snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -277,12 +276,7 @@ class KMeans(BaseTransformer):
277
276
  )
278
277
  return selected_cols
279
278
 
280
- @telemetry.send_api_usage_telemetry(
281
- project=_PROJECT,
282
- subproject=_SUBPROJECT,
283
- custom_tags=dict([("autogen", True)]),
284
- )
285
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KMeans":
279
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KMeans":
286
280
  """Compute k-means clustering
287
281
  For more details on this function, see [sklearn.cluster.KMeans.fit]
288
282
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans.fit)
@@ -309,12 +303,14 @@ class KMeans(BaseTransformer):
309
303
 
310
304
  self._snowpark_cols = dataset.select(self.input_cols).columns
311
305
 
312
- # If we are already in a stored procedure, no need to kick off another one.
306
+ # If we are already in a stored procedure, no need to kick off another one.
313
307
  if SNOWML_SPROC_ENV in os.environ:
314
308
  statement_params = telemetry.get_function_usage_statement_params(
315
309
  project=_PROJECT,
316
310
  subproject=_SUBPROJECT,
317
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KMeans.__class__.__name__),
311
+ function_name=telemetry.get_statement_params_full_func_name(
312
+ inspect.currentframe(), KMeans.__class__.__name__
313
+ ),
318
314
  api_calls=[Session.call],
319
315
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
320
316
  )
@@ -335,7 +331,7 @@ class KMeans(BaseTransformer):
335
331
  )
336
332
  self._sklearn_object = model_trainer.train()
337
333
  self._is_fitted = True
338
- self._get_model_signatures(dataset)
334
+ self._generate_model_signatures(dataset)
339
335
  return self
340
336
 
341
337
  def _batch_inference_validate_snowpark(
@@ -411,7 +407,9 @@ class KMeans(BaseTransformer):
411
407
  # when it is classifier, infer the datatype from label columns
412
408
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
413
409
  # Batch inference takes a single expected output column type. Use the first columns type for now.
414
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
410
+ label_cols_signatures = [
411
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
412
+ ]
415
413
  if len(label_cols_signatures) == 0:
416
414
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
417
415
  raise exceptions.SnowflakeMLException(
@@ -419,25 +417,22 @@ class KMeans(BaseTransformer):
419
417
  original_exception=ValueError(error_str),
420
418
  )
421
419
 
422
- expected_type_inferred = convert_sp_to_sf_type(
423
- label_cols_signatures[0].as_snowpark_type()
424
- )
420
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
425
421
 
426
422
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
427
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
423
+ assert isinstance(
424
+ dataset._session, Session
425
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
428
426
 
429
427
  transform_kwargs = dict(
430
- session = dataset._session,
431
- dependencies = self._deps,
432
- drop_input_cols = self._drop_input_cols,
433
- expected_output_cols_type = expected_type_inferred,
428
+ session=dataset._session,
429
+ dependencies=self._deps,
430
+ drop_input_cols=self._drop_input_cols,
431
+ expected_output_cols_type=expected_type_inferred,
434
432
  )
435
433
 
436
434
  elif isinstance(dataset, pd.DataFrame):
437
- transform_kwargs = dict(
438
- snowpark_input_cols = self._snowpark_cols,
439
- drop_input_cols = self._drop_input_cols
440
- )
435
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
441
436
 
442
437
  transform_handlers = ModelTransformerBuilder.build(
443
438
  dataset=dataset,
@@ -479,7 +474,7 @@ class KMeans(BaseTransformer):
479
474
  Transformed dataset.
480
475
  """
481
476
  super()._check_dataset_type(dataset)
482
- inference_method="transform"
477
+ inference_method = "transform"
483
478
 
484
479
  # This dictionary contains optional kwargs for batch inference. These kwargs
485
480
  # are specific to the type of dataset used.
@@ -516,17 +511,14 @@ class KMeans(BaseTransformer):
516
511
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
517
512
 
518
513
  transform_kwargs = dict(
519
- session = dataset._session,
520
- dependencies = self._deps,
521
- drop_input_cols = self._drop_input_cols,
522
- expected_output_cols_type = expected_dtype,
514
+ session=dataset._session,
515
+ dependencies=self._deps,
516
+ drop_input_cols=self._drop_input_cols,
517
+ expected_output_cols_type=expected_dtype,
523
518
  )
524
519
 
525
520
  elif isinstance(dataset, pd.DataFrame):
526
- transform_kwargs = dict(
527
- snowpark_input_cols = self._snowpark_cols,
528
- drop_input_cols = self._drop_input_cols
529
- )
521
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
530
522
 
531
523
  transform_handlers = ModelTransformerBuilder.build(
532
524
  dataset=dataset,
@@ -545,7 +537,11 @@ class KMeans(BaseTransformer):
545
537
  return output_df
546
538
 
547
539
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
548
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
540
+ def fit_predict(
541
+ self,
542
+ dataset: Union[DataFrame, pd.DataFrame],
543
+ output_cols_prefix: str = "fit_predict_",
544
+ ) -> Union[DataFrame, pd.DataFrame]:
549
545
  """ Compute cluster centers and predict cluster index for each sample
550
546
  For more details on this function, see [sklearn.cluster.KMeans.fit_predict]
551
547
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans.fit_predict)
@@ -572,7 +568,9 @@ class KMeans(BaseTransformer):
572
568
  )
573
569
  output_result, fitted_estimator = model_trainer.train_fit_predict(
574
570
  drop_input_cols=self._drop_input_cols,
575
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
571
+ expected_output_cols_list=(
572
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
573
+ ),
576
574
  )
577
575
  self._sklearn_object = fitted_estimator
578
576
  self._is_fitted = True
@@ -589,6 +587,62 @@ class KMeans(BaseTransformer):
589
587
  assert self._sklearn_object is not None
590
588
  return self._sklearn_object.embedding_
591
589
 
590
+
591
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
592
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
593
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
594
+ """
595
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
596
+ # The following condition is introduced for kneighbors methods, and not used in other methods
597
+ if output_cols:
598
+ output_cols = [
599
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
600
+ for c in output_cols
601
+ ]
602
+ elif getattr(self._sklearn_object, "classes_", None) is None:
603
+ output_cols = [output_cols_prefix]
604
+ elif self._sklearn_object is not None:
605
+ classes = self._sklearn_object.classes_
606
+ if isinstance(classes, numpy.ndarray):
607
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
608
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
609
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
610
+ output_cols = []
611
+ for i, cl in enumerate(classes):
612
+ # For binary classification, there is only one output column for each class
613
+ # ndarray as the two classes are complementary.
614
+ if len(cl) == 2:
615
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
616
+ else:
617
+ output_cols.extend([
618
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
619
+ ])
620
+ else:
621
+ output_cols = []
622
+
623
+ # Make sure column names are valid snowflake identifiers.
624
+ assert output_cols is not None # Make MyPy happy
625
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
626
+
627
+ return rv
628
+
629
+ def _align_expected_output_names(
630
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
631
+ ) -> List[str]:
632
+ # in case the inferred output column names dimension is different
633
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
634
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
635
+ output_df_columns = list(output_df_pd.columns)
636
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
637
+ if self.sample_weight_col:
638
+ output_df_columns_set -= set(self.sample_weight_col)
639
+ # if the dimension of inferred output column names is correct; use it
640
+ if len(expected_output_cols_list) == len(output_df_columns_set):
641
+ return expected_output_cols_list
642
+ # otherwise, use the sklearn estimator's output
643
+ else:
644
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
645
+
592
646
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
593
647
  @telemetry.send_api_usage_telemetry(
594
648
  project=_PROJECT,
@@ -619,24 +673,28 @@ class KMeans(BaseTransformer):
619
673
  # are specific to the type of dataset used.
620
674
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
621
675
 
676
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
677
+
622
678
  if isinstance(dataset, DataFrame):
623
679
  self._deps = self._batch_inference_validate_snowpark(
624
680
  dataset=dataset,
625
681
  inference_method=inference_method,
626
682
  )
627
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
683
+ assert isinstance(
684
+ dataset._session, Session
685
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
628
686
  transform_kwargs = dict(
629
687
  session=dataset._session,
630
688
  dependencies=self._deps,
631
- drop_input_cols = self._drop_input_cols,
689
+ drop_input_cols=self._drop_input_cols,
632
690
  expected_output_cols_type="float",
633
691
  )
692
+ expected_output_cols = self._align_expected_output_names(
693
+ inference_method, dataset, expected_output_cols, output_cols_prefix
694
+ )
634
695
 
635
696
  elif isinstance(dataset, pd.DataFrame):
636
- transform_kwargs = dict(
637
- snowpark_input_cols = self._snowpark_cols,
638
- drop_input_cols = self._drop_input_cols
639
- )
697
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
640
698
 
641
699
  transform_handlers = ModelTransformerBuilder.build(
642
700
  dataset=dataset,
@@ -648,7 +706,7 @@ class KMeans(BaseTransformer):
648
706
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
649
707
  inference_method=inference_method,
650
708
  input_cols=self.input_cols,
651
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
709
+ expected_output_cols=expected_output_cols,
652
710
  **transform_kwargs
653
711
  )
654
712
  return output_df
@@ -678,7 +736,8 @@ class KMeans(BaseTransformer):
678
736
  Output dataset with log probability of the sample for each class in the model.
679
737
  """
680
738
  super()._check_dataset_type(dataset)
681
- inference_method="predict_log_proba"
739
+ inference_method = "predict_log_proba"
740
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
682
741
 
683
742
  # This dictionary contains optional kwargs for batch inference. These kwargs
684
743
  # are specific to the type of dataset used.
@@ -689,18 +748,20 @@ class KMeans(BaseTransformer):
689
748
  dataset=dataset,
690
749
  inference_method=inference_method,
691
750
  )
692
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
751
+ assert isinstance(
752
+ dataset._session, Session
753
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
693
754
  transform_kwargs = dict(
694
755
  session=dataset._session,
695
756
  dependencies=self._deps,
696
- drop_input_cols = self._drop_input_cols,
757
+ drop_input_cols=self._drop_input_cols,
697
758
  expected_output_cols_type="float",
698
759
  )
760
+ expected_output_cols = self._align_expected_output_names(
761
+ inference_method, dataset, expected_output_cols, output_cols_prefix
762
+ )
699
763
  elif isinstance(dataset, pd.DataFrame):
700
- transform_kwargs = dict(
701
- snowpark_input_cols = self._snowpark_cols,
702
- drop_input_cols = self._drop_input_cols
703
- )
764
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
704
765
 
705
766
  transform_handlers = ModelTransformerBuilder.build(
706
767
  dataset=dataset,
@@ -713,7 +774,7 @@ class KMeans(BaseTransformer):
713
774
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
714
775
  inference_method=inference_method,
715
776
  input_cols=self.input_cols,
716
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
777
+ expected_output_cols=expected_output_cols,
717
778
  **transform_kwargs
718
779
  )
719
780
  return output_df
@@ -739,30 +800,34 @@ class KMeans(BaseTransformer):
739
800
  Output dataset with results of the decision function for the samples in input dataset.
740
801
  """
741
802
  super()._check_dataset_type(dataset)
742
- inference_method="decision_function"
803
+ inference_method = "decision_function"
743
804
 
744
805
  # This dictionary contains optional kwargs for batch inference. These kwargs
745
806
  # are specific to the type of dataset used.
746
807
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
747
808
 
809
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
810
+
748
811
  if isinstance(dataset, DataFrame):
749
812
  self._deps = self._batch_inference_validate_snowpark(
750
813
  dataset=dataset,
751
814
  inference_method=inference_method,
752
815
  )
753
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
816
+ assert isinstance(
817
+ dataset._session, Session
818
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
754
819
  transform_kwargs = dict(
755
820
  session=dataset._session,
756
821
  dependencies=self._deps,
757
- drop_input_cols = self._drop_input_cols,
822
+ drop_input_cols=self._drop_input_cols,
758
823
  expected_output_cols_type="float",
759
824
  )
825
+ expected_output_cols = self._align_expected_output_names(
826
+ inference_method, dataset, expected_output_cols, output_cols_prefix
827
+ )
760
828
 
761
829
  elif isinstance(dataset, pd.DataFrame):
762
- transform_kwargs = dict(
763
- snowpark_input_cols = self._snowpark_cols,
764
- drop_input_cols = self._drop_input_cols
765
- )
830
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
766
831
 
767
832
  transform_handlers = ModelTransformerBuilder.build(
768
833
  dataset=dataset,
@@ -775,7 +840,7 @@ class KMeans(BaseTransformer):
775
840
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
776
841
  inference_method=inference_method,
777
842
  input_cols=self.input_cols,
778
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
843
+ expected_output_cols=expected_output_cols,
779
844
  **transform_kwargs
780
845
  )
781
846
  return output_df
@@ -804,12 +869,14 @@ class KMeans(BaseTransformer):
804
869
  Output dataset with probability of the sample for each class in the model.
805
870
  """
806
871
  super()._check_dataset_type(dataset)
807
- inference_method="score_samples"
872
+ inference_method = "score_samples"
808
873
 
809
874
  # This dictionary contains optional kwargs for batch inference. These kwargs
810
875
  # are specific to the type of dataset used.
811
876
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
812
877
 
878
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
879
+
813
880
  if isinstance(dataset, DataFrame):
814
881
  self._deps = self._batch_inference_validate_snowpark(
815
882
  dataset=dataset,
@@ -822,6 +889,9 @@ class KMeans(BaseTransformer):
822
889
  drop_input_cols = self._drop_input_cols,
823
890
  expected_output_cols_type="float",
824
891
  )
892
+ expected_output_cols = self._align_expected_output_names(
893
+ inference_method, dataset, expected_output_cols, output_cols_prefix
894
+ )
825
895
 
826
896
  elif isinstance(dataset, pd.DataFrame):
827
897
  transform_kwargs = dict(
@@ -840,7 +910,7 @@ class KMeans(BaseTransformer):
840
910
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
841
911
  inference_method=inference_method,
842
912
  input_cols=self.input_cols,
843
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
913
+ expected_output_cols=expected_output_cols,
844
914
  **transform_kwargs
845
915
  )
846
916
  return output_df
@@ -987,50 +1057,84 @@ class KMeans(BaseTransformer):
987
1057
  )
988
1058
  return output_df
989
1059
 
1060
+
1061
+
1062
+ def to_sklearn(self) -> Any:
1063
+ """Get sklearn.cluster.KMeans object.
1064
+ """
1065
+ if self._sklearn_object is None:
1066
+ self._sklearn_object = self._create_sklearn_object()
1067
+ return self._sklearn_object
1068
+
1069
+ def to_xgboost(self) -> Any:
1070
+ raise exceptions.SnowflakeMLException(
1071
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1072
+ original_exception=AttributeError(
1073
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1074
+ "to_xgboost()",
1075
+ "to_sklearn()"
1076
+ )
1077
+ ),
1078
+ )
1079
+
1080
+ def to_lightgbm(self) -> Any:
1081
+ raise exceptions.SnowflakeMLException(
1082
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1083
+ original_exception=AttributeError(
1084
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1085
+ "to_lightgbm()",
1086
+ "to_sklearn()"
1087
+ )
1088
+ ),
1089
+ )
990
1090
 
991
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1091
+ def _get_dependencies(self) -> List[str]:
1092
+ return self._deps
1093
+
1094
+
1095
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
992
1096
  self._model_signature_dict = dict()
993
1097
 
994
1098
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
995
1099
 
996
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1100
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
997
1101
  outputs: List[BaseFeatureSpec] = []
998
1102
  if hasattr(self, "predict"):
999
1103
  # keep mypy happy
1000
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1104
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1001
1105
  # For classifier, the type of predict is the same as the type of label
1002
- if self._sklearn_object._estimator_type == 'classifier':
1003
- # label columns is the desired type for output
1106
+ if self._sklearn_object._estimator_type == "classifier":
1107
+ # label columns is the desired type for output
1004
1108
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1005
1109
  # rename the output columns
1006
1110
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1007
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1008
- ([] if self._drop_input_cols else inputs)
1009
- + outputs)
1111
+ self._model_signature_dict["predict"] = ModelSignature(
1112
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1113
+ )
1010
1114
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1011
1115
  # For outlier models, returns -1 for outliers and 1 for inliers.
1012
- # Clusterer returns int64 cluster labels.
1116
+ # Clusterer returns int64 cluster labels.
1013
1117
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1014
1118
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1015
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1016
- ([] if self._drop_input_cols else inputs)
1017
- + outputs)
1018
-
1119
+ self._model_signature_dict["predict"] = ModelSignature(
1120
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1121
+ )
1122
+
1019
1123
  # For regressor, the type of predict is float64
1020
- elif self._sklearn_object._estimator_type == 'regressor':
1124
+ elif self._sklearn_object._estimator_type == "regressor":
1021
1125
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1022
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1023
- ([] if self._drop_input_cols else inputs)
1024
- + outputs)
1025
-
1126
+ self._model_signature_dict["predict"] = ModelSignature(
1127
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1128
+ )
1129
+
1026
1130
  for prob_func in PROB_FUNCTIONS:
1027
1131
  if hasattr(self, prob_func):
1028
1132
  output_cols_prefix: str = f"{prob_func}_"
1029
1133
  output_column_names = self._get_output_column_names(output_cols_prefix)
1030
1134
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1031
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1032
- ([] if self._drop_input_cols else inputs)
1033
- + outputs)
1135
+ self._model_signature_dict[prob_func] = ModelSignature(
1136
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1137
+ )
1034
1138
 
1035
1139
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1036
1140
  items = list(self._model_signature_dict.items())
@@ -1043,10 +1147,10 @@ class KMeans(BaseTransformer):
1043
1147
  """Returns model signature of current class.
1044
1148
 
1045
1149
  Raises:
1046
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1150
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1047
1151
 
1048
1152
  Returns:
1049
- Dict[str, ModelSignature]: each method and its input output signature
1153
+ Dict with each method and its input output signature
1050
1154
  """
1051
1155
  if self._model_signature_dict is None:
1052
1156
  raise exceptions.SnowflakeMLException(
@@ -1054,35 +1158,3 @@ class KMeans(BaseTransformer):
1054
1158
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1055
1159
  )
1056
1160
  return self._model_signature_dict
1057
-
1058
- def to_sklearn(self) -> Any:
1059
- """Get sklearn.cluster.KMeans object.
1060
- """
1061
- if self._sklearn_object is None:
1062
- self._sklearn_object = self._create_sklearn_object()
1063
- return self._sklearn_object
1064
-
1065
- def to_xgboost(self) -> Any:
1066
- raise exceptions.SnowflakeMLException(
1067
- error_code=error_codes.METHOD_NOT_ALLOWED,
1068
- original_exception=AttributeError(
1069
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1070
- "to_xgboost()",
1071
- "to_sklearn()"
1072
- )
1073
- ),
1074
- )
1075
-
1076
- def to_lightgbm(self) -> Any:
1077
- raise exceptions.SnowflakeMLException(
1078
- error_code=error_codes.METHOD_NOT_ALLOWED,
1079
- original_exception=AttributeError(
1080
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1081
- "to_lightgbm()",
1082
- "to_sklearn()"
1083
- )
1084
- ),
1085
- )
1086
-
1087
- def _get_dependencies(self) -> List[str]:
1088
- return self._deps