snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -298,12 +297,7 @@ class GaussianMixture(BaseTransformer):
298
297
  )
299
298
  return selected_cols
300
299
 
301
- @telemetry.send_api_usage_telemetry(
302
- project=_PROJECT,
303
- subproject=_SUBPROJECT,
304
- custom_tags=dict([("autogen", True)]),
305
- )
306
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GaussianMixture":
300
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GaussianMixture":
307
301
  """Estimate model parameters with the EM algorithm
308
302
  For more details on this function, see [sklearn.mixture.GaussianMixture.fit]
309
303
  (https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture.fit)
@@ -330,12 +324,14 @@ class GaussianMixture(BaseTransformer):
330
324
 
331
325
  self._snowpark_cols = dataset.select(self.input_cols).columns
332
326
 
333
- # If we are already in a stored procedure, no need to kick off another one.
327
+ # If we are already in a stored procedure, no need to kick off another one.
334
328
  if SNOWML_SPROC_ENV in os.environ:
335
329
  statement_params = telemetry.get_function_usage_statement_params(
336
330
  project=_PROJECT,
337
331
  subproject=_SUBPROJECT,
338
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianMixture.__class__.__name__),
332
+ function_name=telemetry.get_statement_params_full_func_name(
333
+ inspect.currentframe(), GaussianMixture.__class__.__name__
334
+ ),
339
335
  api_calls=[Session.call],
340
336
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
341
337
  )
@@ -356,7 +352,7 @@ class GaussianMixture(BaseTransformer):
356
352
  )
357
353
  self._sklearn_object = model_trainer.train()
358
354
  self._is_fitted = True
359
- self._get_model_signatures(dataset)
355
+ self._generate_model_signatures(dataset)
360
356
  return self
361
357
 
362
358
  def _batch_inference_validate_snowpark(
@@ -432,7 +428,9 @@ class GaussianMixture(BaseTransformer):
432
428
  # when it is classifier, infer the datatype from label columns
433
429
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
434
430
  # Batch inference takes a single expected output column type. Use the first columns type for now.
435
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
431
+ label_cols_signatures = [
432
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
433
+ ]
436
434
  if len(label_cols_signatures) == 0:
437
435
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
438
436
  raise exceptions.SnowflakeMLException(
@@ -440,25 +438,22 @@ class GaussianMixture(BaseTransformer):
440
438
  original_exception=ValueError(error_str),
441
439
  )
442
440
 
443
- expected_type_inferred = convert_sp_to_sf_type(
444
- label_cols_signatures[0].as_snowpark_type()
445
- )
441
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
446
442
 
447
443
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
448
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
444
+ assert isinstance(
445
+ dataset._session, Session
446
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
449
447
 
450
448
  transform_kwargs = dict(
451
- session = dataset._session,
452
- dependencies = self._deps,
453
- drop_input_cols = self._drop_input_cols,
454
- expected_output_cols_type = expected_type_inferred,
449
+ session=dataset._session,
450
+ dependencies=self._deps,
451
+ drop_input_cols=self._drop_input_cols,
452
+ expected_output_cols_type=expected_type_inferred,
455
453
  )
456
454
 
457
455
  elif isinstance(dataset, pd.DataFrame):
458
- transform_kwargs = dict(
459
- snowpark_input_cols = self._snowpark_cols,
460
- drop_input_cols = self._drop_input_cols
461
- )
456
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
462
457
 
463
458
  transform_handlers = ModelTransformerBuilder.build(
464
459
  dataset=dataset,
@@ -498,7 +493,7 @@ class GaussianMixture(BaseTransformer):
498
493
  Transformed dataset.
499
494
  """
500
495
  super()._check_dataset_type(dataset)
501
- inference_method="transform"
496
+ inference_method = "transform"
502
497
 
503
498
  # This dictionary contains optional kwargs for batch inference. These kwargs
504
499
  # are specific to the type of dataset used.
@@ -535,17 +530,14 @@ class GaussianMixture(BaseTransformer):
535
530
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
536
531
 
537
532
  transform_kwargs = dict(
538
- session = dataset._session,
539
- dependencies = self._deps,
540
- drop_input_cols = self._drop_input_cols,
541
- expected_output_cols_type = expected_dtype,
533
+ session=dataset._session,
534
+ dependencies=self._deps,
535
+ drop_input_cols=self._drop_input_cols,
536
+ expected_output_cols_type=expected_dtype,
542
537
  )
543
538
 
544
539
  elif isinstance(dataset, pd.DataFrame):
545
- transform_kwargs = dict(
546
- snowpark_input_cols = self._snowpark_cols,
547
- drop_input_cols = self._drop_input_cols
548
- )
540
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
549
541
 
550
542
  transform_handlers = ModelTransformerBuilder.build(
551
543
  dataset=dataset,
@@ -564,7 +556,11 @@ class GaussianMixture(BaseTransformer):
564
556
  return output_df
565
557
 
566
558
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
567
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
559
+ def fit_predict(
560
+ self,
561
+ dataset: Union[DataFrame, pd.DataFrame],
562
+ output_cols_prefix: str = "fit_predict_",
563
+ ) -> Union[DataFrame, pd.DataFrame]:
568
564
  """ Estimate model parameters using X and predict the labels for X
569
565
  For more details on this function, see [sklearn.mixture.GaussianMixture.fit_predict]
570
566
  (https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture.fit_predict)
@@ -591,7 +587,9 @@ class GaussianMixture(BaseTransformer):
591
587
  )
592
588
  output_result, fitted_estimator = model_trainer.train_fit_predict(
593
589
  drop_input_cols=self._drop_input_cols,
594
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
590
+ expected_output_cols_list=(
591
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
592
+ ),
595
593
  )
596
594
  self._sklearn_object = fitted_estimator
597
595
  self._is_fitted = True
@@ -608,6 +606,62 @@ class GaussianMixture(BaseTransformer):
608
606
  assert self._sklearn_object is not None
609
607
  return self._sklearn_object.embedding_
610
608
 
609
+
610
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
611
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
612
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
613
+ """
614
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
615
+ # The following condition is introduced for kneighbors methods, and not used in other methods
616
+ if output_cols:
617
+ output_cols = [
618
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
619
+ for c in output_cols
620
+ ]
621
+ elif getattr(self._sklearn_object, "classes_", None) is None:
622
+ output_cols = [output_cols_prefix]
623
+ elif self._sklearn_object is not None:
624
+ classes = self._sklearn_object.classes_
625
+ if isinstance(classes, numpy.ndarray):
626
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
627
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
628
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
629
+ output_cols = []
630
+ for i, cl in enumerate(classes):
631
+ # For binary classification, there is only one output column for each class
632
+ # ndarray as the two classes are complementary.
633
+ if len(cl) == 2:
634
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
635
+ else:
636
+ output_cols.extend([
637
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
638
+ ])
639
+ else:
640
+ output_cols = []
641
+
642
+ # Make sure column names are valid snowflake identifiers.
643
+ assert output_cols is not None # Make MyPy happy
644
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
645
+
646
+ return rv
647
+
648
+ def _align_expected_output_names(
649
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
650
+ ) -> List[str]:
651
+ # in case the inferred output column names dimension is different
652
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
653
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
654
+ output_df_columns = list(output_df_pd.columns)
655
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
656
+ if self.sample_weight_col:
657
+ output_df_columns_set -= set(self.sample_weight_col)
658
+ # if the dimension of inferred output column names is correct; use it
659
+ if len(expected_output_cols_list) == len(output_df_columns_set):
660
+ return expected_output_cols_list
661
+ # otherwise, use the sklearn estimator's output
662
+ else:
663
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
664
+
611
665
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
612
666
  @telemetry.send_api_usage_telemetry(
613
667
  project=_PROJECT,
@@ -640,24 +694,28 @@ class GaussianMixture(BaseTransformer):
640
694
  # are specific to the type of dataset used.
641
695
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
642
696
 
697
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
698
+
643
699
  if isinstance(dataset, DataFrame):
644
700
  self._deps = self._batch_inference_validate_snowpark(
645
701
  dataset=dataset,
646
702
  inference_method=inference_method,
647
703
  )
648
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
704
+ assert isinstance(
705
+ dataset._session, Session
706
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
649
707
  transform_kwargs = dict(
650
708
  session=dataset._session,
651
709
  dependencies=self._deps,
652
- drop_input_cols = self._drop_input_cols,
710
+ drop_input_cols=self._drop_input_cols,
653
711
  expected_output_cols_type="float",
654
712
  )
713
+ expected_output_cols = self._align_expected_output_names(
714
+ inference_method, dataset, expected_output_cols, output_cols_prefix
715
+ )
655
716
 
656
717
  elif isinstance(dataset, pd.DataFrame):
657
- transform_kwargs = dict(
658
- snowpark_input_cols = self._snowpark_cols,
659
- drop_input_cols = self._drop_input_cols
660
- )
718
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
661
719
 
662
720
  transform_handlers = ModelTransformerBuilder.build(
663
721
  dataset=dataset,
@@ -669,7 +727,7 @@ class GaussianMixture(BaseTransformer):
669
727
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
670
728
  inference_method=inference_method,
671
729
  input_cols=self.input_cols,
672
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
730
+ expected_output_cols=expected_output_cols,
673
731
  **transform_kwargs
674
732
  )
675
733
  return output_df
@@ -701,7 +759,8 @@ class GaussianMixture(BaseTransformer):
701
759
  Output dataset with log probability of the sample for each class in the model.
702
760
  """
703
761
  super()._check_dataset_type(dataset)
704
- inference_method="predict_log_proba"
762
+ inference_method = "predict_log_proba"
763
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
705
764
 
706
765
  # This dictionary contains optional kwargs for batch inference. These kwargs
707
766
  # are specific to the type of dataset used.
@@ -712,18 +771,20 @@ class GaussianMixture(BaseTransformer):
712
771
  dataset=dataset,
713
772
  inference_method=inference_method,
714
773
  )
715
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
774
+ assert isinstance(
775
+ dataset._session, Session
776
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
716
777
  transform_kwargs = dict(
717
778
  session=dataset._session,
718
779
  dependencies=self._deps,
719
- drop_input_cols = self._drop_input_cols,
780
+ drop_input_cols=self._drop_input_cols,
720
781
  expected_output_cols_type="float",
721
782
  )
783
+ expected_output_cols = self._align_expected_output_names(
784
+ inference_method, dataset, expected_output_cols, output_cols_prefix
785
+ )
722
786
  elif isinstance(dataset, pd.DataFrame):
723
- transform_kwargs = dict(
724
- snowpark_input_cols = self._snowpark_cols,
725
- drop_input_cols = self._drop_input_cols
726
- )
787
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
727
788
 
728
789
  transform_handlers = ModelTransformerBuilder.build(
729
790
  dataset=dataset,
@@ -736,7 +797,7 @@ class GaussianMixture(BaseTransformer):
736
797
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
737
798
  inference_method=inference_method,
738
799
  input_cols=self.input_cols,
739
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
800
+ expected_output_cols=expected_output_cols,
740
801
  **transform_kwargs
741
802
  )
742
803
  return output_df
@@ -762,30 +823,34 @@ class GaussianMixture(BaseTransformer):
762
823
  Output dataset with results of the decision function for the samples in input dataset.
763
824
  """
764
825
  super()._check_dataset_type(dataset)
765
- inference_method="decision_function"
826
+ inference_method = "decision_function"
766
827
 
767
828
  # This dictionary contains optional kwargs for batch inference. These kwargs
768
829
  # are specific to the type of dataset used.
769
830
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
770
831
 
832
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
833
+
771
834
  if isinstance(dataset, DataFrame):
772
835
  self._deps = self._batch_inference_validate_snowpark(
773
836
  dataset=dataset,
774
837
  inference_method=inference_method,
775
838
  )
776
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
839
+ assert isinstance(
840
+ dataset._session, Session
841
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
777
842
  transform_kwargs = dict(
778
843
  session=dataset._session,
779
844
  dependencies=self._deps,
780
- drop_input_cols = self._drop_input_cols,
845
+ drop_input_cols=self._drop_input_cols,
781
846
  expected_output_cols_type="float",
782
847
  )
848
+ expected_output_cols = self._align_expected_output_names(
849
+ inference_method, dataset, expected_output_cols, output_cols_prefix
850
+ )
783
851
 
784
852
  elif isinstance(dataset, pd.DataFrame):
785
- transform_kwargs = dict(
786
- snowpark_input_cols = self._snowpark_cols,
787
- drop_input_cols = self._drop_input_cols
788
- )
853
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
789
854
 
790
855
  transform_handlers = ModelTransformerBuilder.build(
791
856
  dataset=dataset,
@@ -798,7 +863,7 @@ class GaussianMixture(BaseTransformer):
798
863
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
799
864
  inference_method=inference_method,
800
865
  input_cols=self.input_cols,
801
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
866
+ expected_output_cols=expected_output_cols,
802
867
  **transform_kwargs
803
868
  )
804
869
  return output_df
@@ -829,12 +894,14 @@ class GaussianMixture(BaseTransformer):
829
894
  Output dataset with probability of the sample for each class in the model.
830
895
  """
831
896
  super()._check_dataset_type(dataset)
832
- inference_method="score_samples"
897
+ inference_method = "score_samples"
833
898
 
834
899
  # This dictionary contains optional kwargs for batch inference. These kwargs
835
900
  # are specific to the type of dataset used.
836
901
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
837
902
 
903
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
904
+
838
905
  if isinstance(dataset, DataFrame):
839
906
  self._deps = self._batch_inference_validate_snowpark(
840
907
  dataset=dataset,
@@ -847,6 +914,9 @@ class GaussianMixture(BaseTransformer):
847
914
  drop_input_cols = self._drop_input_cols,
848
915
  expected_output_cols_type="float",
849
916
  )
917
+ expected_output_cols = self._align_expected_output_names(
918
+ inference_method, dataset, expected_output_cols, output_cols_prefix
919
+ )
850
920
 
851
921
  elif isinstance(dataset, pd.DataFrame):
852
922
  transform_kwargs = dict(
@@ -865,7 +935,7 @@ class GaussianMixture(BaseTransformer):
865
935
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
866
936
  inference_method=inference_method,
867
937
  input_cols=self.input_cols,
868
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
938
+ expected_output_cols=expected_output_cols,
869
939
  **transform_kwargs
870
940
  )
871
941
  return output_df
@@ -1012,50 +1082,84 @@ class GaussianMixture(BaseTransformer):
1012
1082
  )
1013
1083
  return output_df
1014
1084
 
1085
+
1086
+
1087
+ def to_sklearn(self) -> Any:
1088
+ """Get sklearn.mixture.GaussianMixture object.
1089
+ """
1090
+ if self._sklearn_object is None:
1091
+ self._sklearn_object = self._create_sklearn_object()
1092
+ return self._sklearn_object
1093
+
1094
+ def to_xgboost(self) -> Any:
1095
+ raise exceptions.SnowflakeMLException(
1096
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1097
+ original_exception=AttributeError(
1098
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1099
+ "to_xgboost()",
1100
+ "to_sklearn()"
1101
+ )
1102
+ ),
1103
+ )
1104
+
1105
+ def to_lightgbm(self) -> Any:
1106
+ raise exceptions.SnowflakeMLException(
1107
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1108
+ original_exception=AttributeError(
1109
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1110
+ "to_lightgbm()",
1111
+ "to_sklearn()"
1112
+ )
1113
+ ),
1114
+ )
1015
1115
 
1016
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1116
+ def _get_dependencies(self) -> List[str]:
1117
+ return self._deps
1118
+
1119
+
1120
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1017
1121
  self._model_signature_dict = dict()
1018
1122
 
1019
1123
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1020
1124
 
1021
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1125
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1022
1126
  outputs: List[BaseFeatureSpec] = []
1023
1127
  if hasattr(self, "predict"):
1024
1128
  # keep mypy happy
1025
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1129
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1026
1130
  # For classifier, the type of predict is the same as the type of label
1027
- if self._sklearn_object._estimator_type == 'classifier':
1028
- # label columns is the desired type for output
1131
+ if self._sklearn_object._estimator_type == "classifier":
1132
+ # label columns is the desired type for output
1029
1133
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1030
1134
  # rename the output columns
1031
1135
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1032
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1033
- ([] if self._drop_input_cols else inputs)
1034
- + outputs)
1136
+ self._model_signature_dict["predict"] = ModelSignature(
1137
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1138
+ )
1035
1139
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1036
1140
  # For outlier models, returns -1 for outliers and 1 for inliers.
1037
- # Clusterer returns int64 cluster labels.
1141
+ # Clusterer returns int64 cluster labels.
1038
1142
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1039
1143
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1040
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1041
- ([] if self._drop_input_cols else inputs)
1042
- + outputs)
1043
-
1144
+ self._model_signature_dict["predict"] = ModelSignature(
1145
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1146
+ )
1147
+
1044
1148
  # For regressor, the type of predict is float64
1045
- elif self._sklearn_object._estimator_type == 'regressor':
1149
+ elif self._sklearn_object._estimator_type == "regressor":
1046
1150
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1047
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1048
- ([] if self._drop_input_cols else inputs)
1049
- + outputs)
1050
-
1151
+ self._model_signature_dict["predict"] = ModelSignature(
1152
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1153
+ )
1154
+
1051
1155
  for prob_func in PROB_FUNCTIONS:
1052
1156
  if hasattr(self, prob_func):
1053
1157
  output_cols_prefix: str = f"{prob_func}_"
1054
1158
  output_column_names = self._get_output_column_names(output_cols_prefix)
1055
1159
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1056
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1057
- ([] if self._drop_input_cols else inputs)
1058
- + outputs)
1160
+ self._model_signature_dict[prob_func] = ModelSignature(
1161
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1162
+ )
1059
1163
 
1060
1164
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1061
1165
  items = list(self._model_signature_dict.items())
@@ -1068,10 +1172,10 @@ class GaussianMixture(BaseTransformer):
1068
1172
  """Returns model signature of current class.
1069
1173
 
1070
1174
  Raises:
1071
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1175
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1072
1176
 
1073
1177
  Returns:
1074
- Dict[str, ModelSignature]: each method and its input output signature
1178
+ Dict with each method and its input output signature
1075
1179
  """
1076
1180
  if self._model_signature_dict is None:
1077
1181
  raise exceptions.SnowflakeMLException(
@@ -1079,35 +1183,3 @@ class GaussianMixture(BaseTransformer):
1079
1183
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1080
1184
  )
1081
1185
  return self._model_signature_dict
1082
-
1083
- def to_sklearn(self) -> Any:
1084
- """Get sklearn.mixture.GaussianMixture object.
1085
- """
1086
- if self._sklearn_object is None:
1087
- self._sklearn_object = self._create_sklearn_object()
1088
- return self._sklearn_object
1089
-
1090
- def to_xgboost(self) -> Any:
1091
- raise exceptions.SnowflakeMLException(
1092
- error_code=error_codes.METHOD_NOT_ALLOWED,
1093
- original_exception=AttributeError(
1094
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1095
- "to_xgboost()",
1096
- "to_sklearn()"
1097
- )
1098
- ),
1099
- )
1100
-
1101
- def to_lightgbm(self) -> Any:
1102
- raise exceptions.SnowflakeMLException(
1103
- error_code=error_codes.METHOD_NOT_ALLOWED,
1104
- original_exception=AttributeError(
1105
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1106
- "to_lightgbm()",
1107
- "to_sklearn()"
1108
- )
1109
- ),
1110
- )
1111
-
1112
- def _get_dependencies(self) -> List[str]:
1113
- return self._deps