snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -354,12 +353,7 @@ class SGDRegressor(BaseTransformer):
354
353
  )
355
354
  return selected_cols
356
355
 
357
- @telemetry.send_api_usage_telemetry(
358
- project=_PROJECT,
359
- subproject=_SUBPROJECT,
360
- custom_tags=dict([("autogen", True)]),
361
- )
362
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDRegressor":
356
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDRegressor":
363
357
  """Fit linear model with Stochastic Gradient Descent
364
358
  For more details on this function, see [sklearn.linear_model.SGDRegressor.fit]
365
359
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.SGDRegressor.fit)
@@ -386,12 +380,14 @@ class SGDRegressor(BaseTransformer):
386
380
 
387
381
  self._snowpark_cols = dataset.select(self.input_cols).columns
388
382
 
389
- # If we are already in a stored procedure, no need to kick off another one.
383
+ # If we are already in a stored procedure, no need to kick off another one.
390
384
  if SNOWML_SPROC_ENV in os.environ:
391
385
  statement_params = telemetry.get_function_usage_statement_params(
392
386
  project=_PROJECT,
393
387
  subproject=_SUBPROJECT,
394
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDRegressor.__class__.__name__),
388
+ function_name=telemetry.get_statement_params_full_func_name(
389
+ inspect.currentframe(), SGDRegressor.__class__.__name__
390
+ ),
395
391
  api_calls=[Session.call],
396
392
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
397
393
  )
@@ -412,7 +408,7 @@ class SGDRegressor(BaseTransformer):
412
408
  )
413
409
  self._sklearn_object = model_trainer.train()
414
410
  self._is_fitted = True
415
- self._get_model_signatures(dataset)
411
+ self._generate_model_signatures(dataset)
416
412
  return self
417
413
 
418
414
  def _batch_inference_validate_snowpark(
@@ -488,7 +484,9 @@ class SGDRegressor(BaseTransformer):
488
484
  # when it is classifier, infer the datatype from label columns
489
485
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
490
486
  # Batch inference takes a single expected output column type. Use the first columns type for now.
491
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
487
+ label_cols_signatures = [
488
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
489
+ ]
492
490
  if len(label_cols_signatures) == 0:
493
491
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
494
492
  raise exceptions.SnowflakeMLException(
@@ -496,25 +494,22 @@ class SGDRegressor(BaseTransformer):
496
494
  original_exception=ValueError(error_str),
497
495
  )
498
496
 
499
- expected_type_inferred = convert_sp_to_sf_type(
500
- label_cols_signatures[0].as_snowpark_type()
501
- )
497
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
502
498
 
503
499
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
504
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
500
+ assert isinstance(
501
+ dataset._session, Session
502
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
505
503
 
506
504
  transform_kwargs = dict(
507
- session = dataset._session,
508
- dependencies = self._deps,
509
- drop_input_cols = self._drop_input_cols,
510
- expected_output_cols_type = expected_type_inferred,
505
+ session=dataset._session,
506
+ dependencies=self._deps,
507
+ drop_input_cols=self._drop_input_cols,
508
+ expected_output_cols_type=expected_type_inferred,
511
509
  )
512
510
 
513
511
  elif isinstance(dataset, pd.DataFrame):
514
- transform_kwargs = dict(
515
- snowpark_input_cols = self._snowpark_cols,
516
- drop_input_cols = self._drop_input_cols
517
- )
512
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
518
513
 
519
514
  transform_handlers = ModelTransformerBuilder.build(
520
515
  dataset=dataset,
@@ -554,7 +549,7 @@ class SGDRegressor(BaseTransformer):
554
549
  Transformed dataset.
555
550
  """
556
551
  super()._check_dataset_type(dataset)
557
- inference_method="transform"
552
+ inference_method = "transform"
558
553
 
559
554
  # This dictionary contains optional kwargs for batch inference. These kwargs
560
555
  # are specific to the type of dataset used.
@@ -591,17 +586,14 @@ class SGDRegressor(BaseTransformer):
591
586
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
592
587
 
593
588
  transform_kwargs = dict(
594
- session = dataset._session,
595
- dependencies = self._deps,
596
- drop_input_cols = self._drop_input_cols,
597
- expected_output_cols_type = expected_dtype,
589
+ session=dataset._session,
590
+ dependencies=self._deps,
591
+ drop_input_cols=self._drop_input_cols,
592
+ expected_output_cols_type=expected_dtype,
598
593
  )
599
594
 
600
595
  elif isinstance(dataset, pd.DataFrame):
601
- transform_kwargs = dict(
602
- snowpark_input_cols = self._snowpark_cols,
603
- drop_input_cols = self._drop_input_cols
604
- )
596
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
605
597
 
606
598
  transform_handlers = ModelTransformerBuilder.build(
607
599
  dataset=dataset,
@@ -620,7 +612,11 @@ class SGDRegressor(BaseTransformer):
620
612
  return output_df
621
613
 
622
614
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
623
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
615
+ def fit_predict(
616
+ self,
617
+ dataset: Union[DataFrame, pd.DataFrame],
618
+ output_cols_prefix: str = "fit_predict_",
619
+ ) -> Union[DataFrame, pd.DataFrame]:
624
620
  """ Method not supported for this class.
625
621
 
626
622
 
@@ -645,7 +641,9 @@ class SGDRegressor(BaseTransformer):
645
641
  )
646
642
  output_result, fitted_estimator = model_trainer.train_fit_predict(
647
643
  drop_input_cols=self._drop_input_cols,
648
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
644
+ expected_output_cols_list=(
645
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
646
+ ),
649
647
  )
650
648
  self._sklearn_object = fitted_estimator
651
649
  self._is_fitted = True
@@ -662,6 +660,62 @@ class SGDRegressor(BaseTransformer):
662
660
  assert self._sklearn_object is not None
663
661
  return self._sklearn_object.embedding_
664
662
 
663
+
664
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
665
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
666
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
667
+ """
668
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
669
+ # The following condition is introduced for kneighbors methods, and not used in other methods
670
+ if output_cols:
671
+ output_cols = [
672
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
673
+ for c in output_cols
674
+ ]
675
+ elif getattr(self._sklearn_object, "classes_", None) is None:
676
+ output_cols = [output_cols_prefix]
677
+ elif self._sklearn_object is not None:
678
+ classes = self._sklearn_object.classes_
679
+ if isinstance(classes, numpy.ndarray):
680
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
681
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
682
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
683
+ output_cols = []
684
+ for i, cl in enumerate(classes):
685
+ # For binary classification, there is only one output column for each class
686
+ # ndarray as the two classes are complementary.
687
+ if len(cl) == 2:
688
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
689
+ else:
690
+ output_cols.extend([
691
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
692
+ ])
693
+ else:
694
+ output_cols = []
695
+
696
+ # Make sure column names are valid snowflake identifiers.
697
+ assert output_cols is not None # Make MyPy happy
698
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
699
+
700
+ return rv
701
+
702
+ def _align_expected_output_names(
703
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
704
+ ) -> List[str]:
705
+ # in case the inferred output column names dimension is different
706
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
707
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
708
+ output_df_columns = list(output_df_pd.columns)
709
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
710
+ if self.sample_weight_col:
711
+ output_df_columns_set -= set(self.sample_weight_col)
712
+ # if the dimension of inferred output column names is correct; use it
713
+ if len(expected_output_cols_list) == len(output_df_columns_set):
714
+ return expected_output_cols_list
715
+ # otherwise, use the sklearn estimator's output
716
+ else:
717
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
718
+
665
719
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
666
720
  @telemetry.send_api_usage_telemetry(
667
721
  project=_PROJECT,
@@ -692,24 +746,28 @@ class SGDRegressor(BaseTransformer):
692
746
  # are specific to the type of dataset used.
693
747
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
694
748
 
749
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
750
+
695
751
  if isinstance(dataset, DataFrame):
696
752
  self._deps = self._batch_inference_validate_snowpark(
697
753
  dataset=dataset,
698
754
  inference_method=inference_method,
699
755
  )
700
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
756
+ assert isinstance(
757
+ dataset._session, Session
758
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
701
759
  transform_kwargs = dict(
702
760
  session=dataset._session,
703
761
  dependencies=self._deps,
704
- drop_input_cols = self._drop_input_cols,
762
+ drop_input_cols=self._drop_input_cols,
705
763
  expected_output_cols_type="float",
706
764
  )
765
+ expected_output_cols = self._align_expected_output_names(
766
+ inference_method, dataset, expected_output_cols, output_cols_prefix
767
+ )
707
768
 
708
769
  elif isinstance(dataset, pd.DataFrame):
709
- transform_kwargs = dict(
710
- snowpark_input_cols = self._snowpark_cols,
711
- drop_input_cols = self._drop_input_cols
712
- )
770
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
713
771
 
714
772
  transform_handlers = ModelTransformerBuilder.build(
715
773
  dataset=dataset,
@@ -721,7 +779,7 @@ class SGDRegressor(BaseTransformer):
721
779
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
722
780
  inference_method=inference_method,
723
781
  input_cols=self.input_cols,
724
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
782
+ expected_output_cols=expected_output_cols,
725
783
  **transform_kwargs
726
784
  )
727
785
  return output_df
@@ -751,7 +809,8 @@ class SGDRegressor(BaseTransformer):
751
809
  Output dataset with log probability of the sample for each class in the model.
752
810
  """
753
811
  super()._check_dataset_type(dataset)
754
- inference_method="predict_log_proba"
812
+ inference_method = "predict_log_proba"
813
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
755
814
 
756
815
  # This dictionary contains optional kwargs for batch inference. These kwargs
757
816
  # are specific to the type of dataset used.
@@ -762,18 +821,20 @@ class SGDRegressor(BaseTransformer):
762
821
  dataset=dataset,
763
822
  inference_method=inference_method,
764
823
  )
765
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
824
+ assert isinstance(
825
+ dataset._session, Session
826
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
766
827
  transform_kwargs = dict(
767
828
  session=dataset._session,
768
829
  dependencies=self._deps,
769
- drop_input_cols = self._drop_input_cols,
830
+ drop_input_cols=self._drop_input_cols,
770
831
  expected_output_cols_type="float",
771
832
  )
833
+ expected_output_cols = self._align_expected_output_names(
834
+ inference_method, dataset, expected_output_cols, output_cols_prefix
835
+ )
772
836
  elif isinstance(dataset, pd.DataFrame):
773
- transform_kwargs = dict(
774
- snowpark_input_cols = self._snowpark_cols,
775
- drop_input_cols = self._drop_input_cols
776
- )
837
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
777
838
 
778
839
  transform_handlers = ModelTransformerBuilder.build(
779
840
  dataset=dataset,
@@ -786,7 +847,7 @@ class SGDRegressor(BaseTransformer):
786
847
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
787
848
  inference_method=inference_method,
788
849
  input_cols=self.input_cols,
789
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
850
+ expected_output_cols=expected_output_cols,
790
851
  **transform_kwargs
791
852
  )
792
853
  return output_df
@@ -812,30 +873,34 @@ class SGDRegressor(BaseTransformer):
812
873
  Output dataset with results of the decision function for the samples in input dataset.
813
874
  """
814
875
  super()._check_dataset_type(dataset)
815
- inference_method="decision_function"
876
+ inference_method = "decision_function"
816
877
 
817
878
  # This dictionary contains optional kwargs for batch inference. These kwargs
818
879
  # are specific to the type of dataset used.
819
880
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
820
881
 
882
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
883
+
821
884
  if isinstance(dataset, DataFrame):
822
885
  self._deps = self._batch_inference_validate_snowpark(
823
886
  dataset=dataset,
824
887
  inference_method=inference_method,
825
888
  )
826
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
889
+ assert isinstance(
890
+ dataset._session, Session
891
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
827
892
  transform_kwargs = dict(
828
893
  session=dataset._session,
829
894
  dependencies=self._deps,
830
- drop_input_cols = self._drop_input_cols,
895
+ drop_input_cols=self._drop_input_cols,
831
896
  expected_output_cols_type="float",
832
897
  )
898
+ expected_output_cols = self._align_expected_output_names(
899
+ inference_method, dataset, expected_output_cols, output_cols_prefix
900
+ )
833
901
 
834
902
  elif isinstance(dataset, pd.DataFrame):
835
- transform_kwargs = dict(
836
- snowpark_input_cols = self._snowpark_cols,
837
- drop_input_cols = self._drop_input_cols
838
- )
903
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
839
904
 
840
905
  transform_handlers = ModelTransformerBuilder.build(
841
906
  dataset=dataset,
@@ -848,7 +913,7 @@ class SGDRegressor(BaseTransformer):
848
913
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
849
914
  inference_method=inference_method,
850
915
  input_cols=self.input_cols,
851
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
916
+ expected_output_cols=expected_output_cols,
852
917
  **transform_kwargs
853
918
  )
854
919
  return output_df
@@ -877,12 +942,14 @@ class SGDRegressor(BaseTransformer):
877
942
  Output dataset with probability of the sample for each class in the model.
878
943
  """
879
944
  super()._check_dataset_type(dataset)
880
- inference_method="score_samples"
945
+ inference_method = "score_samples"
881
946
 
882
947
  # This dictionary contains optional kwargs for batch inference. These kwargs
883
948
  # are specific to the type of dataset used.
884
949
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
885
950
 
951
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
952
+
886
953
  if isinstance(dataset, DataFrame):
887
954
  self._deps = self._batch_inference_validate_snowpark(
888
955
  dataset=dataset,
@@ -895,6 +962,9 @@ class SGDRegressor(BaseTransformer):
895
962
  drop_input_cols = self._drop_input_cols,
896
963
  expected_output_cols_type="float",
897
964
  )
965
+ expected_output_cols = self._align_expected_output_names(
966
+ inference_method, dataset, expected_output_cols, output_cols_prefix
967
+ )
898
968
 
899
969
  elif isinstance(dataset, pd.DataFrame):
900
970
  transform_kwargs = dict(
@@ -913,7 +983,7 @@ class SGDRegressor(BaseTransformer):
913
983
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
914
984
  inference_method=inference_method,
915
985
  input_cols=self.input_cols,
916
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
986
+ expected_output_cols=expected_output_cols,
917
987
  **transform_kwargs
918
988
  )
919
989
  return output_df
@@ -1060,50 +1130,84 @@ class SGDRegressor(BaseTransformer):
1060
1130
  )
1061
1131
  return output_df
1062
1132
 
1133
+
1134
+
1135
+ def to_sklearn(self) -> Any:
1136
+ """Get sklearn.linear_model.SGDRegressor object.
1137
+ """
1138
+ if self._sklearn_object is None:
1139
+ self._sklearn_object = self._create_sklearn_object()
1140
+ return self._sklearn_object
1141
+
1142
+ def to_xgboost(self) -> Any:
1143
+ raise exceptions.SnowflakeMLException(
1144
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1145
+ original_exception=AttributeError(
1146
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1147
+ "to_xgboost()",
1148
+ "to_sklearn()"
1149
+ )
1150
+ ),
1151
+ )
1152
+
1153
+ def to_lightgbm(self) -> Any:
1154
+ raise exceptions.SnowflakeMLException(
1155
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1156
+ original_exception=AttributeError(
1157
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1158
+ "to_lightgbm()",
1159
+ "to_sklearn()"
1160
+ )
1161
+ ),
1162
+ )
1063
1163
 
1064
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1164
+ def _get_dependencies(self) -> List[str]:
1165
+ return self._deps
1166
+
1167
+
1168
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1065
1169
  self._model_signature_dict = dict()
1066
1170
 
1067
1171
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1068
1172
 
1069
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1173
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1070
1174
  outputs: List[BaseFeatureSpec] = []
1071
1175
  if hasattr(self, "predict"):
1072
1176
  # keep mypy happy
1073
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1177
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1074
1178
  # For classifier, the type of predict is the same as the type of label
1075
- if self._sklearn_object._estimator_type == 'classifier':
1076
- # label columns is the desired type for output
1179
+ if self._sklearn_object._estimator_type == "classifier":
1180
+ # label columns is the desired type for output
1077
1181
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1078
1182
  # rename the output columns
1079
1183
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1080
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1081
- ([] if self._drop_input_cols else inputs)
1082
- + outputs)
1184
+ self._model_signature_dict["predict"] = ModelSignature(
1185
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1186
+ )
1083
1187
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1084
1188
  # For outlier models, returns -1 for outliers and 1 for inliers.
1085
- # Clusterer returns int64 cluster labels.
1189
+ # Clusterer returns int64 cluster labels.
1086
1190
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1087
1191
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1088
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1089
- ([] if self._drop_input_cols else inputs)
1090
- + outputs)
1091
-
1192
+ self._model_signature_dict["predict"] = ModelSignature(
1193
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1194
+ )
1195
+
1092
1196
  # For regressor, the type of predict is float64
1093
- elif self._sklearn_object._estimator_type == 'regressor':
1197
+ elif self._sklearn_object._estimator_type == "regressor":
1094
1198
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1095
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1096
- ([] if self._drop_input_cols else inputs)
1097
- + outputs)
1098
-
1199
+ self._model_signature_dict["predict"] = ModelSignature(
1200
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1201
+ )
1202
+
1099
1203
  for prob_func in PROB_FUNCTIONS:
1100
1204
  if hasattr(self, prob_func):
1101
1205
  output_cols_prefix: str = f"{prob_func}_"
1102
1206
  output_column_names = self._get_output_column_names(output_cols_prefix)
1103
1207
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1104
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1105
- ([] if self._drop_input_cols else inputs)
1106
- + outputs)
1208
+ self._model_signature_dict[prob_func] = ModelSignature(
1209
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1210
+ )
1107
1211
 
1108
1212
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1109
1213
  items = list(self._model_signature_dict.items())
@@ -1116,10 +1220,10 @@ class SGDRegressor(BaseTransformer):
1116
1220
  """Returns model signature of current class.
1117
1221
 
1118
1222
  Raises:
1119
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1223
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1120
1224
 
1121
1225
  Returns:
1122
- Dict[str, ModelSignature]: each method and its input output signature
1226
+ Dict with each method and its input output signature
1123
1227
  """
1124
1228
  if self._model_signature_dict is None:
1125
1229
  raise exceptions.SnowflakeMLException(
@@ -1127,35 +1231,3 @@ class SGDRegressor(BaseTransformer):
1127
1231
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1128
1232
  )
1129
1233
  return self._model_signature_dict
1130
-
1131
- def to_sklearn(self) -> Any:
1132
- """Get sklearn.linear_model.SGDRegressor object.
1133
- """
1134
- if self._sklearn_object is None:
1135
- self._sklearn_object = self._create_sklearn_object()
1136
- return self._sklearn_object
1137
-
1138
- def to_xgboost(self) -> Any:
1139
- raise exceptions.SnowflakeMLException(
1140
- error_code=error_codes.METHOD_NOT_ALLOWED,
1141
- original_exception=AttributeError(
1142
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1143
- "to_xgboost()",
1144
- "to_sklearn()"
1145
- )
1146
- ),
1147
- )
1148
-
1149
- def to_lightgbm(self) -> Any:
1150
- raise exceptions.SnowflakeMLException(
1151
- error_code=error_codes.METHOD_NOT_ALLOWED,
1152
- original_exception=AttributeError(
1153
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1154
- "to_lightgbm()",
1155
- "to_sklearn()"
1156
- )
1157
- ),
1158
- )
1159
-
1160
- def _get_dependencies(self) -> List[str]:
1161
- return self._deps