snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -339,12 +338,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
339
338
  )
340
339
  return selected_cols
341
340
 
342
- @telemetry.send_api_usage_telemetry(
343
- project=_PROJECT,
344
- subproject=_SUBPROJECT,
345
- custom_tags=dict([("autogen", True)]),
346
- )
347
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MiniBatchDictionaryLearning":
341
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MiniBatchDictionaryLearning":
348
342
  """Fit the model from data in X
349
343
  For more details on this function, see [sklearn.decomposition.MiniBatchDictionaryLearning.fit]
350
344
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.MiniBatchDictionaryLearning.html#sklearn.decomposition.MiniBatchDictionaryLearning.fit)
@@ -371,12 +365,14 @@ class MiniBatchDictionaryLearning(BaseTransformer):
371
365
 
372
366
  self._snowpark_cols = dataset.select(self.input_cols).columns
373
367
 
374
- # If we are already in a stored procedure, no need to kick off another one.
368
+ # If we are already in a stored procedure, no need to kick off another one.
375
369
  if SNOWML_SPROC_ENV in os.environ:
376
370
  statement_params = telemetry.get_function_usage_statement_params(
377
371
  project=_PROJECT,
378
372
  subproject=_SUBPROJECT,
379
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MiniBatchDictionaryLearning.__class__.__name__),
373
+ function_name=telemetry.get_statement_params_full_func_name(
374
+ inspect.currentframe(), MiniBatchDictionaryLearning.__class__.__name__
375
+ ),
380
376
  api_calls=[Session.call],
381
377
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
382
378
  )
@@ -397,7 +393,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
397
393
  )
398
394
  self._sklearn_object = model_trainer.train()
399
395
  self._is_fitted = True
400
- self._get_model_signatures(dataset)
396
+ self._generate_model_signatures(dataset)
401
397
  return self
402
398
 
403
399
  def _batch_inference_validate_snowpark(
@@ -471,7 +467,9 @@ class MiniBatchDictionaryLearning(BaseTransformer):
471
467
  # when it is classifier, infer the datatype from label columns
472
468
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
473
469
  # Batch inference takes a single expected output column type. Use the first columns type for now.
474
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
470
+ label_cols_signatures = [
471
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
472
+ ]
475
473
  if len(label_cols_signatures) == 0:
476
474
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
477
475
  raise exceptions.SnowflakeMLException(
@@ -479,25 +477,22 @@ class MiniBatchDictionaryLearning(BaseTransformer):
479
477
  original_exception=ValueError(error_str),
480
478
  )
481
479
 
482
- expected_type_inferred = convert_sp_to_sf_type(
483
- label_cols_signatures[0].as_snowpark_type()
484
- )
480
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
485
481
 
486
482
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
487
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
483
+ assert isinstance(
484
+ dataset._session, Session
485
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
488
486
 
489
487
  transform_kwargs = dict(
490
- session = dataset._session,
491
- dependencies = self._deps,
492
- drop_input_cols = self._drop_input_cols,
493
- expected_output_cols_type = expected_type_inferred,
488
+ session=dataset._session,
489
+ dependencies=self._deps,
490
+ drop_input_cols=self._drop_input_cols,
491
+ expected_output_cols_type=expected_type_inferred,
494
492
  )
495
493
 
496
494
  elif isinstance(dataset, pd.DataFrame):
497
- transform_kwargs = dict(
498
- snowpark_input_cols = self._snowpark_cols,
499
- drop_input_cols = self._drop_input_cols
500
- )
495
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
501
496
 
502
497
  transform_handlers = ModelTransformerBuilder.build(
503
498
  dataset=dataset,
@@ -539,7 +534,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
539
534
  Transformed dataset.
540
535
  """
541
536
  super()._check_dataset_type(dataset)
542
- inference_method="transform"
537
+ inference_method = "transform"
543
538
 
544
539
  # This dictionary contains optional kwargs for batch inference. These kwargs
545
540
  # are specific to the type of dataset used.
@@ -576,17 +571,14 @@ class MiniBatchDictionaryLearning(BaseTransformer):
576
571
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
577
572
 
578
573
  transform_kwargs = dict(
579
- session = dataset._session,
580
- dependencies = self._deps,
581
- drop_input_cols = self._drop_input_cols,
582
- expected_output_cols_type = expected_dtype,
574
+ session=dataset._session,
575
+ dependencies=self._deps,
576
+ drop_input_cols=self._drop_input_cols,
577
+ expected_output_cols_type=expected_dtype,
583
578
  )
584
579
 
585
580
  elif isinstance(dataset, pd.DataFrame):
586
- transform_kwargs = dict(
587
- snowpark_input_cols = self._snowpark_cols,
588
- drop_input_cols = self._drop_input_cols
589
- )
581
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
590
582
 
591
583
  transform_handlers = ModelTransformerBuilder.build(
592
584
  dataset=dataset,
@@ -605,7 +597,11 @@ class MiniBatchDictionaryLearning(BaseTransformer):
605
597
  return output_df
606
598
 
607
599
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
608
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
600
+ def fit_predict(
601
+ self,
602
+ dataset: Union[DataFrame, pd.DataFrame],
603
+ output_cols_prefix: str = "fit_predict_",
604
+ ) -> Union[DataFrame, pd.DataFrame]:
609
605
  """ Method not supported for this class.
610
606
 
611
607
 
@@ -630,7 +626,9 @@ class MiniBatchDictionaryLearning(BaseTransformer):
630
626
  )
631
627
  output_result, fitted_estimator = model_trainer.train_fit_predict(
632
628
  drop_input_cols=self._drop_input_cols,
633
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
629
+ expected_output_cols_list=(
630
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
631
+ ),
634
632
  )
635
633
  self._sklearn_object = fitted_estimator
636
634
  self._is_fitted = True
@@ -647,6 +645,62 @@ class MiniBatchDictionaryLearning(BaseTransformer):
647
645
  assert self._sklearn_object is not None
648
646
  return self._sklearn_object.embedding_
649
647
 
648
+
649
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
650
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
651
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
652
+ """
653
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
654
+ # The following condition is introduced for kneighbors methods, and not used in other methods
655
+ if output_cols:
656
+ output_cols = [
657
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
658
+ for c in output_cols
659
+ ]
660
+ elif getattr(self._sklearn_object, "classes_", None) is None:
661
+ output_cols = [output_cols_prefix]
662
+ elif self._sklearn_object is not None:
663
+ classes = self._sklearn_object.classes_
664
+ if isinstance(classes, numpy.ndarray):
665
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
666
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
667
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
668
+ output_cols = []
669
+ for i, cl in enumerate(classes):
670
+ # For binary classification, there is only one output column for each class
671
+ # ndarray as the two classes are complementary.
672
+ if len(cl) == 2:
673
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
674
+ else:
675
+ output_cols.extend([
676
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
677
+ ])
678
+ else:
679
+ output_cols = []
680
+
681
+ # Make sure column names are valid snowflake identifiers.
682
+ assert output_cols is not None # Make MyPy happy
683
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
684
+
685
+ return rv
686
+
687
+ def _align_expected_output_names(
688
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
689
+ ) -> List[str]:
690
+ # in case the inferred output column names dimension is different
691
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
692
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
693
+ output_df_columns = list(output_df_pd.columns)
694
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
695
+ if self.sample_weight_col:
696
+ output_df_columns_set -= set(self.sample_weight_col)
697
+ # if the dimension of inferred output column names is correct; use it
698
+ if len(expected_output_cols_list) == len(output_df_columns_set):
699
+ return expected_output_cols_list
700
+ # otherwise, use the sklearn estimator's output
701
+ else:
702
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
703
+
650
704
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
651
705
  @telemetry.send_api_usage_telemetry(
652
706
  project=_PROJECT,
@@ -677,24 +731,28 @@ class MiniBatchDictionaryLearning(BaseTransformer):
677
731
  # are specific to the type of dataset used.
678
732
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
679
733
 
734
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
735
+
680
736
  if isinstance(dataset, DataFrame):
681
737
  self._deps = self._batch_inference_validate_snowpark(
682
738
  dataset=dataset,
683
739
  inference_method=inference_method,
684
740
  )
685
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
741
+ assert isinstance(
742
+ dataset._session, Session
743
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
686
744
  transform_kwargs = dict(
687
745
  session=dataset._session,
688
746
  dependencies=self._deps,
689
- drop_input_cols = self._drop_input_cols,
747
+ drop_input_cols=self._drop_input_cols,
690
748
  expected_output_cols_type="float",
691
749
  )
750
+ expected_output_cols = self._align_expected_output_names(
751
+ inference_method, dataset, expected_output_cols, output_cols_prefix
752
+ )
692
753
 
693
754
  elif isinstance(dataset, pd.DataFrame):
694
- transform_kwargs = dict(
695
- snowpark_input_cols = self._snowpark_cols,
696
- drop_input_cols = self._drop_input_cols
697
- )
755
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
698
756
 
699
757
  transform_handlers = ModelTransformerBuilder.build(
700
758
  dataset=dataset,
@@ -706,7 +764,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
706
764
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
707
765
  inference_method=inference_method,
708
766
  input_cols=self.input_cols,
709
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
767
+ expected_output_cols=expected_output_cols,
710
768
  **transform_kwargs
711
769
  )
712
770
  return output_df
@@ -736,7 +794,8 @@ class MiniBatchDictionaryLearning(BaseTransformer):
736
794
  Output dataset with log probability of the sample for each class in the model.
737
795
  """
738
796
  super()._check_dataset_type(dataset)
739
- inference_method="predict_log_proba"
797
+ inference_method = "predict_log_proba"
798
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
740
799
 
741
800
  # This dictionary contains optional kwargs for batch inference. These kwargs
742
801
  # are specific to the type of dataset used.
@@ -747,18 +806,20 @@ class MiniBatchDictionaryLearning(BaseTransformer):
747
806
  dataset=dataset,
748
807
  inference_method=inference_method,
749
808
  )
750
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
809
+ assert isinstance(
810
+ dataset._session, Session
811
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
751
812
  transform_kwargs = dict(
752
813
  session=dataset._session,
753
814
  dependencies=self._deps,
754
- drop_input_cols = self._drop_input_cols,
815
+ drop_input_cols=self._drop_input_cols,
755
816
  expected_output_cols_type="float",
756
817
  )
818
+ expected_output_cols = self._align_expected_output_names(
819
+ inference_method, dataset, expected_output_cols, output_cols_prefix
820
+ )
757
821
  elif isinstance(dataset, pd.DataFrame):
758
- transform_kwargs = dict(
759
- snowpark_input_cols = self._snowpark_cols,
760
- drop_input_cols = self._drop_input_cols
761
- )
822
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
762
823
 
763
824
  transform_handlers = ModelTransformerBuilder.build(
764
825
  dataset=dataset,
@@ -771,7 +832,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
771
832
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
772
833
  inference_method=inference_method,
773
834
  input_cols=self.input_cols,
774
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
835
+ expected_output_cols=expected_output_cols,
775
836
  **transform_kwargs
776
837
  )
777
838
  return output_df
@@ -797,30 +858,34 @@ class MiniBatchDictionaryLearning(BaseTransformer):
797
858
  Output dataset with results of the decision function for the samples in input dataset.
798
859
  """
799
860
  super()._check_dataset_type(dataset)
800
- inference_method="decision_function"
861
+ inference_method = "decision_function"
801
862
 
802
863
  # This dictionary contains optional kwargs for batch inference. These kwargs
803
864
  # are specific to the type of dataset used.
804
865
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
805
866
 
867
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
868
+
806
869
  if isinstance(dataset, DataFrame):
807
870
  self._deps = self._batch_inference_validate_snowpark(
808
871
  dataset=dataset,
809
872
  inference_method=inference_method,
810
873
  )
811
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
874
+ assert isinstance(
875
+ dataset._session, Session
876
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
812
877
  transform_kwargs = dict(
813
878
  session=dataset._session,
814
879
  dependencies=self._deps,
815
- drop_input_cols = self._drop_input_cols,
880
+ drop_input_cols=self._drop_input_cols,
816
881
  expected_output_cols_type="float",
817
882
  )
883
+ expected_output_cols = self._align_expected_output_names(
884
+ inference_method, dataset, expected_output_cols, output_cols_prefix
885
+ )
818
886
 
819
887
  elif isinstance(dataset, pd.DataFrame):
820
- transform_kwargs = dict(
821
- snowpark_input_cols = self._snowpark_cols,
822
- drop_input_cols = self._drop_input_cols
823
- )
888
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
824
889
 
825
890
  transform_handlers = ModelTransformerBuilder.build(
826
891
  dataset=dataset,
@@ -833,7 +898,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
833
898
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
834
899
  inference_method=inference_method,
835
900
  input_cols=self.input_cols,
836
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
901
+ expected_output_cols=expected_output_cols,
837
902
  **transform_kwargs
838
903
  )
839
904
  return output_df
@@ -862,12 +927,14 @@ class MiniBatchDictionaryLearning(BaseTransformer):
862
927
  Output dataset with probability of the sample for each class in the model.
863
928
  """
864
929
  super()._check_dataset_type(dataset)
865
- inference_method="score_samples"
930
+ inference_method = "score_samples"
866
931
 
867
932
  # This dictionary contains optional kwargs for batch inference. These kwargs
868
933
  # are specific to the type of dataset used.
869
934
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
870
935
 
936
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
937
+
871
938
  if isinstance(dataset, DataFrame):
872
939
  self._deps = self._batch_inference_validate_snowpark(
873
940
  dataset=dataset,
@@ -880,6 +947,9 @@ class MiniBatchDictionaryLearning(BaseTransformer):
880
947
  drop_input_cols = self._drop_input_cols,
881
948
  expected_output_cols_type="float",
882
949
  )
950
+ expected_output_cols = self._align_expected_output_names(
951
+ inference_method, dataset, expected_output_cols, output_cols_prefix
952
+ )
883
953
 
884
954
  elif isinstance(dataset, pd.DataFrame):
885
955
  transform_kwargs = dict(
@@ -898,7 +968,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
898
968
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
899
969
  inference_method=inference_method,
900
970
  input_cols=self.input_cols,
901
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
971
+ expected_output_cols=expected_output_cols,
902
972
  **transform_kwargs
903
973
  )
904
974
  return output_df
@@ -1043,50 +1113,84 @@ class MiniBatchDictionaryLearning(BaseTransformer):
1043
1113
  )
1044
1114
  return output_df
1045
1115
 
1116
+
1117
+
1118
+ def to_sklearn(self) -> Any:
1119
+ """Get sklearn.decomposition.MiniBatchDictionaryLearning object.
1120
+ """
1121
+ if self._sklearn_object is None:
1122
+ self._sklearn_object = self._create_sklearn_object()
1123
+ return self._sklearn_object
1124
+
1125
+ def to_xgboost(self) -> Any:
1126
+ raise exceptions.SnowflakeMLException(
1127
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1128
+ original_exception=AttributeError(
1129
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1130
+ "to_xgboost()",
1131
+ "to_sklearn()"
1132
+ )
1133
+ ),
1134
+ )
1135
+
1136
+ def to_lightgbm(self) -> Any:
1137
+ raise exceptions.SnowflakeMLException(
1138
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1139
+ original_exception=AttributeError(
1140
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1141
+ "to_lightgbm()",
1142
+ "to_sklearn()"
1143
+ )
1144
+ ),
1145
+ )
1046
1146
 
1047
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1147
+ def _get_dependencies(self) -> List[str]:
1148
+ return self._deps
1149
+
1150
+
1151
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1048
1152
  self._model_signature_dict = dict()
1049
1153
 
1050
1154
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1051
1155
 
1052
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1156
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1053
1157
  outputs: List[BaseFeatureSpec] = []
1054
1158
  if hasattr(self, "predict"):
1055
1159
  # keep mypy happy
1056
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1160
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1057
1161
  # For classifier, the type of predict is the same as the type of label
1058
- if self._sklearn_object._estimator_type == 'classifier':
1059
- # label columns is the desired type for output
1162
+ if self._sklearn_object._estimator_type == "classifier":
1163
+ # label columns is the desired type for output
1060
1164
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1061
1165
  # rename the output columns
1062
1166
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1063
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1064
- ([] if self._drop_input_cols else inputs)
1065
- + outputs)
1167
+ self._model_signature_dict["predict"] = ModelSignature(
1168
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1169
+ )
1066
1170
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1067
1171
  # For outlier models, returns -1 for outliers and 1 for inliers.
1068
- # Clusterer returns int64 cluster labels.
1172
+ # Clusterer returns int64 cluster labels.
1069
1173
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1070
1174
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1071
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1072
- ([] if self._drop_input_cols else inputs)
1073
- + outputs)
1074
-
1175
+ self._model_signature_dict["predict"] = ModelSignature(
1176
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1177
+ )
1178
+
1075
1179
  # For regressor, the type of predict is float64
1076
- elif self._sklearn_object._estimator_type == 'regressor':
1180
+ elif self._sklearn_object._estimator_type == "regressor":
1077
1181
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1078
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1079
- ([] if self._drop_input_cols else inputs)
1080
- + outputs)
1081
-
1182
+ self._model_signature_dict["predict"] = ModelSignature(
1183
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1184
+ )
1185
+
1082
1186
  for prob_func in PROB_FUNCTIONS:
1083
1187
  if hasattr(self, prob_func):
1084
1188
  output_cols_prefix: str = f"{prob_func}_"
1085
1189
  output_column_names = self._get_output_column_names(output_cols_prefix)
1086
1190
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1087
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1088
- ([] if self._drop_input_cols else inputs)
1089
- + outputs)
1191
+ self._model_signature_dict[prob_func] = ModelSignature(
1192
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1193
+ )
1090
1194
 
1091
1195
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1092
1196
  items = list(self._model_signature_dict.items())
@@ -1099,10 +1203,10 @@ class MiniBatchDictionaryLearning(BaseTransformer):
1099
1203
  """Returns model signature of current class.
1100
1204
 
1101
1205
  Raises:
1102
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1206
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1103
1207
 
1104
1208
  Returns:
1105
- Dict[str, ModelSignature]: each method and its input output signature
1209
+ Dict with each method and its input output signature
1106
1210
  """
1107
1211
  if self._model_signature_dict is None:
1108
1212
  raise exceptions.SnowflakeMLException(
@@ -1110,35 +1214,3 @@ class MiniBatchDictionaryLearning(BaseTransformer):
1110
1214
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1111
1215
  )
1112
1216
  return self._model_signature_dict
1113
-
1114
- def to_sklearn(self) -> Any:
1115
- """Get sklearn.decomposition.MiniBatchDictionaryLearning object.
1116
- """
1117
- if self._sklearn_object is None:
1118
- self._sklearn_object = self._create_sklearn_object()
1119
- return self._sklearn_object
1120
-
1121
- def to_xgboost(self) -> Any:
1122
- raise exceptions.SnowflakeMLException(
1123
- error_code=error_codes.METHOD_NOT_ALLOWED,
1124
- original_exception=AttributeError(
1125
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1126
- "to_xgboost()",
1127
- "to_sklearn()"
1128
- )
1129
- ),
1130
- )
1131
-
1132
- def to_lightgbm(self) -> Any:
1133
- raise exceptions.SnowflakeMLException(
1134
- error_code=error_codes.METHOD_NOT_ALLOWED,
1135
- original_exception=AttributeError(
1136
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1137
- "to_lightgbm()",
1138
- "to_sklearn()"
1139
- )
1140
- ),
1141
- )
1142
-
1143
- def _get_dependencies(self) -> List[str]:
1144
- return self._deps