snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -210,12 +209,7 @@ class OneVsOneClassifier(BaseTransformer):
210
209
  )
211
210
  return selected_cols
212
211
 
213
- @telemetry.send_api_usage_telemetry(
214
- project=_PROJECT,
215
- subproject=_SUBPROJECT,
216
- custom_tags=dict([("autogen", True)]),
217
- )
218
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OneVsOneClassifier":
212
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OneVsOneClassifier":
219
213
  """Fit underlying estimators
220
214
  For more details on this function, see [sklearn.multiclass.OneVsOneClassifier.fit]
221
215
  (https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsOneClassifier.html#sklearn.multiclass.OneVsOneClassifier.fit)
@@ -242,12 +236,14 @@ class OneVsOneClassifier(BaseTransformer):
242
236
 
243
237
  self._snowpark_cols = dataset.select(self.input_cols).columns
244
238
 
245
- # If we are already in a stored procedure, no need to kick off another one.
239
+ # If we are already in a stored procedure, no need to kick off another one.
246
240
  if SNOWML_SPROC_ENV in os.environ:
247
241
  statement_params = telemetry.get_function_usage_statement_params(
248
242
  project=_PROJECT,
249
243
  subproject=_SUBPROJECT,
250
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OneVsOneClassifier.__class__.__name__),
244
+ function_name=telemetry.get_statement_params_full_func_name(
245
+ inspect.currentframe(), OneVsOneClassifier.__class__.__name__
246
+ ),
251
247
  api_calls=[Session.call],
252
248
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
253
249
  )
@@ -268,7 +264,7 @@ class OneVsOneClassifier(BaseTransformer):
268
264
  )
269
265
  self._sklearn_object = model_trainer.train()
270
266
  self._is_fitted = True
271
- self._get_model_signatures(dataset)
267
+ self._generate_model_signatures(dataset)
272
268
  return self
273
269
 
274
270
  def _batch_inference_validate_snowpark(
@@ -344,7 +340,9 @@ class OneVsOneClassifier(BaseTransformer):
344
340
  # when it is classifier, infer the datatype from label columns
345
341
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
346
342
  # Batch inference takes a single expected output column type. Use the first columns type for now.
347
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
343
+ label_cols_signatures = [
344
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
345
+ ]
348
346
  if len(label_cols_signatures) == 0:
349
347
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
350
348
  raise exceptions.SnowflakeMLException(
@@ -352,25 +350,22 @@ class OneVsOneClassifier(BaseTransformer):
352
350
  original_exception=ValueError(error_str),
353
351
  )
354
352
 
355
- expected_type_inferred = convert_sp_to_sf_type(
356
- label_cols_signatures[0].as_snowpark_type()
357
- )
353
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
358
354
 
359
355
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
360
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
356
+ assert isinstance(
357
+ dataset._session, Session
358
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
361
359
 
362
360
  transform_kwargs = dict(
363
- session = dataset._session,
364
- dependencies = self._deps,
365
- drop_input_cols = self._drop_input_cols,
366
- expected_output_cols_type = expected_type_inferred,
361
+ session=dataset._session,
362
+ dependencies=self._deps,
363
+ drop_input_cols=self._drop_input_cols,
364
+ expected_output_cols_type=expected_type_inferred,
367
365
  )
368
366
 
369
367
  elif isinstance(dataset, pd.DataFrame):
370
- transform_kwargs = dict(
371
- snowpark_input_cols = self._snowpark_cols,
372
- drop_input_cols = self._drop_input_cols
373
- )
368
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
374
369
 
375
370
  transform_handlers = ModelTransformerBuilder.build(
376
371
  dataset=dataset,
@@ -410,7 +405,7 @@ class OneVsOneClassifier(BaseTransformer):
410
405
  Transformed dataset.
411
406
  """
412
407
  super()._check_dataset_type(dataset)
413
- inference_method="transform"
408
+ inference_method = "transform"
414
409
 
415
410
  # This dictionary contains optional kwargs for batch inference. These kwargs
416
411
  # are specific to the type of dataset used.
@@ -447,17 +442,14 @@ class OneVsOneClassifier(BaseTransformer):
447
442
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
448
443
 
449
444
  transform_kwargs = dict(
450
- session = dataset._session,
451
- dependencies = self._deps,
452
- drop_input_cols = self._drop_input_cols,
453
- expected_output_cols_type = expected_dtype,
445
+ session=dataset._session,
446
+ dependencies=self._deps,
447
+ drop_input_cols=self._drop_input_cols,
448
+ expected_output_cols_type=expected_dtype,
454
449
  )
455
450
 
456
451
  elif isinstance(dataset, pd.DataFrame):
457
- transform_kwargs = dict(
458
- snowpark_input_cols = self._snowpark_cols,
459
- drop_input_cols = self._drop_input_cols
460
- )
452
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
461
453
 
462
454
  transform_handlers = ModelTransformerBuilder.build(
463
455
  dataset=dataset,
@@ -476,7 +468,11 @@ class OneVsOneClassifier(BaseTransformer):
476
468
  return output_df
477
469
 
478
470
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
479
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
471
+ def fit_predict(
472
+ self,
473
+ dataset: Union[DataFrame, pd.DataFrame],
474
+ output_cols_prefix: str = "fit_predict_",
475
+ ) -> Union[DataFrame, pd.DataFrame]:
480
476
  """ Method not supported for this class.
481
477
 
482
478
 
@@ -501,7 +497,9 @@ class OneVsOneClassifier(BaseTransformer):
501
497
  )
502
498
  output_result, fitted_estimator = model_trainer.train_fit_predict(
503
499
  drop_input_cols=self._drop_input_cols,
504
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
500
+ expected_output_cols_list=(
501
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
502
+ ),
505
503
  )
506
504
  self._sklearn_object = fitted_estimator
507
505
  self._is_fitted = True
@@ -518,6 +516,62 @@ class OneVsOneClassifier(BaseTransformer):
518
516
  assert self._sklearn_object is not None
519
517
  return self._sklearn_object.embedding_
520
518
 
519
+
520
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
521
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
522
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
523
+ """
524
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
525
+ # The following condition is introduced for kneighbors methods, and not used in other methods
526
+ if output_cols:
527
+ output_cols = [
528
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
529
+ for c in output_cols
530
+ ]
531
+ elif getattr(self._sklearn_object, "classes_", None) is None:
532
+ output_cols = [output_cols_prefix]
533
+ elif self._sklearn_object is not None:
534
+ classes = self._sklearn_object.classes_
535
+ if isinstance(classes, numpy.ndarray):
536
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
537
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
538
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
539
+ output_cols = []
540
+ for i, cl in enumerate(classes):
541
+ # For binary classification, there is only one output column for each class
542
+ # ndarray as the two classes are complementary.
543
+ if len(cl) == 2:
544
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
545
+ else:
546
+ output_cols.extend([
547
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
548
+ ])
549
+ else:
550
+ output_cols = []
551
+
552
+ # Make sure column names are valid snowflake identifiers.
553
+ assert output_cols is not None # Make MyPy happy
554
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
555
+
556
+ return rv
557
+
558
+ def _align_expected_output_names(
559
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
560
+ ) -> List[str]:
561
+ # in case the inferred output column names dimension is different
562
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
563
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
564
+ output_df_columns = list(output_df_pd.columns)
565
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
566
+ if self.sample_weight_col:
567
+ output_df_columns_set -= set(self.sample_weight_col)
568
+ # if the dimension of inferred output column names is correct; use it
569
+ if len(expected_output_cols_list) == len(output_df_columns_set):
570
+ return expected_output_cols_list
571
+ # otherwise, use the sklearn estimator's output
572
+ else:
573
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
574
+
521
575
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
522
576
  @telemetry.send_api_usage_telemetry(
523
577
  project=_PROJECT,
@@ -548,24 +602,28 @@ class OneVsOneClassifier(BaseTransformer):
548
602
  # are specific to the type of dataset used.
549
603
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
550
604
 
605
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
606
+
551
607
  if isinstance(dataset, DataFrame):
552
608
  self._deps = self._batch_inference_validate_snowpark(
553
609
  dataset=dataset,
554
610
  inference_method=inference_method,
555
611
  )
556
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
612
+ assert isinstance(
613
+ dataset._session, Session
614
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
557
615
  transform_kwargs = dict(
558
616
  session=dataset._session,
559
617
  dependencies=self._deps,
560
- drop_input_cols = self._drop_input_cols,
618
+ drop_input_cols=self._drop_input_cols,
561
619
  expected_output_cols_type="float",
562
620
  )
621
+ expected_output_cols = self._align_expected_output_names(
622
+ inference_method, dataset, expected_output_cols, output_cols_prefix
623
+ )
563
624
 
564
625
  elif isinstance(dataset, pd.DataFrame):
565
- transform_kwargs = dict(
566
- snowpark_input_cols = self._snowpark_cols,
567
- drop_input_cols = self._drop_input_cols
568
- )
626
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
569
627
 
570
628
  transform_handlers = ModelTransformerBuilder.build(
571
629
  dataset=dataset,
@@ -577,7 +635,7 @@ class OneVsOneClassifier(BaseTransformer):
577
635
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
578
636
  inference_method=inference_method,
579
637
  input_cols=self.input_cols,
580
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
638
+ expected_output_cols=expected_output_cols,
581
639
  **transform_kwargs
582
640
  )
583
641
  return output_df
@@ -607,7 +665,8 @@ class OneVsOneClassifier(BaseTransformer):
607
665
  Output dataset with log probability of the sample for each class in the model.
608
666
  """
609
667
  super()._check_dataset_type(dataset)
610
- inference_method="predict_log_proba"
668
+ inference_method = "predict_log_proba"
669
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
611
670
 
612
671
  # This dictionary contains optional kwargs for batch inference. These kwargs
613
672
  # are specific to the type of dataset used.
@@ -618,18 +677,20 @@ class OneVsOneClassifier(BaseTransformer):
618
677
  dataset=dataset,
619
678
  inference_method=inference_method,
620
679
  )
621
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
680
+ assert isinstance(
681
+ dataset._session, Session
682
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
622
683
  transform_kwargs = dict(
623
684
  session=dataset._session,
624
685
  dependencies=self._deps,
625
- drop_input_cols = self._drop_input_cols,
686
+ drop_input_cols=self._drop_input_cols,
626
687
  expected_output_cols_type="float",
627
688
  )
689
+ expected_output_cols = self._align_expected_output_names(
690
+ inference_method, dataset, expected_output_cols, output_cols_prefix
691
+ )
628
692
  elif isinstance(dataset, pd.DataFrame):
629
- transform_kwargs = dict(
630
- snowpark_input_cols = self._snowpark_cols,
631
- drop_input_cols = self._drop_input_cols
632
- )
693
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
633
694
 
634
695
  transform_handlers = ModelTransformerBuilder.build(
635
696
  dataset=dataset,
@@ -642,7 +703,7 @@ class OneVsOneClassifier(BaseTransformer):
642
703
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
643
704
  inference_method=inference_method,
644
705
  input_cols=self.input_cols,
645
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
706
+ expected_output_cols=expected_output_cols,
646
707
  **transform_kwargs
647
708
  )
648
709
  return output_df
@@ -670,30 +731,34 @@ class OneVsOneClassifier(BaseTransformer):
670
731
  Output dataset with results of the decision function for the samples in input dataset.
671
732
  """
672
733
  super()._check_dataset_type(dataset)
673
- inference_method="decision_function"
734
+ inference_method = "decision_function"
674
735
 
675
736
  # This dictionary contains optional kwargs for batch inference. These kwargs
676
737
  # are specific to the type of dataset used.
677
738
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
678
739
 
740
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
741
+
679
742
  if isinstance(dataset, DataFrame):
680
743
  self._deps = self._batch_inference_validate_snowpark(
681
744
  dataset=dataset,
682
745
  inference_method=inference_method,
683
746
  )
684
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
747
+ assert isinstance(
748
+ dataset._session, Session
749
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
685
750
  transform_kwargs = dict(
686
751
  session=dataset._session,
687
752
  dependencies=self._deps,
688
- drop_input_cols = self._drop_input_cols,
753
+ drop_input_cols=self._drop_input_cols,
689
754
  expected_output_cols_type="float",
690
755
  )
756
+ expected_output_cols = self._align_expected_output_names(
757
+ inference_method, dataset, expected_output_cols, output_cols_prefix
758
+ )
691
759
 
692
760
  elif isinstance(dataset, pd.DataFrame):
693
- transform_kwargs = dict(
694
- snowpark_input_cols = self._snowpark_cols,
695
- drop_input_cols = self._drop_input_cols
696
- )
761
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
697
762
 
698
763
  transform_handlers = ModelTransformerBuilder.build(
699
764
  dataset=dataset,
@@ -706,7 +771,7 @@ class OneVsOneClassifier(BaseTransformer):
706
771
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
707
772
  inference_method=inference_method,
708
773
  input_cols=self.input_cols,
709
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
774
+ expected_output_cols=expected_output_cols,
710
775
  **transform_kwargs
711
776
  )
712
777
  return output_df
@@ -735,12 +800,14 @@ class OneVsOneClassifier(BaseTransformer):
735
800
  Output dataset with probability of the sample for each class in the model.
736
801
  """
737
802
  super()._check_dataset_type(dataset)
738
- inference_method="score_samples"
803
+ inference_method = "score_samples"
739
804
 
740
805
  # This dictionary contains optional kwargs for batch inference. These kwargs
741
806
  # are specific to the type of dataset used.
742
807
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
743
808
 
809
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
810
+
744
811
  if isinstance(dataset, DataFrame):
745
812
  self._deps = self._batch_inference_validate_snowpark(
746
813
  dataset=dataset,
@@ -753,6 +820,9 @@ class OneVsOneClassifier(BaseTransformer):
753
820
  drop_input_cols = self._drop_input_cols,
754
821
  expected_output_cols_type="float",
755
822
  )
823
+ expected_output_cols = self._align_expected_output_names(
824
+ inference_method, dataset, expected_output_cols, output_cols_prefix
825
+ )
756
826
 
757
827
  elif isinstance(dataset, pd.DataFrame):
758
828
  transform_kwargs = dict(
@@ -771,7 +841,7 @@ class OneVsOneClassifier(BaseTransformer):
771
841
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
772
842
  inference_method=inference_method,
773
843
  input_cols=self.input_cols,
774
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
844
+ expected_output_cols=expected_output_cols,
775
845
  **transform_kwargs
776
846
  )
777
847
  return output_df
@@ -918,50 +988,84 @@ class OneVsOneClassifier(BaseTransformer):
918
988
  )
919
989
  return output_df
920
990
 
991
+
992
+
993
+ def to_sklearn(self) -> Any:
994
+ """Get sklearn.multiclass.OneVsOneClassifier object.
995
+ """
996
+ if self._sklearn_object is None:
997
+ self._sklearn_object = self._create_sklearn_object()
998
+ return self._sklearn_object
999
+
1000
+ def to_xgboost(self) -> Any:
1001
+ raise exceptions.SnowflakeMLException(
1002
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1003
+ original_exception=AttributeError(
1004
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1005
+ "to_xgboost()",
1006
+ "to_sklearn()"
1007
+ )
1008
+ ),
1009
+ )
1010
+
1011
+ def to_lightgbm(self) -> Any:
1012
+ raise exceptions.SnowflakeMLException(
1013
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1014
+ original_exception=AttributeError(
1015
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1016
+ "to_lightgbm()",
1017
+ "to_sklearn()"
1018
+ )
1019
+ ),
1020
+ )
921
1021
 
922
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1022
+ def _get_dependencies(self) -> List[str]:
1023
+ return self._deps
1024
+
1025
+
1026
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
923
1027
  self._model_signature_dict = dict()
924
1028
 
925
1029
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
926
1030
 
927
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1031
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
928
1032
  outputs: List[BaseFeatureSpec] = []
929
1033
  if hasattr(self, "predict"):
930
1034
  # keep mypy happy
931
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1035
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
932
1036
  # For classifier, the type of predict is the same as the type of label
933
- if self._sklearn_object._estimator_type == 'classifier':
934
- # label columns is the desired type for output
1037
+ if self._sklearn_object._estimator_type == "classifier":
1038
+ # label columns is the desired type for output
935
1039
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
936
1040
  # rename the output columns
937
1041
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
938
- self._model_signature_dict["predict"] = ModelSignature(inputs,
939
- ([] if self._drop_input_cols else inputs)
940
- + outputs)
1042
+ self._model_signature_dict["predict"] = ModelSignature(
1043
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1044
+ )
941
1045
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
942
1046
  # For outlier models, returns -1 for outliers and 1 for inliers.
943
- # Clusterer returns int64 cluster labels.
1047
+ # Clusterer returns int64 cluster labels.
944
1048
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
945
1049
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
946
- self._model_signature_dict["predict"] = ModelSignature(inputs,
947
- ([] if self._drop_input_cols else inputs)
948
- + outputs)
949
-
1050
+ self._model_signature_dict["predict"] = ModelSignature(
1051
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1052
+ )
1053
+
950
1054
  # For regressor, the type of predict is float64
951
- elif self._sklearn_object._estimator_type == 'regressor':
1055
+ elif self._sklearn_object._estimator_type == "regressor":
952
1056
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
953
- self._model_signature_dict["predict"] = ModelSignature(inputs,
954
- ([] if self._drop_input_cols else inputs)
955
- + outputs)
956
-
1057
+ self._model_signature_dict["predict"] = ModelSignature(
1058
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1059
+ )
1060
+
957
1061
  for prob_func in PROB_FUNCTIONS:
958
1062
  if hasattr(self, prob_func):
959
1063
  output_cols_prefix: str = f"{prob_func}_"
960
1064
  output_column_names = self._get_output_column_names(output_cols_prefix)
961
1065
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
962
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
963
- ([] if self._drop_input_cols else inputs)
964
- + outputs)
1066
+ self._model_signature_dict[prob_func] = ModelSignature(
1067
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1068
+ )
965
1069
 
966
1070
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
967
1071
  items = list(self._model_signature_dict.items())
@@ -974,10 +1078,10 @@ class OneVsOneClassifier(BaseTransformer):
974
1078
  """Returns model signature of current class.
975
1079
 
976
1080
  Raises:
977
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1081
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
978
1082
 
979
1083
  Returns:
980
- Dict[str, ModelSignature]: each method and its input output signature
1084
+ Dict with each method and its input output signature
981
1085
  """
982
1086
  if self._model_signature_dict is None:
983
1087
  raise exceptions.SnowflakeMLException(
@@ -985,35 +1089,3 @@ class OneVsOneClassifier(BaseTransformer):
985
1089
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
986
1090
  )
987
1091
  return self._model_signature_dict
988
-
989
- def to_sklearn(self) -> Any:
990
- """Get sklearn.multiclass.OneVsOneClassifier object.
991
- """
992
- if self._sklearn_object is None:
993
- self._sklearn_object = self._create_sklearn_object()
994
- return self._sklearn_object
995
-
996
- def to_xgboost(self) -> Any:
997
- raise exceptions.SnowflakeMLException(
998
- error_code=error_codes.METHOD_NOT_ALLOWED,
999
- original_exception=AttributeError(
1000
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1001
- "to_xgboost()",
1002
- "to_sklearn()"
1003
- )
1004
- ),
1005
- )
1006
-
1007
- def to_lightgbm(self) -> Any:
1008
- raise exceptions.SnowflakeMLException(
1009
- error_code=error_codes.METHOD_NOT_ALLOWED,
1010
- original_exception=AttributeError(
1011
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1012
- "to_lightgbm()",
1013
- "to_sklearn()"
1014
- )
1015
- ),
1016
- )
1017
-
1018
- def _get_dependencies(self) -> List[str]:
1019
- return self._deps