snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -263,12 +262,7 @@ class NearestNeighbors(BaseTransformer):
263
262
  )
264
263
  return selected_cols
265
264
 
266
- @telemetry.send_api_usage_telemetry(
267
- project=_PROJECT,
268
- subproject=_SUBPROJECT,
269
- custom_tags=dict([("autogen", True)]),
270
- )
271
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NearestNeighbors":
265
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NearestNeighbors":
272
266
  """Fit the nearest neighbors estimator from the training dataset
273
267
  For more details on this function, see [sklearn.neighbors.NearestNeighbors.fit]
274
268
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors.fit)
@@ -295,12 +289,14 @@ class NearestNeighbors(BaseTransformer):
295
289
 
296
290
  self._snowpark_cols = dataset.select(self.input_cols).columns
297
291
 
298
- # If we are already in a stored procedure, no need to kick off another one.
292
+ # If we are already in a stored procedure, no need to kick off another one.
299
293
  if SNOWML_SPROC_ENV in os.environ:
300
294
  statement_params = telemetry.get_function_usage_statement_params(
301
295
  project=_PROJECT,
302
296
  subproject=_SUBPROJECT,
303
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NearestNeighbors.__class__.__name__),
297
+ function_name=telemetry.get_statement_params_full_func_name(
298
+ inspect.currentframe(), NearestNeighbors.__class__.__name__
299
+ ),
304
300
  api_calls=[Session.call],
305
301
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
306
302
  )
@@ -321,7 +317,7 @@ class NearestNeighbors(BaseTransformer):
321
317
  )
322
318
  self._sklearn_object = model_trainer.train()
323
319
  self._is_fitted = True
324
- self._get_model_signatures(dataset)
320
+ self._generate_model_signatures(dataset)
325
321
  return self
326
322
 
327
323
  def _batch_inference_validate_snowpark(
@@ -395,7 +391,9 @@ class NearestNeighbors(BaseTransformer):
395
391
  # when it is classifier, infer the datatype from label columns
396
392
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
397
393
  # Batch inference takes a single expected output column type. Use the first columns type for now.
398
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
394
+ label_cols_signatures = [
395
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
396
+ ]
399
397
  if len(label_cols_signatures) == 0:
400
398
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
401
399
  raise exceptions.SnowflakeMLException(
@@ -403,25 +401,22 @@ class NearestNeighbors(BaseTransformer):
403
401
  original_exception=ValueError(error_str),
404
402
  )
405
403
 
406
- expected_type_inferred = convert_sp_to_sf_type(
407
- label_cols_signatures[0].as_snowpark_type()
408
- )
404
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
409
405
 
410
406
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
411
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
407
+ assert isinstance(
408
+ dataset._session, Session
409
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
412
410
 
413
411
  transform_kwargs = dict(
414
- session = dataset._session,
415
- dependencies = self._deps,
416
- drop_input_cols = self._drop_input_cols,
417
- expected_output_cols_type = expected_type_inferred,
412
+ session=dataset._session,
413
+ dependencies=self._deps,
414
+ drop_input_cols=self._drop_input_cols,
415
+ expected_output_cols_type=expected_type_inferred,
418
416
  )
419
417
 
420
418
  elif isinstance(dataset, pd.DataFrame):
421
- transform_kwargs = dict(
422
- snowpark_input_cols = self._snowpark_cols,
423
- drop_input_cols = self._drop_input_cols
424
- )
419
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
425
420
 
426
421
  transform_handlers = ModelTransformerBuilder.build(
427
422
  dataset=dataset,
@@ -461,7 +456,7 @@ class NearestNeighbors(BaseTransformer):
461
456
  Transformed dataset.
462
457
  """
463
458
  super()._check_dataset_type(dataset)
464
- inference_method="transform"
459
+ inference_method = "transform"
465
460
 
466
461
  # This dictionary contains optional kwargs for batch inference. These kwargs
467
462
  # are specific to the type of dataset used.
@@ -498,17 +493,14 @@ class NearestNeighbors(BaseTransformer):
498
493
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
499
494
 
500
495
  transform_kwargs = dict(
501
- session = dataset._session,
502
- dependencies = self._deps,
503
- drop_input_cols = self._drop_input_cols,
504
- expected_output_cols_type = expected_dtype,
496
+ session=dataset._session,
497
+ dependencies=self._deps,
498
+ drop_input_cols=self._drop_input_cols,
499
+ expected_output_cols_type=expected_dtype,
505
500
  )
506
501
 
507
502
  elif isinstance(dataset, pd.DataFrame):
508
- transform_kwargs = dict(
509
- snowpark_input_cols = self._snowpark_cols,
510
- drop_input_cols = self._drop_input_cols
511
- )
503
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
512
504
 
513
505
  transform_handlers = ModelTransformerBuilder.build(
514
506
  dataset=dataset,
@@ -527,7 +519,11 @@ class NearestNeighbors(BaseTransformer):
527
519
  return output_df
528
520
 
529
521
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
530
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
522
+ def fit_predict(
523
+ self,
524
+ dataset: Union[DataFrame, pd.DataFrame],
525
+ output_cols_prefix: str = "fit_predict_",
526
+ ) -> Union[DataFrame, pd.DataFrame]:
531
527
  """ Method not supported for this class.
532
528
 
533
529
 
@@ -552,7 +548,9 @@ class NearestNeighbors(BaseTransformer):
552
548
  )
553
549
  output_result, fitted_estimator = model_trainer.train_fit_predict(
554
550
  drop_input_cols=self._drop_input_cols,
555
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
551
+ expected_output_cols_list=(
552
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
553
+ ),
556
554
  )
557
555
  self._sklearn_object = fitted_estimator
558
556
  self._is_fitted = True
@@ -569,6 +567,62 @@ class NearestNeighbors(BaseTransformer):
569
567
  assert self._sklearn_object is not None
570
568
  return self._sklearn_object.embedding_
571
569
 
570
+
571
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
572
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
573
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
574
+ """
575
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
576
+ # The following condition is introduced for kneighbors methods, and not used in other methods
577
+ if output_cols:
578
+ output_cols = [
579
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
580
+ for c in output_cols
581
+ ]
582
+ elif getattr(self._sklearn_object, "classes_", None) is None:
583
+ output_cols = [output_cols_prefix]
584
+ elif self._sklearn_object is not None:
585
+ classes = self._sklearn_object.classes_
586
+ if isinstance(classes, numpy.ndarray):
587
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
588
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
589
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
590
+ output_cols = []
591
+ for i, cl in enumerate(classes):
592
+ # For binary classification, there is only one output column for each class
593
+ # ndarray as the two classes are complementary.
594
+ if len(cl) == 2:
595
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
596
+ else:
597
+ output_cols.extend([
598
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
599
+ ])
600
+ else:
601
+ output_cols = []
602
+
603
+ # Make sure column names are valid snowflake identifiers.
604
+ assert output_cols is not None # Make MyPy happy
605
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
606
+
607
+ return rv
608
+
609
+ def _align_expected_output_names(
610
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
611
+ ) -> List[str]:
612
+ # in case the inferred output column names dimension is different
613
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
614
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
615
+ output_df_columns = list(output_df_pd.columns)
616
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
617
+ if self.sample_weight_col:
618
+ output_df_columns_set -= set(self.sample_weight_col)
619
+ # if the dimension of inferred output column names is correct; use it
620
+ if len(expected_output_cols_list) == len(output_df_columns_set):
621
+ return expected_output_cols_list
622
+ # otherwise, use the sklearn estimator's output
623
+ else:
624
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
625
+
572
626
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
573
627
  @telemetry.send_api_usage_telemetry(
574
628
  project=_PROJECT,
@@ -599,24 +653,28 @@ class NearestNeighbors(BaseTransformer):
599
653
  # are specific to the type of dataset used.
600
654
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
601
655
 
656
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
657
+
602
658
  if isinstance(dataset, DataFrame):
603
659
  self._deps = self._batch_inference_validate_snowpark(
604
660
  dataset=dataset,
605
661
  inference_method=inference_method,
606
662
  )
607
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
663
+ assert isinstance(
664
+ dataset._session, Session
665
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
608
666
  transform_kwargs = dict(
609
667
  session=dataset._session,
610
668
  dependencies=self._deps,
611
- drop_input_cols = self._drop_input_cols,
669
+ drop_input_cols=self._drop_input_cols,
612
670
  expected_output_cols_type="float",
613
671
  )
672
+ expected_output_cols = self._align_expected_output_names(
673
+ inference_method, dataset, expected_output_cols, output_cols_prefix
674
+ )
614
675
 
615
676
  elif isinstance(dataset, pd.DataFrame):
616
- transform_kwargs = dict(
617
- snowpark_input_cols = self._snowpark_cols,
618
- drop_input_cols = self._drop_input_cols
619
- )
677
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
620
678
 
621
679
  transform_handlers = ModelTransformerBuilder.build(
622
680
  dataset=dataset,
@@ -628,7 +686,7 @@ class NearestNeighbors(BaseTransformer):
628
686
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
629
687
  inference_method=inference_method,
630
688
  input_cols=self.input_cols,
631
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
689
+ expected_output_cols=expected_output_cols,
632
690
  **transform_kwargs
633
691
  )
634
692
  return output_df
@@ -658,7 +716,8 @@ class NearestNeighbors(BaseTransformer):
658
716
  Output dataset with log probability of the sample for each class in the model.
659
717
  """
660
718
  super()._check_dataset_type(dataset)
661
- inference_method="predict_log_proba"
719
+ inference_method = "predict_log_proba"
720
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
662
721
 
663
722
  # This dictionary contains optional kwargs for batch inference. These kwargs
664
723
  # are specific to the type of dataset used.
@@ -669,18 +728,20 @@ class NearestNeighbors(BaseTransformer):
669
728
  dataset=dataset,
670
729
  inference_method=inference_method,
671
730
  )
672
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
731
+ assert isinstance(
732
+ dataset._session, Session
733
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
673
734
  transform_kwargs = dict(
674
735
  session=dataset._session,
675
736
  dependencies=self._deps,
676
- drop_input_cols = self._drop_input_cols,
737
+ drop_input_cols=self._drop_input_cols,
677
738
  expected_output_cols_type="float",
678
739
  )
740
+ expected_output_cols = self._align_expected_output_names(
741
+ inference_method, dataset, expected_output_cols, output_cols_prefix
742
+ )
679
743
  elif isinstance(dataset, pd.DataFrame):
680
- transform_kwargs = dict(
681
- snowpark_input_cols = self._snowpark_cols,
682
- drop_input_cols = self._drop_input_cols
683
- )
744
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
684
745
 
685
746
  transform_handlers = ModelTransformerBuilder.build(
686
747
  dataset=dataset,
@@ -693,7 +754,7 @@ class NearestNeighbors(BaseTransformer):
693
754
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
694
755
  inference_method=inference_method,
695
756
  input_cols=self.input_cols,
696
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
757
+ expected_output_cols=expected_output_cols,
697
758
  **transform_kwargs
698
759
  )
699
760
  return output_df
@@ -719,30 +780,34 @@ class NearestNeighbors(BaseTransformer):
719
780
  Output dataset with results of the decision function for the samples in input dataset.
720
781
  """
721
782
  super()._check_dataset_type(dataset)
722
- inference_method="decision_function"
783
+ inference_method = "decision_function"
723
784
 
724
785
  # This dictionary contains optional kwargs for batch inference. These kwargs
725
786
  # are specific to the type of dataset used.
726
787
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
727
788
 
789
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
790
+
728
791
  if isinstance(dataset, DataFrame):
729
792
  self._deps = self._batch_inference_validate_snowpark(
730
793
  dataset=dataset,
731
794
  inference_method=inference_method,
732
795
  )
733
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
796
+ assert isinstance(
797
+ dataset._session, Session
798
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
734
799
  transform_kwargs = dict(
735
800
  session=dataset._session,
736
801
  dependencies=self._deps,
737
- drop_input_cols = self._drop_input_cols,
802
+ drop_input_cols=self._drop_input_cols,
738
803
  expected_output_cols_type="float",
739
804
  )
805
+ expected_output_cols = self._align_expected_output_names(
806
+ inference_method, dataset, expected_output_cols, output_cols_prefix
807
+ )
740
808
 
741
809
  elif isinstance(dataset, pd.DataFrame):
742
- transform_kwargs = dict(
743
- snowpark_input_cols = self._snowpark_cols,
744
- drop_input_cols = self._drop_input_cols
745
- )
810
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
746
811
 
747
812
  transform_handlers = ModelTransformerBuilder.build(
748
813
  dataset=dataset,
@@ -755,7 +820,7 @@ class NearestNeighbors(BaseTransformer):
755
820
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
756
821
  inference_method=inference_method,
757
822
  input_cols=self.input_cols,
758
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
823
+ expected_output_cols=expected_output_cols,
759
824
  **transform_kwargs
760
825
  )
761
826
  return output_df
@@ -784,12 +849,14 @@ class NearestNeighbors(BaseTransformer):
784
849
  Output dataset with probability of the sample for each class in the model.
785
850
  """
786
851
  super()._check_dataset_type(dataset)
787
- inference_method="score_samples"
852
+ inference_method = "score_samples"
788
853
 
789
854
  # This dictionary contains optional kwargs for batch inference. These kwargs
790
855
  # are specific to the type of dataset used.
791
856
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
792
857
 
858
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
859
+
793
860
  if isinstance(dataset, DataFrame):
794
861
  self._deps = self._batch_inference_validate_snowpark(
795
862
  dataset=dataset,
@@ -802,6 +869,9 @@ class NearestNeighbors(BaseTransformer):
802
869
  drop_input_cols = self._drop_input_cols,
803
870
  expected_output_cols_type="float",
804
871
  )
872
+ expected_output_cols = self._align_expected_output_names(
873
+ inference_method, dataset, expected_output_cols, output_cols_prefix
874
+ )
805
875
 
806
876
  elif isinstance(dataset, pd.DataFrame):
807
877
  transform_kwargs = dict(
@@ -820,7 +890,7 @@ class NearestNeighbors(BaseTransformer):
820
890
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
821
891
  inference_method=inference_method,
822
892
  input_cols=self.input_cols,
823
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
893
+ expected_output_cols=expected_output_cols,
824
894
  **transform_kwargs
825
895
  )
826
896
  return output_df
@@ -967,50 +1037,84 @@ class NearestNeighbors(BaseTransformer):
967
1037
  )
968
1038
  return output_df
969
1039
 
1040
+
1041
+
1042
+ def to_sklearn(self) -> Any:
1043
+ """Get sklearn.neighbors.NearestNeighbors object.
1044
+ """
1045
+ if self._sklearn_object is None:
1046
+ self._sklearn_object = self._create_sklearn_object()
1047
+ return self._sklearn_object
1048
+
1049
+ def to_xgboost(self) -> Any:
1050
+ raise exceptions.SnowflakeMLException(
1051
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1052
+ original_exception=AttributeError(
1053
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1054
+ "to_xgboost()",
1055
+ "to_sklearn()"
1056
+ )
1057
+ ),
1058
+ )
1059
+
1060
+ def to_lightgbm(self) -> Any:
1061
+ raise exceptions.SnowflakeMLException(
1062
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1063
+ original_exception=AttributeError(
1064
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1065
+ "to_lightgbm()",
1066
+ "to_sklearn()"
1067
+ )
1068
+ ),
1069
+ )
970
1070
 
971
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1071
+ def _get_dependencies(self) -> List[str]:
1072
+ return self._deps
1073
+
1074
+
1075
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
972
1076
  self._model_signature_dict = dict()
973
1077
 
974
1078
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
975
1079
 
976
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1080
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
977
1081
  outputs: List[BaseFeatureSpec] = []
978
1082
  if hasattr(self, "predict"):
979
1083
  # keep mypy happy
980
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1084
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
981
1085
  # For classifier, the type of predict is the same as the type of label
982
- if self._sklearn_object._estimator_type == 'classifier':
983
- # label columns is the desired type for output
1086
+ if self._sklearn_object._estimator_type == "classifier":
1087
+ # label columns is the desired type for output
984
1088
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
985
1089
  # rename the output columns
986
1090
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
987
- self._model_signature_dict["predict"] = ModelSignature(inputs,
988
- ([] if self._drop_input_cols else inputs)
989
- + outputs)
1091
+ self._model_signature_dict["predict"] = ModelSignature(
1092
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1093
+ )
990
1094
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
991
1095
  # For outlier models, returns -1 for outliers and 1 for inliers.
992
- # Clusterer returns int64 cluster labels.
1096
+ # Clusterer returns int64 cluster labels.
993
1097
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
994
1098
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
995
- self._model_signature_dict["predict"] = ModelSignature(inputs,
996
- ([] if self._drop_input_cols else inputs)
997
- + outputs)
998
-
1099
+ self._model_signature_dict["predict"] = ModelSignature(
1100
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1101
+ )
1102
+
999
1103
  # For regressor, the type of predict is float64
1000
- elif self._sklearn_object._estimator_type == 'regressor':
1104
+ elif self._sklearn_object._estimator_type == "regressor":
1001
1105
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1002
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1005
-
1106
+ self._model_signature_dict["predict"] = ModelSignature(
1107
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1108
+ )
1109
+
1006
1110
  for prob_func in PROB_FUNCTIONS:
1007
1111
  if hasattr(self, prob_func):
1008
1112
  output_cols_prefix: str = f"{prob_func}_"
1009
1113
  output_column_names = self._get_output_column_names(output_cols_prefix)
1010
1114
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1011
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1012
- ([] if self._drop_input_cols else inputs)
1013
- + outputs)
1115
+ self._model_signature_dict[prob_func] = ModelSignature(
1116
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1117
+ )
1014
1118
 
1015
1119
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1016
1120
  items = list(self._model_signature_dict.items())
@@ -1023,10 +1127,10 @@ class NearestNeighbors(BaseTransformer):
1023
1127
  """Returns model signature of current class.
1024
1128
 
1025
1129
  Raises:
1026
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1130
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1027
1131
 
1028
1132
  Returns:
1029
- Dict[str, ModelSignature]: each method and its input output signature
1133
+ Dict with each method and its input output signature
1030
1134
  """
1031
1135
  if self._model_signature_dict is None:
1032
1136
  raise exceptions.SnowflakeMLException(
@@ -1034,35 +1138,3 @@ class NearestNeighbors(BaseTransformer):
1034
1138
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1035
1139
  )
1036
1140
  return self._model_signature_dict
1037
-
1038
- def to_sklearn(self) -> Any:
1039
- """Get sklearn.neighbors.NearestNeighbors object.
1040
- """
1041
- if self._sklearn_object is None:
1042
- self._sklearn_object = self._create_sklearn_object()
1043
- return self._sklearn_object
1044
-
1045
- def to_xgboost(self) -> Any:
1046
- raise exceptions.SnowflakeMLException(
1047
- error_code=error_codes.METHOD_NOT_ALLOWED,
1048
- original_exception=AttributeError(
1049
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1050
- "to_xgboost()",
1051
- "to_sklearn()"
1052
- )
1053
- ),
1054
- )
1055
-
1056
- def to_lightgbm(self) -> Any:
1057
- raise exceptions.SnowflakeMLException(
1058
- error_code=error_codes.METHOD_NOT_ALLOWED,
1059
- original_exception=AttributeError(
1060
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1061
- "to_lightgbm()",
1062
- "to_sklearn()"
1063
- )
1064
- ),
1065
- )
1066
-
1067
- def _get_dependencies(self) -> List[str]:
1068
- return self._deps