snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -276,12 +275,7 @@ class BaggingRegressor(BaseTransformer):
276
275
  )
277
276
  return selected_cols
278
277
 
279
- @telemetry.send_api_usage_telemetry(
280
- project=_PROJECT,
281
- subproject=_SUBPROJECT,
282
- custom_tags=dict([("autogen", True)]),
283
- )
284
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BaggingRegressor":
278
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BaggingRegressor":
285
279
  """Build a Bagging ensemble of estimators from the training set (X, y)
286
280
  For more details on this function, see [sklearn.ensemble.BaggingRegressor.fit]
287
281
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html#sklearn.ensemble.BaggingRegressor.fit)
@@ -308,12 +302,14 @@ class BaggingRegressor(BaseTransformer):
308
302
 
309
303
  self._snowpark_cols = dataset.select(self.input_cols).columns
310
304
 
311
- # If we are already in a stored procedure, no need to kick off another one.
305
+ # If we are already in a stored procedure, no need to kick off another one.
312
306
  if SNOWML_SPROC_ENV in os.environ:
313
307
  statement_params = telemetry.get_function_usage_statement_params(
314
308
  project=_PROJECT,
315
309
  subproject=_SUBPROJECT,
316
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BaggingRegressor.__class__.__name__),
310
+ function_name=telemetry.get_statement_params_full_func_name(
311
+ inspect.currentframe(), BaggingRegressor.__class__.__name__
312
+ ),
317
313
  api_calls=[Session.call],
318
314
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
319
315
  )
@@ -334,7 +330,7 @@ class BaggingRegressor(BaseTransformer):
334
330
  )
335
331
  self._sklearn_object = model_trainer.train()
336
332
  self._is_fitted = True
337
- self._get_model_signatures(dataset)
333
+ self._generate_model_signatures(dataset)
338
334
  return self
339
335
 
340
336
  def _batch_inference_validate_snowpark(
@@ -410,7 +406,9 @@ class BaggingRegressor(BaseTransformer):
410
406
  # when it is classifier, infer the datatype from label columns
411
407
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
412
408
  # Batch inference takes a single expected output column type. Use the first columns type for now.
413
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
409
+ label_cols_signatures = [
410
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
411
+ ]
414
412
  if len(label_cols_signatures) == 0:
415
413
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
416
414
  raise exceptions.SnowflakeMLException(
@@ -418,25 +416,22 @@ class BaggingRegressor(BaseTransformer):
418
416
  original_exception=ValueError(error_str),
419
417
  )
420
418
 
421
- expected_type_inferred = convert_sp_to_sf_type(
422
- label_cols_signatures[0].as_snowpark_type()
423
- )
419
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
424
420
 
425
421
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
426
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
422
+ assert isinstance(
423
+ dataset._session, Session
424
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
427
425
 
428
426
  transform_kwargs = dict(
429
- session = dataset._session,
430
- dependencies = self._deps,
431
- drop_input_cols = self._drop_input_cols,
432
- expected_output_cols_type = expected_type_inferred,
427
+ session=dataset._session,
428
+ dependencies=self._deps,
429
+ drop_input_cols=self._drop_input_cols,
430
+ expected_output_cols_type=expected_type_inferred,
433
431
  )
434
432
 
435
433
  elif isinstance(dataset, pd.DataFrame):
436
- transform_kwargs = dict(
437
- snowpark_input_cols = self._snowpark_cols,
438
- drop_input_cols = self._drop_input_cols
439
- )
434
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
440
435
 
441
436
  transform_handlers = ModelTransformerBuilder.build(
442
437
  dataset=dataset,
@@ -476,7 +471,7 @@ class BaggingRegressor(BaseTransformer):
476
471
  Transformed dataset.
477
472
  """
478
473
  super()._check_dataset_type(dataset)
479
- inference_method="transform"
474
+ inference_method = "transform"
480
475
 
481
476
  # This dictionary contains optional kwargs for batch inference. These kwargs
482
477
  # are specific to the type of dataset used.
@@ -513,17 +508,14 @@ class BaggingRegressor(BaseTransformer):
513
508
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
514
509
 
515
510
  transform_kwargs = dict(
516
- session = dataset._session,
517
- dependencies = self._deps,
518
- drop_input_cols = self._drop_input_cols,
519
- expected_output_cols_type = expected_dtype,
511
+ session=dataset._session,
512
+ dependencies=self._deps,
513
+ drop_input_cols=self._drop_input_cols,
514
+ expected_output_cols_type=expected_dtype,
520
515
  )
521
516
 
522
517
  elif isinstance(dataset, pd.DataFrame):
523
- transform_kwargs = dict(
524
- snowpark_input_cols = self._snowpark_cols,
525
- drop_input_cols = self._drop_input_cols
526
- )
518
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
527
519
 
528
520
  transform_handlers = ModelTransformerBuilder.build(
529
521
  dataset=dataset,
@@ -542,7 +534,11 @@ class BaggingRegressor(BaseTransformer):
542
534
  return output_df
543
535
 
544
536
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
545
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
537
+ def fit_predict(
538
+ self,
539
+ dataset: Union[DataFrame, pd.DataFrame],
540
+ output_cols_prefix: str = "fit_predict_",
541
+ ) -> Union[DataFrame, pd.DataFrame]:
546
542
  """ Method not supported for this class.
547
543
 
548
544
 
@@ -567,7 +563,9 @@ class BaggingRegressor(BaseTransformer):
567
563
  )
568
564
  output_result, fitted_estimator = model_trainer.train_fit_predict(
569
565
  drop_input_cols=self._drop_input_cols,
570
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
566
+ expected_output_cols_list=(
567
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
568
+ ),
571
569
  )
572
570
  self._sklearn_object = fitted_estimator
573
571
  self._is_fitted = True
@@ -584,6 +582,62 @@ class BaggingRegressor(BaseTransformer):
584
582
  assert self._sklearn_object is not None
585
583
  return self._sklearn_object.embedding_
586
584
 
585
+
586
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
587
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
588
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
589
+ """
590
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
591
+ # The following condition is introduced for kneighbors methods, and not used in other methods
592
+ if output_cols:
593
+ output_cols = [
594
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
595
+ for c in output_cols
596
+ ]
597
+ elif getattr(self._sklearn_object, "classes_", None) is None:
598
+ output_cols = [output_cols_prefix]
599
+ elif self._sklearn_object is not None:
600
+ classes = self._sklearn_object.classes_
601
+ if isinstance(classes, numpy.ndarray):
602
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
603
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
604
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
605
+ output_cols = []
606
+ for i, cl in enumerate(classes):
607
+ # For binary classification, there is only one output column for each class
608
+ # ndarray as the two classes are complementary.
609
+ if len(cl) == 2:
610
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
611
+ else:
612
+ output_cols.extend([
613
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
614
+ ])
615
+ else:
616
+ output_cols = []
617
+
618
+ # Make sure column names are valid snowflake identifiers.
619
+ assert output_cols is not None # Make MyPy happy
620
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
621
+
622
+ return rv
623
+
624
+ def _align_expected_output_names(
625
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
626
+ ) -> List[str]:
627
+ # in case the inferred output column names dimension is different
628
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
629
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
630
+ output_df_columns = list(output_df_pd.columns)
631
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
632
+ if self.sample_weight_col:
633
+ output_df_columns_set -= set(self.sample_weight_col)
634
+ # if the dimension of inferred output column names is correct; use it
635
+ if len(expected_output_cols_list) == len(output_df_columns_set):
636
+ return expected_output_cols_list
637
+ # otherwise, use the sklearn estimator's output
638
+ else:
639
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
640
+
587
641
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
588
642
  @telemetry.send_api_usage_telemetry(
589
643
  project=_PROJECT,
@@ -614,24 +668,28 @@ class BaggingRegressor(BaseTransformer):
614
668
  # are specific to the type of dataset used.
615
669
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
616
670
 
671
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
672
+
617
673
  if isinstance(dataset, DataFrame):
618
674
  self._deps = self._batch_inference_validate_snowpark(
619
675
  dataset=dataset,
620
676
  inference_method=inference_method,
621
677
  )
622
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
678
+ assert isinstance(
679
+ dataset._session, Session
680
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
623
681
  transform_kwargs = dict(
624
682
  session=dataset._session,
625
683
  dependencies=self._deps,
626
- drop_input_cols = self._drop_input_cols,
684
+ drop_input_cols=self._drop_input_cols,
627
685
  expected_output_cols_type="float",
628
686
  )
687
+ expected_output_cols = self._align_expected_output_names(
688
+ inference_method, dataset, expected_output_cols, output_cols_prefix
689
+ )
629
690
 
630
691
  elif isinstance(dataset, pd.DataFrame):
631
- transform_kwargs = dict(
632
- snowpark_input_cols = self._snowpark_cols,
633
- drop_input_cols = self._drop_input_cols
634
- )
692
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
635
693
 
636
694
  transform_handlers = ModelTransformerBuilder.build(
637
695
  dataset=dataset,
@@ -643,7 +701,7 @@ class BaggingRegressor(BaseTransformer):
643
701
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
644
702
  inference_method=inference_method,
645
703
  input_cols=self.input_cols,
646
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
704
+ expected_output_cols=expected_output_cols,
647
705
  **transform_kwargs
648
706
  )
649
707
  return output_df
@@ -673,7 +731,8 @@ class BaggingRegressor(BaseTransformer):
673
731
  Output dataset with log probability of the sample for each class in the model.
674
732
  """
675
733
  super()._check_dataset_type(dataset)
676
- inference_method="predict_log_proba"
734
+ inference_method = "predict_log_proba"
735
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
677
736
 
678
737
  # This dictionary contains optional kwargs for batch inference. These kwargs
679
738
  # are specific to the type of dataset used.
@@ -684,18 +743,20 @@ class BaggingRegressor(BaseTransformer):
684
743
  dataset=dataset,
685
744
  inference_method=inference_method,
686
745
  )
687
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
746
+ assert isinstance(
747
+ dataset._session, Session
748
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
688
749
  transform_kwargs = dict(
689
750
  session=dataset._session,
690
751
  dependencies=self._deps,
691
- drop_input_cols = self._drop_input_cols,
752
+ drop_input_cols=self._drop_input_cols,
692
753
  expected_output_cols_type="float",
693
754
  )
755
+ expected_output_cols = self._align_expected_output_names(
756
+ inference_method, dataset, expected_output_cols, output_cols_prefix
757
+ )
694
758
  elif isinstance(dataset, pd.DataFrame):
695
- transform_kwargs = dict(
696
- snowpark_input_cols = self._snowpark_cols,
697
- drop_input_cols = self._drop_input_cols
698
- )
759
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
699
760
 
700
761
  transform_handlers = ModelTransformerBuilder.build(
701
762
  dataset=dataset,
@@ -708,7 +769,7 @@ class BaggingRegressor(BaseTransformer):
708
769
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
709
770
  inference_method=inference_method,
710
771
  input_cols=self.input_cols,
711
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
772
+ expected_output_cols=expected_output_cols,
712
773
  **transform_kwargs
713
774
  )
714
775
  return output_df
@@ -734,30 +795,34 @@ class BaggingRegressor(BaseTransformer):
734
795
  Output dataset with results of the decision function for the samples in input dataset.
735
796
  """
736
797
  super()._check_dataset_type(dataset)
737
- inference_method="decision_function"
798
+ inference_method = "decision_function"
738
799
 
739
800
  # This dictionary contains optional kwargs for batch inference. These kwargs
740
801
  # are specific to the type of dataset used.
741
802
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
742
803
 
804
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
805
+
743
806
  if isinstance(dataset, DataFrame):
744
807
  self._deps = self._batch_inference_validate_snowpark(
745
808
  dataset=dataset,
746
809
  inference_method=inference_method,
747
810
  )
748
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
811
+ assert isinstance(
812
+ dataset._session, Session
813
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
749
814
  transform_kwargs = dict(
750
815
  session=dataset._session,
751
816
  dependencies=self._deps,
752
- drop_input_cols = self._drop_input_cols,
817
+ drop_input_cols=self._drop_input_cols,
753
818
  expected_output_cols_type="float",
754
819
  )
820
+ expected_output_cols = self._align_expected_output_names(
821
+ inference_method, dataset, expected_output_cols, output_cols_prefix
822
+ )
755
823
 
756
824
  elif isinstance(dataset, pd.DataFrame):
757
- transform_kwargs = dict(
758
- snowpark_input_cols = self._snowpark_cols,
759
- drop_input_cols = self._drop_input_cols
760
- )
825
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
761
826
 
762
827
  transform_handlers = ModelTransformerBuilder.build(
763
828
  dataset=dataset,
@@ -770,7 +835,7 @@ class BaggingRegressor(BaseTransformer):
770
835
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
771
836
  inference_method=inference_method,
772
837
  input_cols=self.input_cols,
773
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
838
+ expected_output_cols=expected_output_cols,
774
839
  **transform_kwargs
775
840
  )
776
841
  return output_df
@@ -799,12 +864,14 @@ class BaggingRegressor(BaseTransformer):
799
864
  Output dataset with probability of the sample for each class in the model.
800
865
  """
801
866
  super()._check_dataset_type(dataset)
802
- inference_method="score_samples"
867
+ inference_method = "score_samples"
803
868
 
804
869
  # This dictionary contains optional kwargs for batch inference. These kwargs
805
870
  # are specific to the type of dataset used.
806
871
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
807
872
 
873
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
874
+
808
875
  if isinstance(dataset, DataFrame):
809
876
  self._deps = self._batch_inference_validate_snowpark(
810
877
  dataset=dataset,
@@ -817,6 +884,9 @@ class BaggingRegressor(BaseTransformer):
817
884
  drop_input_cols = self._drop_input_cols,
818
885
  expected_output_cols_type="float",
819
886
  )
887
+ expected_output_cols = self._align_expected_output_names(
888
+ inference_method, dataset, expected_output_cols, output_cols_prefix
889
+ )
820
890
 
821
891
  elif isinstance(dataset, pd.DataFrame):
822
892
  transform_kwargs = dict(
@@ -835,7 +905,7 @@ class BaggingRegressor(BaseTransformer):
835
905
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
836
906
  inference_method=inference_method,
837
907
  input_cols=self.input_cols,
838
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
908
+ expected_output_cols=expected_output_cols,
839
909
  **transform_kwargs
840
910
  )
841
911
  return output_df
@@ -982,50 +1052,84 @@ class BaggingRegressor(BaseTransformer):
982
1052
  )
983
1053
  return output_df
984
1054
 
1055
+
1056
+
1057
+ def to_sklearn(self) -> Any:
1058
+ """Get sklearn.ensemble.BaggingRegressor object.
1059
+ """
1060
+ if self._sklearn_object is None:
1061
+ self._sklearn_object = self._create_sklearn_object()
1062
+ return self._sklearn_object
1063
+
1064
+ def to_xgboost(self) -> Any:
1065
+ raise exceptions.SnowflakeMLException(
1066
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1067
+ original_exception=AttributeError(
1068
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1069
+ "to_xgboost()",
1070
+ "to_sklearn()"
1071
+ )
1072
+ ),
1073
+ )
1074
+
1075
+ def to_lightgbm(self) -> Any:
1076
+ raise exceptions.SnowflakeMLException(
1077
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1078
+ original_exception=AttributeError(
1079
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1080
+ "to_lightgbm()",
1081
+ "to_sklearn()"
1082
+ )
1083
+ ),
1084
+ )
985
1085
 
986
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1086
+ def _get_dependencies(self) -> List[str]:
1087
+ return self._deps
1088
+
1089
+
1090
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
987
1091
  self._model_signature_dict = dict()
988
1092
 
989
1093
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
990
1094
 
991
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1095
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
992
1096
  outputs: List[BaseFeatureSpec] = []
993
1097
  if hasattr(self, "predict"):
994
1098
  # keep mypy happy
995
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1099
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
996
1100
  # For classifier, the type of predict is the same as the type of label
997
- if self._sklearn_object._estimator_type == 'classifier':
998
- # label columns is the desired type for output
1101
+ if self._sklearn_object._estimator_type == "classifier":
1102
+ # label columns is the desired type for output
999
1103
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1000
1104
  # rename the output columns
1001
1105
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1002
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1106
+ self._model_signature_dict["predict"] = ModelSignature(
1107
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1108
+ )
1005
1109
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1006
1110
  # For outlier models, returns -1 for outliers and 1 for inliers.
1007
- # Clusterer returns int64 cluster labels.
1111
+ # Clusterer returns int64 cluster labels.
1008
1112
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1009
1113
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1010
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1011
- ([] if self._drop_input_cols else inputs)
1012
- + outputs)
1013
-
1114
+ self._model_signature_dict["predict"] = ModelSignature(
1115
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1116
+ )
1117
+
1014
1118
  # For regressor, the type of predict is float64
1015
- elif self._sklearn_object._estimator_type == 'regressor':
1119
+ elif self._sklearn_object._estimator_type == "regressor":
1016
1120
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1017
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1018
- ([] if self._drop_input_cols else inputs)
1019
- + outputs)
1020
-
1121
+ self._model_signature_dict["predict"] = ModelSignature(
1122
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1123
+ )
1124
+
1021
1125
  for prob_func in PROB_FUNCTIONS:
1022
1126
  if hasattr(self, prob_func):
1023
1127
  output_cols_prefix: str = f"{prob_func}_"
1024
1128
  output_column_names = self._get_output_column_names(output_cols_prefix)
1025
1129
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1026
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1027
- ([] if self._drop_input_cols else inputs)
1028
- + outputs)
1130
+ self._model_signature_dict[prob_func] = ModelSignature(
1131
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1132
+ )
1029
1133
 
1030
1134
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1031
1135
  items = list(self._model_signature_dict.items())
@@ -1038,10 +1142,10 @@ class BaggingRegressor(BaseTransformer):
1038
1142
  """Returns model signature of current class.
1039
1143
 
1040
1144
  Raises:
1041
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1145
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1042
1146
 
1043
1147
  Returns:
1044
- Dict[str, ModelSignature]: each method and its input output signature
1148
+ Dict with each method and its input output signature
1045
1149
  """
1046
1150
  if self._model_signature_dict is None:
1047
1151
  raise exceptions.SnowflakeMLException(
@@ -1049,35 +1153,3 @@ class BaggingRegressor(BaseTransformer):
1049
1153
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1050
1154
  )
1051
1155
  return self._model_signature_dict
1052
-
1053
- def to_sklearn(self) -> Any:
1054
- """Get sklearn.ensemble.BaggingRegressor object.
1055
- """
1056
- if self._sklearn_object is None:
1057
- self._sklearn_object = self._create_sklearn_object()
1058
- return self._sklearn_object
1059
-
1060
- def to_xgboost(self) -> Any:
1061
- raise exceptions.SnowflakeMLException(
1062
- error_code=error_codes.METHOD_NOT_ALLOWED,
1063
- original_exception=AttributeError(
1064
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1065
- "to_xgboost()",
1066
- "to_sklearn()"
1067
- )
1068
- ),
1069
- )
1070
-
1071
- def to_lightgbm(self) -> Any:
1072
- raise exceptions.SnowflakeMLException(
1073
- error_code=error_codes.METHOD_NOT_ALLOWED,
1074
- original_exception=AttributeError(
1075
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1076
- "to_lightgbm()",
1077
- "to_sklearn()"
1078
- )
1079
- ),
1080
- )
1081
-
1082
- def _get_dependencies(self) -> List[str]:
1083
- return self._deps