snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +151 -78
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +2 -50
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +9 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -298,12 +297,7 @@ class GaussianMixture(BaseTransformer):
|
|
298
297
|
)
|
299
298
|
return selected_cols
|
300
299
|
|
301
|
-
|
302
|
-
project=_PROJECT,
|
303
|
-
subproject=_SUBPROJECT,
|
304
|
-
custom_tags=dict([("autogen", True)]),
|
305
|
-
)
|
306
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GaussianMixture":
|
300
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GaussianMixture":
|
307
301
|
"""Estimate model parameters with the EM algorithm
|
308
302
|
For more details on this function, see [sklearn.mixture.GaussianMixture.fit]
|
309
303
|
(https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture.fit)
|
@@ -330,12 +324,14 @@ class GaussianMixture(BaseTransformer):
|
|
330
324
|
|
331
325
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
332
326
|
|
333
|
-
|
327
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
334
328
|
if SNOWML_SPROC_ENV in os.environ:
|
335
329
|
statement_params = telemetry.get_function_usage_statement_params(
|
336
330
|
project=_PROJECT,
|
337
331
|
subproject=_SUBPROJECT,
|
338
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
332
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
333
|
+
inspect.currentframe(), GaussianMixture.__class__.__name__
|
334
|
+
),
|
339
335
|
api_calls=[Session.call],
|
340
336
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
341
337
|
)
|
@@ -356,7 +352,7 @@ class GaussianMixture(BaseTransformer):
|
|
356
352
|
)
|
357
353
|
self._sklearn_object = model_trainer.train()
|
358
354
|
self._is_fitted = True
|
359
|
-
self.
|
355
|
+
self._generate_model_signatures(dataset)
|
360
356
|
return self
|
361
357
|
|
362
358
|
def _batch_inference_validate_snowpark(
|
@@ -432,7 +428,9 @@ class GaussianMixture(BaseTransformer):
|
|
432
428
|
# when it is classifier, infer the datatype from label columns
|
433
429
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
434
430
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
435
|
-
label_cols_signatures = [
|
431
|
+
label_cols_signatures = [
|
432
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
433
|
+
]
|
436
434
|
if len(label_cols_signatures) == 0:
|
437
435
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
438
436
|
raise exceptions.SnowflakeMLException(
|
@@ -440,25 +438,22 @@ class GaussianMixture(BaseTransformer):
|
|
440
438
|
original_exception=ValueError(error_str),
|
441
439
|
)
|
442
440
|
|
443
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
444
|
-
label_cols_signatures[0].as_snowpark_type()
|
445
|
-
)
|
441
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
446
442
|
|
447
443
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
448
|
-
assert isinstance(
|
444
|
+
assert isinstance(
|
445
|
+
dataset._session, Session
|
446
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
449
447
|
|
450
448
|
transform_kwargs = dict(
|
451
|
-
session
|
452
|
-
dependencies
|
453
|
-
drop_input_cols
|
454
|
-
expected_output_cols_type
|
449
|
+
session=dataset._session,
|
450
|
+
dependencies=self._deps,
|
451
|
+
drop_input_cols=self._drop_input_cols,
|
452
|
+
expected_output_cols_type=expected_type_inferred,
|
455
453
|
)
|
456
454
|
|
457
455
|
elif isinstance(dataset, pd.DataFrame):
|
458
|
-
transform_kwargs = dict(
|
459
|
-
snowpark_input_cols = self._snowpark_cols,
|
460
|
-
drop_input_cols = self._drop_input_cols
|
461
|
-
)
|
456
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
462
457
|
|
463
458
|
transform_handlers = ModelTransformerBuilder.build(
|
464
459
|
dataset=dataset,
|
@@ -498,7 +493,7 @@ class GaussianMixture(BaseTransformer):
|
|
498
493
|
Transformed dataset.
|
499
494
|
"""
|
500
495
|
super()._check_dataset_type(dataset)
|
501
|
-
inference_method="transform"
|
496
|
+
inference_method = "transform"
|
502
497
|
|
503
498
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
504
499
|
# are specific to the type of dataset used.
|
@@ -535,17 +530,14 @@ class GaussianMixture(BaseTransformer):
|
|
535
530
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
536
531
|
|
537
532
|
transform_kwargs = dict(
|
538
|
-
session
|
539
|
-
dependencies
|
540
|
-
drop_input_cols
|
541
|
-
expected_output_cols_type
|
533
|
+
session=dataset._session,
|
534
|
+
dependencies=self._deps,
|
535
|
+
drop_input_cols=self._drop_input_cols,
|
536
|
+
expected_output_cols_type=expected_dtype,
|
542
537
|
)
|
543
538
|
|
544
539
|
elif isinstance(dataset, pd.DataFrame):
|
545
|
-
transform_kwargs = dict(
|
546
|
-
snowpark_input_cols = self._snowpark_cols,
|
547
|
-
drop_input_cols = self._drop_input_cols
|
548
|
-
)
|
540
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
549
541
|
|
550
542
|
transform_handlers = ModelTransformerBuilder.build(
|
551
543
|
dataset=dataset,
|
@@ -564,7 +556,11 @@ class GaussianMixture(BaseTransformer):
|
|
564
556
|
return output_df
|
565
557
|
|
566
558
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
567
|
-
def fit_predict(
|
559
|
+
def fit_predict(
|
560
|
+
self,
|
561
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
562
|
+
output_cols_prefix: str = "fit_predict_",
|
563
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
568
564
|
""" Estimate model parameters using X and predict the labels for X
|
569
565
|
For more details on this function, see [sklearn.mixture.GaussianMixture.fit_predict]
|
570
566
|
(https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture.fit_predict)
|
@@ -591,7 +587,9 @@ class GaussianMixture(BaseTransformer):
|
|
591
587
|
)
|
592
588
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
593
589
|
drop_input_cols=self._drop_input_cols,
|
594
|
-
expected_output_cols_list=
|
590
|
+
expected_output_cols_list=(
|
591
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
592
|
+
),
|
595
593
|
)
|
596
594
|
self._sklearn_object = fitted_estimator
|
597
595
|
self._is_fitted = True
|
@@ -608,6 +606,62 @@ class GaussianMixture(BaseTransformer):
|
|
608
606
|
assert self._sklearn_object is not None
|
609
607
|
return self._sklearn_object.embedding_
|
610
608
|
|
609
|
+
|
610
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
611
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
612
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
613
|
+
"""
|
614
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
615
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
616
|
+
if output_cols:
|
617
|
+
output_cols = [
|
618
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
619
|
+
for c in output_cols
|
620
|
+
]
|
621
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
622
|
+
output_cols = [output_cols_prefix]
|
623
|
+
elif self._sklearn_object is not None:
|
624
|
+
classes = self._sklearn_object.classes_
|
625
|
+
if isinstance(classes, numpy.ndarray):
|
626
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
627
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
628
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
629
|
+
output_cols = []
|
630
|
+
for i, cl in enumerate(classes):
|
631
|
+
# For binary classification, there is only one output column for each class
|
632
|
+
# ndarray as the two classes are complementary.
|
633
|
+
if len(cl) == 2:
|
634
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
635
|
+
else:
|
636
|
+
output_cols.extend([
|
637
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
638
|
+
])
|
639
|
+
else:
|
640
|
+
output_cols = []
|
641
|
+
|
642
|
+
# Make sure column names are valid snowflake identifiers.
|
643
|
+
assert output_cols is not None # Make MyPy happy
|
644
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
645
|
+
|
646
|
+
return rv
|
647
|
+
|
648
|
+
def _align_expected_output_names(
|
649
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
650
|
+
) -> List[str]:
|
651
|
+
# in case the inferred output column names dimension is different
|
652
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
653
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
654
|
+
output_df_columns = list(output_df_pd.columns)
|
655
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
656
|
+
if self.sample_weight_col:
|
657
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
658
|
+
# if the dimension of inferred output column names is correct; use it
|
659
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
660
|
+
return expected_output_cols_list
|
661
|
+
# otherwise, use the sklearn estimator's output
|
662
|
+
else:
|
663
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
664
|
+
|
611
665
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
612
666
|
@telemetry.send_api_usage_telemetry(
|
613
667
|
project=_PROJECT,
|
@@ -640,24 +694,28 @@ class GaussianMixture(BaseTransformer):
|
|
640
694
|
# are specific to the type of dataset used.
|
641
695
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
642
696
|
|
697
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
698
|
+
|
643
699
|
if isinstance(dataset, DataFrame):
|
644
700
|
self._deps = self._batch_inference_validate_snowpark(
|
645
701
|
dataset=dataset,
|
646
702
|
inference_method=inference_method,
|
647
703
|
)
|
648
|
-
assert isinstance(
|
704
|
+
assert isinstance(
|
705
|
+
dataset._session, Session
|
706
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
649
707
|
transform_kwargs = dict(
|
650
708
|
session=dataset._session,
|
651
709
|
dependencies=self._deps,
|
652
|
-
drop_input_cols
|
710
|
+
drop_input_cols=self._drop_input_cols,
|
653
711
|
expected_output_cols_type="float",
|
654
712
|
)
|
713
|
+
expected_output_cols = self._align_expected_output_names(
|
714
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
715
|
+
)
|
655
716
|
|
656
717
|
elif isinstance(dataset, pd.DataFrame):
|
657
|
-
transform_kwargs = dict(
|
658
|
-
snowpark_input_cols = self._snowpark_cols,
|
659
|
-
drop_input_cols = self._drop_input_cols
|
660
|
-
)
|
718
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
661
719
|
|
662
720
|
transform_handlers = ModelTransformerBuilder.build(
|
663
721
|
dataset=dataset,
|
@@ -669,7 +727,7 @@ class GaussianMixture(BaseTransformer):
|
|
669
727
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
670
728
|
inference_method=inference_method,
|
671
729
|
input_cols=self.input_cols,
|
672
|
-
expected_output_cols=
|
730
|
+
expected_output_cols=expected_output_cols,
|
673
731
|
**transform_kwargs
|
674
732
|
)
|
675
733
|
return output_df
|
@@ -701,7 +759,8 @@ class GaussianMixture(BaseTransformer):
|
|
701
759
|
Output dataset with log probability of the sample for each class in the model.
|
702
760
|
"""
|
703
761
|
super()._check_dataset_type(dataset)
|
704
|
-
inference_method="predict_log_proba"
|
762
|
+
inference_method = "predict_log_proba"
|
763
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
705
764
|
|
706
765
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
707
766
|
# are specific to the type of dataset used.
|
@@ -712,18 +771,20 @@ class GaussianMixture(BaseTransformer):
|
|
712
771
|
dataset=dataset,
|
713
772
|
inference_method=inference_method,
|
714
773
|
)
|
715
|
-
assert isinstance(
|
774
|
+
assert isinstance(
|
775
|
+
dataset._session, Session
|
776
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
716
777
|
transform_kwargs = dict(
|
717
778
|
session=dataset._session,
|
718
779
|
dependencies=self._deps,
|
719
|
-
drop_input_cols
|
780
|
+
drop_input_cols=self._drop_input_cols,
|
720
781
|
expected_output_cols_type="float",
|
721
782
|
)
|
783
|
+
expected_output_cols = self._align_expected_output_names(
|
784
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
785
|
+
)
|
722
786
|
elif isinstance(dataset, pd.DataFrame):
|
723
|
-
transform_kwargs = dict(
|
724
|
-
snowpark_input_cols = self._snowpark_cols,
|
725
|
-
drop_input_cols = self._drop_input_cols
|
726
|
-
)
|
787
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
727
788
|
|
728
789
|
transform_handlers = ModelTransformerBuilder.build(
|
729
790
|
dataset=dataset,
|
@@ -736,7 +797,7 @@ class GaussianMixture(BaseTransformer):
|
|
736
797
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
737
798
|
inference_method=inference_method,
|
738
799
|
input_cols=self.input_cols,
|
739
|
-
expected_output_cols=
|
800
|
+
expected_output_cols=expected_output_cols,
|
740
801
|
**transform_kwargs
|
741
802
|
)
|
742
803
|
return output_df
|
@@ -762,30 +823,34 @@ class GaussianMixture(BaseTransformer):
|
|
762
823
|
Output dataset with results of the decision function for the samples in input dataset.
|
763
824
|
"""
|
764
825
|
super()._check_dataset_type(dataset)
|
765
|
-
inference_method="decision_function"
|
826
|
+
inference_method = "decision_function"
|
766
827
|
|
767
828
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
768
829
|
# are specific to the type of dataset used.
|
769
830
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
770
831
|
|
832
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
833
|
+
|
771
834
|
if isinstance(dataset, DataFrame):
|
772
835
|
self._deps = self._batch_inference_validate_snowpark(
|
773
836
|
dataset=dataset,
|
774
837
|
inference_method=inference_method,
|
775
838
|
)
|
776
|
-
assert isinstance(
|
839
|
+
assert isinstance(
|
840
|
+
dataset._session, Session
|
841
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
777
842
|
transform_kwargs = dict(
|
778
843
|
session=dataset._session,
|
779
844
|
dependencies=self._deps,
|
780
|
-
drop_input_cols
|
845
|
+
drop_input_cols=self._drop_input_cols,
|
781
846
|
expected_output_cols_type="float",
|
782
847
|
)
|
848
|
+
expected_output_cols = self._align_expected_output_names(
|
849
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
850
|
+
)
|
783
851
|
|
784
852
|
elif isinstance(dataset, pd.DataFrame):
|
785
|
-
transform_kwargs = dict(
|
786
|
-
snowpark_input_cols = self._snowpark_cols,
|
787
|
-
drop_input_cols = self._drop_input_cols
|
788
|
-
)
|
853
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
789
854
|
|
790
855
|
transform_handlers = ModelTransformerBuilder.build(
|
791
856
|
dataset=dataset,
|
@@ -798,7 +863,7 @@ class GaussianMixture(BaseTransformer):
|
|
798
863
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
799
864
|
inference_method=inference_method,
|
800
865
|
input_cols=self.input_cols,
|
801
|
-
expected_output_cols=
|
866
|
+
expected_output_cols=expected_output_cols,
|
802
867
|
**transform_kwargs
|
803
868
|
)
|
804
869
|
return output_df
|
@@ -829,12 +894,14 @@ class GaussianMixture(BaseTransformer):
|
|
829
894
|
Output dataset with probability of the sample for each class in the model.
|
830
895
|
"""
|
831
896
|
super()._check_dataset_type(dataset)
|
832
|
-
inference_method="score_samples"
|
897
|
+
inference_method = "score_samples"
|
833
898
|
|
834
899
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
835
900
|
# are specific to the type of dataset used.
|
836
901
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
837
902
|
|
903
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
904
|
+
|
838
905
|
if isinstance(dataset, DataFrame):
|
839
906
|
self._deps = self._batch_inference_validate_snowpark(
|
840
907
|
dataset=dataset,
|
@@ -847,6 +914,9 @@ class GaussianMixture(BaseTransformer):
|
|
847
914
|
drop_input_cols = self._drop_input_cols,
|
848
915
|
expected_output_cols_type="float",
|
849
916
|
)
|
917
|
+
expected_output_cols = self._align_expected_output_names(
|
918
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
919
|
+
)
|
850
920
|
|
851
921
|
elif isinstance(dataset, pd.DataFrame):
|
852
922
|
transform_kwargs = dict(
|
@@ -865,7 +935,7 @@ class GaussianMixture(BaseTransformer):
|
|
865
935
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
866
936
|
inference_method=inference_method,
|
867
937
|
input_cols=self.input_cols,
|
868
|
-
expected_output_cols=
|
938
|
+
expected_output_cols=expected_output_cols,
|
869
939
|
**transform_kwargs
|
870
940
|
)
|
871
941
|
return output_df
|
@@ -1012,50 +1082,84 @@ class GaussianMixture(BaseTransformer):
|
|
1012
1082
|
)
|
1013
1083
|
return output_df
|
1014
1084
|
|
1085
|
+
|
1086
|
+
|
1087
|
+
def to_sklearn(self) -> Any:
|
1088
|
+
"""Get sklearn.mixture.GaussianMixture object.
|
1089
|
+
"""
|
1090
|
+
if self._sklearn_object is None:
|
1091
|
+
self._sklearn_object = self._create_sklearn_object()
|
1092
|
+
return self._sklearn_object
|
1093
|
+
|
1094
|
+
def to_xgboost(self) -> Any:
|
1095
|
+
raise exceptions.SnowflakeMLException(
|
1096
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1097
|
+
original_exception=AttributeError(
|
1098
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1099
|
+
"to_xgboost()",
|
1100
|
+
"to_sklearn()"
|
1101
|
+
)
|
1102
|
+
),
|
1103
|
+
)
|
1104
|
+
|
1105
|
+
def to_lightgbm(self) -> Any:
|
1106
|
+
raise exceptions.SnowflakeMLException(
|
1107
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1108
|
+
original_exception=AttributeError(
|
1109
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1110
|
+
"to_lightgbm()",
|
1111
|
+
"to_sklearn()"
|
1112
|
+
)
|
1113
|
+
),
|
1114
|
+
)
|
1015
1115
|
|
1016
|
-
def
|
1116
|
+
def _get_dependencies(self) -> List[str]:
|
1117
|
+
return self._deps
|
1118
|
+
|
1119
|
+
|
1120
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1017
1121
|
self._model_signature_dict = dict()
|
1018
1122
|
|
1019
1123
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1020
1124
|
|
1021
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1125
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1022
1126
|
outputs: List[BaseFeatureSpec] = []
|
1023
1127
|
if hasattr(self, "predict"):
|
1024
1128
|
# keep mypy happy
|
1025
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1129
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1026
1130
|
# For classifier, the type of predict is the same as the type of label
|
1027
|
-
if self._sklearn_object._estimator_type ==
|
1028
|
-
|
1131
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1132
|
+
# label columns is the desired type for output
|
1029
1133
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1030
1134
|
# rename the output columns
|
1031
1135
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1032
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1033
|
-
|
1034
|
-
|
1136
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1137
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1138
|
+
)
|
1035
1139
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1036
1140
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1037
|
-
# Clusterer returns int64 cluster labels.
|
1141
|
+
# Clusterer returns int64 cluster labels.
|
1038
1142
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1039
1143
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1040
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1041
|
-
|
1042
|
-
|
1043
|
-
|
1144
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1145
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1146
|
+
)
|
1147
|
+
|
1044
1148
|
# For regressor, the type of predict is float64
|
1045
|
-
elif self._sklearn_object._estimator_type ==
|
1149
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1046
1150
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1047
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1048
|
-
|
1049
|
-
|
1050
|
-
|
1151
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1152
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1153
|
+
)
|
1154
|
+
|
1051
1155
|
for prob_func in PROB_FUNCTIONS:
|
1052
1156
|
if hasattr(self, prob_func):
|
1053
1157
|
output_cols_prefix: str = f"{prob_func}_"
|
1054
1158
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1055
1159
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1056
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1057
|
-
|
1058
|
-
|
1160
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1161
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1162
|
+
)
|
1059
1163
|
|
1060
1164
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1061
1165
|
items = list(self._model_signature_dict.items())
|
@@ -1068,10 +1172,10 @@ class GaussianMixture(BaseTransformer):
|
|
1068
1172
|
"""Returns model signature of current class.
|
1069
1173
|
|
1070
1174
|
Raises:
|
1071
|
-
|
1175
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1072
1176
|
|
1073
1177
|
Returns:
|
1074
|
-
Dict
|
1178
|
+
Dict with each method and its input output signature
|
1075
1179
|
"""
|
1076
1180
|
if self._model_signature_dict is None:
|
1077
1181
|
raise exceptions.SnowflakeMLException(
|
@@ -1079,35 +1183,3 @@ class GaussianMixture(BaseTransformer):
|
|
1079
1183
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1080
1184
|
)
|
1081
1185
|
return self._model_signature_dict
|
1082
|
-
|
1083
|
-
def to_sklearn(self) -> Any:
|
1084
|
-
"""Get sklearn.mixture.GaussianMixture object.
|
1085
|
-
"""
|
1086
|
-
if self._sklearn_object is None:
|
1087
|
-
self._sklearn_object = self._create_sklearn_object()
|
1088
|
-
return self._sklearn_object
|
1089
|
-
|
1090
|
-
def to_xgboost(self) -> Any:
|
1091
|
-
raise exceptions.SnowflakeMLException(
|
1092
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1093
|
-
original_exception=AttributeError(
|
1094
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1095
|
-
"to_xgboost()",
|
1096
|
-
"to_sklearn()"
|
1097
|
-
)
|
1098
|
-
),
|
1099
|
-
)
|
1100
|
-
|
1101
|
-
def to_lightgbm(self) -> Any:
|
1102
|
-
raise exceptions.SnowflakeMLException(
|
1103
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1104
|
-
original_exception=AttributeError(
|
1105
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1106
|
-
"to_lightgbm()",
|
1107
|
-
"to_sklearn()"
|
1108
|
-
)
|
1109
|
-
),
|
1110
|
-
)
|
1111
|
-
|
1112
|
-
def _get_dependencies(self) -> List[str]:
|
1113
|
-
return self._deps
|