611
606
  transform_kwargs = dict(
612
- session = dataset._session,
613
- dependencies = self._deps,
614
- drop_input_cols = self._drop_input_cols,
615
- expected_output_cols_type = expected_dtype,
607
+ session=dataset._session,
608
+ dependencies=self._deps,
609
+ drop_input_cols=self._drop_input_cols,
610
+ expected_output_cols_type=expected_dtype,
616
611
  )
617
612
 
618
613
  elif isinstance(dataset, pd.DataFrame):
619
- transform_kwargs = dict(
620
- snowpark_input_cols = self._snowpark_cols,
621
- drop_input_cols = self._drop_input_cols
622
- )
614
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
623
615
 
624
616
  transform_handlers = ModelTransformerBuilder.build(
625
617
  dataset=dataset,
@@ -638,7 +630,11 @@ class HistGradientBoostingClassifier(BaseTransformer):
638
630
  return output_df
639
631
 
640
632
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
641
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
633
+ def fit_predict(
634
+ self,
635
+ dataset: Union[DataFrame, pd.DataFrame],
636
+ output_cols_prefix: str = "fit_predict_",
637
+ ) -> Union[DataFrame, pd.DataFrame]:
642
638
  """ Method not supported for this class.
643
639
 
644
640
 
@@ -663,7 +659,9 @@ class HistGradientBoostingClassifier(BaseTransformer):
663
659
  )
664
660
  output_result, fitted_estimator = model_trainer.train_fit_predict(
665
661
  drop_input_cols=self._drop_input_cols,
666
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
662
+ expected_output_cols_list=(
663
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
664
+ ),
667
665
  )
668
666
  self._sklearn_object = fitted_estimator
669
667
  self._is_fitted = True
@@ -680,6 +678,62 @@ class HistGradientBoostingClassifier(BaseTransformer):
680
678
  assert self._sklearn_object is not None
681
679
  return self._sklearn_object.embedding_
682
680
 
681
+
682
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
683
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
684
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
685
+ """
686
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
687
+ # The following condition is introduced for kneighbors methods, and not used in other methods
688
+ if output_cols:
689
+ output_cols = [
690
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
691
+ for c in output_cols
692
+ ]
693
+ elif getattr(self._sklearn_object, "classes_", None) is None:
694
+ output_cols = [output_cols_prefix]
695
+ elif self._sklearn_object is not None:
696
+ classes = self._sklearn_object.classes_
697
+ if isinstance(classes, numpy.ndarray):
698
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
699
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
700
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
701
+ output_cols = []
702
+ for i, cl in enumerate(classes):
703
+ # For binary classification, there is only one output column for each class
704
+ # ndarray as the two classes are complementary.
705
+ if len(cl) == 2:
706
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
707
+ else:
708
+ output_cols.extend([
709
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
710
+ ])
711
+ else:
712
+ output_cols = []
713
+
714
+ # Make sure column names are valid snowflake identifiers.
715
+ assert output_cols is not None # Make MyPy happy
716
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
717
+
718
+ return rv
719
+
720
+ def _align_expected_output_names(
721
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
722
+ ) -> List[str]:
723
+ # in case the inferred output column names dimension is different
724
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
725
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
726
+ output_df_columns = list(output_df_pd.columns)
727
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
728
+ if self.sample_weight_col:
729
+ output_df_columns_set -= set(self.sample_weight_col)
730
+ # if the dimension of inferred output column names is correct; use it
731
+ if len(expected_output_cols_list) == len(output_df_columns_set):
732
+ return expected_output_cols_list
733
+ # otherwise, use the sklearn estimator's output
734
+ else:
735
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
736
+
683
737
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
684
738
  @telemetry.send_api_usage_telemetry(
685
739
  project=_PROJECT,
@@ -712,24 +766,28 @@ class HistGradientBoostingClassifier(BaseTransformer):
712
766
  # are specific to the type of dataset used.
713
767
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
714
768
 
769
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
770
+
715
771
  if isinstance(dataset, DataFrame):
716
772
  self._deps = self._batch_inference_validate_snowpark(
717
773
  dataset=dataset,
718
774
  inference_method=inference_method,
719
775
  )
720
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
776
+ assert isinstance(
777
+ dataset._session, Session
778
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
721
779
  transform_kwargs = dict(
722
780
  session=dataset._session,
723
781
  dependencies=self._deps,
724
- drop_input_cols = self._drop_input_cols,
782
+ drop_input_cols=self._drop_input_cols,
725
783
  expected_output_cols_type="float",
726
784
  )
785
+ expected_output_cols = self._align_expected_output_names(
786
+ inference_method, dataset, expected_output_cols, output_cols_prefix
787
+ )
727
788
 
728
789
  elif isinstance(dataset, pd.DataFrame):
729
- transform_kwargs = dict(
730
- snowpark_input_cols = self._snowpark_cols,
731
- drop_input_cols = self._drop_input_cols
732
- )
790
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
733
791
 
734
792
  transform_handlers = ModelTransformerBuilder.build(
735
793
  dataset=dataset,
@@ -741,7 +799,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
741
799
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
742
800
  inference_method=inference_method,
743
801
  input_cols=self.input_cols,
744
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
802
+ expected_output_cols=expected_output_cols,
745
803
  **transform_kwargs
746
804
  )
747
805
  return output_df
@@ -773,7 +831,8 @@ class HistGradientBoostingClassifier(BaseTransformer):
773
831
  Output dataset with log probability of the sample for each class in the model.
774
832
  """
775
833
  super()._check_dataset_type(dataset)
776
- inference_method="predict_log_proba"
834
+ inference_method = "predict_log_proba"
835
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
777
836
 
778
837
  # This dictionary contains optional kwargs for batch inference. These kwargs
779
838
  # are specific to the type of dataset used.
@@ -784,18 +843,20 @@ class HistGradientBoostingClassifier(BaseTransformer):
784
843
  dataset=dataset,
785
844
  inference_method=inference_method,
786
845
  )
787
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
846
+ assert isinstance(
847
+ dataset._session, Session
848
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
788
849
  transform_kwargs = dict(
789
850
  session=dataset._session,
790
851
  dependencies=self._deps,
791
- drop_input_cols = self._drop_input_cols,
852
+ drop_input_cols=self._drop_input_cols,
792
853
  expected_output_cols_type="float",
793
854
  )
855
+ expected_output_cols = self._align_expected_output_names(
856
+ inference_method, dataset, expected_output_cols, output_cols_prefix
857
+ )
794
858
  elif isinstance(dataset, pd.DataFrame):
795
- transform_kwargs = dict(
796
- snowpark_input_cols = self._snowpark_cols,
797
- drop_input_cols = self._drop_input_cols
798
- )
859
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
799
860
 
800
861
  transform_handlers = ModelTransformerBuilder.build(
801
862
  dataset=dataset,
@@ -808,7 +869,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
808
869
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
809
870
  inference_method=inference_method,
810
871
  input_cols=self.input_cols,
811
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
872
+ expected_output_cols=expected_output_cols,
812
873
  **transform_kwargs
813
874
  )
814
875
  return output_df
@@ -836,30 +897,34 @@ class HistGradientBoostingClassifier(BaseTransformer):
836
897
  Output dataset with results of the decision function for the samples in input dataset.
837
898
  """
838
899
  super()._check_dataset_type(dataset)
839
- inference_method="decision_function"
900
+ inference_method = "decision_function"
840
901
 
841
902
  # This dictionary contains optional kwargs for batch inference. These kwargs
842
903
  # are specific to the type of dataset used.
843
904
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
844
905
 
906
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
907
+
845
908
  if isinstance(dataset, DataFrame):
846
909
  self._deps = self._batch_inference_validate_snowpark(
847
910
  dataset=dataset,
848
911
  inference_method=inference_method,
849
912
  )
850
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
913
+ assert isinstance(
914
+ dataset._session, Session
915
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
851
916
  transform_kwargs = dict(
852
917
  session=dataset._session,
853
918
  dependencies=self._deps,
854
- drop_input_cols = self._drop_input_cols,
919
+ drop_input_cols=self._drop_input_cols,
855
920
  expected_output_cols_type="float",
856
921
  )
922
+ expected_output_cols = self._align_expected_output_names(
923
+ inference_method, dataset, expected_output_cols, output_cols_prefix
924
+ )
857
925
 
858
926
  elif isinstance(dataset, pd.DataFrame):
859
- transform_kwargs = dict(
860
- snowpark_input_cols = self._snowpark_cols,
861
- drop_input_cols = self._drop_input_cols
862
- )
927
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
863
928
 
864
929
  transform_handlers = ModelTransformerBuilder.build(
865
930
  dataset=dataset,
@@ -872,7 +937,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
872
937
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
873
938
  inference_method=inference_method,
874
939
  input_cols=self.input_cols,
875
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
940
+ expected_output_cols=expected_output_cols,
876
941
  **transform_kwargs
877
942
  )
878
943
  return output_df
@@ -901,12 +966,14 @@ class HistGradientBoostingClassifier(BaseTransformer):
901
966
  Output dataset with probability of the sample for each class in the model.
902
967
  """
903
968
  super()._check_dataset_type(dataset)
904
- inference_method="score_samples"
969
+ inference_method = "score_samples"
905
970
 
906
971
  # This dictionary contains optional kwargs for batch inference. These kwargs
907
972
  # are specific to the type of dataset used.
908
973
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
909
974
 
975
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
976
+
910
977
  if isinstance(dataset, DataFrame):
911
978
  self._deps = self._batch_inference_validate_snowpark(
912
979
  dataset=dataset,
@@ -919,6 +986,9 @@ class HistGradientBoostingClassifier(BaseTransformer):
919
986
  drop_input_cols = self._drop_input_cols,
920
987
  expected_output_cols_type="float",
921
988
  )
989
+ expected_output_cols = self._align_expected_output_names(
990
+ inference_method, dataset, expected_output_cols, output_cols_prefix
991
+ )
922
992
 
923
993
  elif isinstance(dataset, pd.DataFrame):
924
994
  transform_kwargs = dict(
@@ -937,7 +1007,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
937
1007
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
938
1008
  inference_method=inference_method,
939
1009
  input_cols=self.input_cols,
940
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1010
+ expected_output_cols=expected_output_cols,
941
1011
  **transform_kwargs
942
1012
  )
943
1013
  return output_df
@@ -1084,50 +1154,84 @@ class HistGradientBoostingClassifier(BaseTransformer):
1084
1154
  )
1085
1155
  return output_df
1086
1156
 
1157
+
1158
+
1159
+ def to_sklearn(self) -> Any:
1160
+ """Get sklearn.ensemble.HistGradientBoostingClassifier object.
1161
+ """
1162
+ if self._sklearn_object is None:
1163
+ self._sklearn_object = self._create_sklearn_object()
1164
+ return self._sklearn_object
1165
+
1166
+ def to_xgboost(self) -> Any:
1167
+ raise exceptions.SnowflakeMLException(
1168
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1169
+ original_exception=AttributeError(
1170
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1171
+ "to_xgboost()",
1172
+ "to_sklearn()"
1173
+ )
1174
+ ),
1175
+ )
1176
+
1177
+ def to_lightgbm(self) -> Any:
1178
+ raise exceptions.SnowflakeMLException(
1179
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1180
+ original_exception=AttributeError(
1181
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1182
+ "to_lightgbm()",
1183
+ "to_sklearn()"
1184
+ )
1185
+ ),
1186
+ )
1087
1187
 
1088
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1188
+ def _get_dependencies(self) -> List[str]:
1189
+ return self._deps
1190
+
1191
+
1192
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1089
1193
  self._model_signature_dict = dict()
1090
1194
 
1091
1195
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1092
1196
 
1093
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1197
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1094
1198
  outputs: List[BaseFeatureSpec] = []
1095
1199
  if hasattr(self, "predict"):
1096
1200
  # keep mypy happy
1097
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1201
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1098
1202
  # For classifier, the type of predict is the same as the type of label
1099
- if self._sklearn_object._estimator_type == 'classifier':
1100
- # label columns is the desired type for output
1203
+ if self._sklearn_object._estimator_type == "classifier":
1204
+ # label columns is the desired type for output
1101
1205
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1102
1206
  # rename the output columns
1103
1207
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1104
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1105
- ([] if self._drop_input_cols else inputs)
1106
- + outputs)
1208
+ self._model_signature_dict["predict"] = ModelSignature(
1209
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1210
+ )
1107
1211
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1108
1212
  # For outlier models, returns -1 for outliers and 1 for inliers.
1109
- # Clusterer returns int64 cluster labels.
1213
+ # Clusterer returns int64 cluster labels.
1110
1214
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1111
1215
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1112
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1113
- ([] if self._drop_input_cols else inputs)
1114
- + outputs)
1115
-
1216
+ self._model_signature_dict["predict"] = ModelSignature(
1217
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1218
+ )
1219
+
1116
1220
  # For regressor, the type of predict is float64
1117
- elif self._sklearn_object._estimator_type == 'regressor':
1221
+ elif self._sklearn_object._estimator_type == "regressor":
1118
1222
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1119
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1120
- ([] if self._drop_input_cols else inputs)
1121
- + outputs)
1122
-
1223
+ self._model_signature_dict["predict"] = ModelSignature(
1224
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1225
+ )
1226
+
1123
1227
  for prob_func in PROB_FUNCTIONS:
1124
1228
  if hasattr(self, prob_func):
1125
1229
  output_cols_prefix: str = f"{prob_func}_"
1126
1230
  output_column_names = self._get_output_column_names(output_cols_prefix)
1127
1231
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1128
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1129
- ([] if self._drop_input_cols else inputs)
1130
- + outputs)
1232
+ self._model_signature_dict[prob_func] = ModelSignature(
1233
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1234
+ )
1131
1235
 
1132
1236
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1133
1237
  items = list(self._model_signature_dict.items())
@@ -1140,10 +1244,10 @@ class HistGradientBoostingClassifier(BaseTransformer):
1140
1244
  """Returns model signature of current class.
1141
1245
 
1142
1246
  Raises:
1143
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1247
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1144
1248
 
1145
1249
  Returns:
1146
- Dict[str, ModelSignature]: each method and its input output signature
1250
+ Dict with each method and its input output signature
1147
1251
  """
1148
1252
  if self._model_signature_dict is None:
1149
1253
  raise exceptions.SnowflakeMLException(
@@ -1151,35 +1255,3 @@ class HistGradientBoostingClassifier(BaseTransformer):
1151
1255
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1152
1256
  )
1153
1257
  return self._model_signature_dict
1154
-
1155
- def to_sklearn(self) -> Any:
1156
- """Get sklearn.ensemble.HistGradientBoostingClassifier object.
1157
- """
1158
- if self._sklearn_object is None:
1159
- self._sklearn_object = self._create_sklearn_object()
1160
- return self._sklearn_object
1161
-
1162
- def to_xgboost(self) -> Any:
1163
- raise exceptions.SnowflakeMLException(
1164
- error_code=error_codes.METHOD_NOT_ALLOWED,
1165
- original_exception=AttributeError(
1166
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1167
- "to_xgboost()",
1168
- "to_sklearn()"
1169
- )
1170
- ),
1171
- )
1172
-
1173
- def to_lightgbm(self) -> Any:
1174
- raise exceptions.SnowflakeMLException(
1175
- error_code=error_codes.METHOD_NOT_ALLOWED,
1176
- original_exception=AttributeError(
1177
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1178
- "to_lightgbm()",
1179
- "to_sklearn()"
1180
- )
1181
- ),
1182
- )
1183
-
1184
- def _get_dependencies(self) -> List[str]:
1185
- return self._deps