snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -255,12 +254,7 @@ class StackingRegressor(BaseTransformer):
255
254
  )
256
255
  return selected_cols
257
256
 
258
- @telemetry.send_api_usage_telemetry(
259
- project=_PROJECT,
260
- subproject=_SUBPROJECT,
261
- custom_tags=dict([("autogen", True)]),
262
- )
263
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "StackingRegressor":
257
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "StackingRegressor":
264
258
  """Fit the estimators
265
259
  For more details on this function, see [sklearn.ensemble.StackingRegressor.fit]
266
260
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html#sklearn.ensemble.StackingRegressor.fit)
@@ -287,12 +281,14 @@ class StackingRegressor(BaseTransformer):
287
281
 
288
282
  self._snowpark_cols = dataset.select(self.input_cols).columns
289
283
 
290
- # If we are already in a stored procedure, no need to kick off another one.
284
+ # If we are already in a stored procedure, no need to kick off another one.
291
285
  if SNOWML_SPROC_ENV in os.environ:
292
286
  statement_params = telemetry.get_function_usage_statement_params(
293
287
  project=_PROJECT,
294
288
  subproject=_SUBPROJECT,
295
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), StackingRegressor.__class__.__name__),
289
+ function_name=telemetry.get_statement_params_full_func_name(
290
+ inspect.currentframe(), StackingRegressor.__class__.__name__
291
+ ),
296
292
  api_calls=[Session.call],
297
293
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
298
294
  )
@@ -313,7 +309,7 @@ class StackingRegressor(BaseTransformer):
313
309
  )
314
310
  self._sklearn_object = model_trainer.train()
315
311
  self._is_fitted = True
316
- self._get_model_signatures(dataset)
312
+ self._generate_model_signatures(dataset)
317
313
  return self
318
314
 
319
315
  def _batch_inference_validate_snowpark(
@@ -389,7 +385,9 @@ class StackingRegressor(BaseTransformer):
389
385
  # when it is classifier, infer the datatype from label columns
390
386
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
391
387
  # Batch inference takes a single expected output column type. Use the first columns type for now.
392
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
388
+ label_cols_signatures = [
389
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
390
+ ]
393
391
  if len(label_cols_signatures) == 0:
394
392
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
395
393
  raise exceptions.SnowflakeMLException(
@@ -397,25 +395,22 @@ class StackingRegressor(BaseTransformer):
397
395
  original_exception=ValueError(error_str),
398
396
  )
399
397
 
400
- expected_type_inferred = convert_sp_to_sf_type(
401
- label_cols_signatures[0].as_snowpark_type()
402
- )
398
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
403
399
 
404
400
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
405
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
401
+ assert isinstance(
402
+ dataset._session, Session
403
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
406
404
 
407
405
  transform_kwargs = dict(
408
- session = dataset._session,
409
- dependencies = self._deps,
410
- drop_input_cols = self._drop_input_cols,
411
- expected_output_cols_type = expected_type_inferred,
406
+ session=dataset._session,
407
+ dependencies=self._deps,
408
+ drop_input_cols=self._drop_input_cols,
409
+ expected_output_cols_type=expected_type_inferred,
412
410
  )
413
411
 
414
412
  elif isinstance(dataset, pd.DataFrame):
415
- transform_kwargs = dict(
416
- snowpark_input_cols = self._snowpark_cols,
417
- drop_input_cols = self._drop_input_cols
418
- )
413
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
419
414
 
420
415
  transform_handlers = ModelTransformerBuilder.build(
421
416
  dataset=dataset,
@@ -457,7 +452,7 @@ class StackingRegressor(BaseTransformer):
457
452
  Transformed dataset.
458
453
  """
459
454
  super()._check_dataset_type(dataset)
460
- inference_method="transform"
455
+ inference_method = "transform"
461
456
 
462
457
  # This dictionary contains optional kwargs for batch inference. These kwargs
463
458
  # are specific to the type of dataset used.
@@ -494,17 +489,14 @@ class StackingRegressor(BaseTransformer):
494
489
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
495
490
 
496
491
  transform_kwargs = dict(
497
- session = dataset._session,
498
- dependencies = self._deps,
499
- drop_input_cols = self._drop_input_cols,
500
- expected_output_cols_type = expected_dtype,
492
+ session=dataset._session,
493
+ dependencies=self._deps,
494
+ drop_input_cols=self._drop_input_cols,
495
+ expected_output_cols_type=expected_dtype,
501
496
  )
502
497
 
503
498
  elif isinstance(dataset, pd.DataFrame):
504
- transform_kwargs = dict(
505
- snowpark_input_cols = self._snowpark_cols,
506
- drop_input_cols = self._drop_input_cols
507
- )
499
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
508
500
 
509
501
  transform_handlers = ModelTransformerBuilder.build(
510
502
  dataset=dataset,
@@ -523,7 +515,11 @@ class StackingRegressor(BaseTransformer):
523
515
  return output_df
524
516
 
525
517
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
526
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
518
+ def fit_predict(
519
+ self,
520
+ dataset: Union[DataFrame, pd.DataFrame],
521
+ output_cols_prefix: str = "fit_predict_",
522
+ ) -> Union[DataFrame, pd.DataFrame]:
527
523
  """ Method not supported for this class.
528
524
 
529
525
 
@@ -548,7 +544,9 @@ class StackingRegressor(BaseTransformer):
548
544
  )
549
545
  output_result, fitted_estimator = model_trainer.train_fit_predict(
550
546
  drop_input_cols=self._drop_input_cols,
551
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
547
+ expected_output_cols_list=(
548
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
549
+ ),
552
550
  )
553
551
  self._sklearn_object = fitted_estimator
554
552
  self._is_fitted = True
@@ -565,6 +563,62 @@ class StackingRegressor(BaseTransformer):
565
563
  assert self._sklearn_object is not None
566
564
  return self._sklearn_object.embedding_
567
565
 
566
+
567
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
568
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
569
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
570
+ """
571
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
572
+ # The following condition is introduced for kneighbors methods, and not used in other methods
573
+ if output_cols:
574
+ output_cols = [
575
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
576
+ for c in output_cols
577
+ ]
578
+ elif getattr(self._sklearn_object, "classes_", None) is None:
579
+ output_cols = [output_cols_prefix]
580
+ elif self._sklearn_object is not None:
581
+ classes = self._sklearn_object.classes_
582
+ if isinstance(classes, numpy.ndarray):
583
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
584
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
585
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
586
+ output_cols = []
587
+ for i, cl in enumerate(classes):
588
+ # For binary classification, there is only one output column for each class
589
+ # ndarray as the two classes are complementary.
590
+ if len(cl) == 2:
591
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
592
+ else:
593
+ output_cols.extend([
594
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
595
+ ])
596
+ else:
597
+ output_cols = []
598
+
599
+ # Make sure column names are valid snowflake identifiers.
600
+ assert output_cols is not None # Make MyPy happy
601
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
602
+
603
+ return rv
604
+
605
+ def _align_expected_output_names(
606
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
607
+ ) -> List[str]:
608
+ # in case the inferred output column names dimension is different
609
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
610
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
611
+ output_df_columns = list(output_df_pd.columns)
612
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
613
+ if self.sample_weight_col:
614
+ output_df_columns_set -= set(self.sample_weight_col)
615
+ # if the dimension of inferred output column names is correct; use it
616
+ if len(expected_output_cols_list) == len(output_df_columns_set):
617
+ return expected_output_cols_list
618
+ # otherwise, use the sklearn estimator's output
619
+ else:
620
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
621
+
568
622
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
569
623
  @telemetry.send_api_usage_telemetry(
570
624
  project=_PROJECT,
@@ -595,24 +649,28 @@ class StackingRegressor(BaseTransformer):
595
649
  # are specific to the type of dataset used.
596
650
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
597
651
 
652
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
653
+
598
654
  if isinstance(dataset, DataFrame):
599
655
  self._deps = self._batch_inference_validate_snowpark(
600
656
  dataset=dataset,
601
657
  inference_method=inference_method,
602
658
  )
603
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
659
+ assert isinstance(
660
+ dataset._session, Session
661
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
604
662
  transform_kwargs = dict(
605
663
  session=dataset._session,
606
664
  dependencies=self._deps,
607
- drop_input_cols = self._drop_input_cols,
665
+ drop_input_cols=self._drop_input_cols,
608
666
  expected_output_cols_type="float",
609
667
  )
668
+ expected_output_cols = self._align_expected_output_names(
669
+ inference_method, dataset, expected_output_cols, output_cols_prefix
670
+ )
610
671
 
611
672
  elif isinstance(dataset, pd.DataFrame):
612
- transform_kwargs = dict(
613
- snowpark_input_cols = self._snowpark_cols,
614
- drop_input_cols = self._drop_input_cols
615
- )
673
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
616
674
 
617
675
  transform_handlers = ModelTransformerBuilder.build(
618
676
  dataset=dataset,
@@ -624,7 +682,7 @@ class StackingRegressor(BaseTransformer):
624
682
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
625
683
  inference_method=inference_method,
626
684
  input_cols=self.input_cols,
627
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
685
+ expected_output_cols=expected_output_cols,
628
686
  **transform_kwargs
629
687
  )
630
688
  return output_df
@@ -654,7 +712,8 @@ class StackingRegressor(BaseTransformer):
654
712
  Output dataset with log probability of the sample for each class in the model.
655
713
  """
656
714
  super()._check_dataset_type(dataset)
657
- inference_method="predict_log_proba"
715
+ inference_method = "predict_log_proba"
716
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
658
717
 
659
718
  # This dictionary contains optional kwargs for batch inference. These kwargs
660
719
  # are specific to the type of dataset used.
@@ -665,18 +724,20 @@ class StackingRegressor(BaseTransformer):
665
724
  dataset=dataset,
666
725
  inference_method=inference_method,
667
726
  )
668
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
727
+ assert isinstance(
728
+ dataset._session, Session
729
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
669
730
  transform_kwargs = dict(
670
731
  session=dataset._session,
671
732
  dependencies=self._deps,
672
- drop_input_cols = self._drop_input_cols,
733
+ drop_input_cols=self._drop_input_cols,
673
734
  expected_output_cols_type="float",
674
735
  )
736
+ expected_output_cols = self._align_expected_output_names(
737
+ inference_method, dataset, expected_output_cols, output_cols_prefix
738
+ )
675
739
  elif isinstance(dataset, pd.DataFrame):
676
- transform_kwargs = dict(
677
- snowpark_input_cols = self._snowpark_cols,
678
- drop_input_cols = self._drop_input_cols
679
- )
740
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
680
741
 
681
742
  transform_handlers = ModelTransformerBuilder.build(
682
743
  dataset=dataset,
@@ -689,7 +750,7 @@ class StackingRegressor(BaseTransformer):
689
750
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
690
751
  inference_method=inference_method,
691
752
  input_cols=self.input_cols,
692
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
753
+ expected_output_cols=expected_output_cols,
693
754
  **transform_kwargs
694
755
  )
695
756
  return output_df
@@ -715,30 +776,34 @@ class StackingRegressor(BaseTransformer):
715
776
  Output dataset with results of the decision function for the samples in input dataset.
716
777
  """
717
778
  super()._check_dataset_type(dataset)
718
- inference_method="decision_function"
779
+ inference_method = "decision_function"
719
780
 
720
781
  # This dictionary contains optional kwargs for batch inference. These kwargs
721
782
  # are specific to the type of dataset used.
722
783
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
723
784
 
785
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
786
+
724
787
  if isinstance(dataset, DataFrame):
725
788
  self._deps = self._batch_inference_validate_snowpark(
726
789
  dataset=dataset,
727
790
  inference_method=inference_method,
728
791
  )
729
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
792
+ assert isinstance(
793
+ dataset._session, Session
794
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
730
795
  transform_kwargs = dict(
731
796
  session=dataset._session,
732
797
  dependencies=self._deps,
733
- drop_input_cols = self._drop_input_cols,
798
+ drop_input_cols=self._drop_input_cols,
734
799
  expected_output_cols_type="float",
735
800
  )
801
+ expected_output_cols = self._align_expected_output_names(
802
+ inference_method, dataset, expected_output_cols, output_cols_prefix
803
+ )
736
804
 
737
805
  elif isinstance(dataset, pd.DataFrame):
738
- transform_kwargs = dict(
739
- snowpark_input_cols = self._snowpark_cols,
740
- drop_input_cols = self._drop_input_cols
741
- )
806
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
742
807
 
743
808
  transform_handlers = ModelTransformerBuilder.build(
744
809
  dataset=dataset,
@@ -751,7 +816,7 @@ class StackingRegressor(BaseTransformer):
751
816
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
752
817
  inference_method=inference_method,
753
818
  input_cols=self.input_cols,
754
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
819
+ expected_output_cols=expected_output_cols,
755
820
  **transform_kwargs
756
821
  )
757
822
  return output_df
@@ -780,12 +845,14 @@ class StackingRegressor(BaseTransformer):
780
845
  Output dataset with probability of the sample for each class in the model.
781
846
  """
782
847
  super()._check_dataset_type(dataset)
783
- inference_method="score_samples"
848
+ inference_method = "score_samples"
784
849
 
785
850
  # This dictionary contains optional kwargs for batch inference. These kwargs
786
851
  # are specific to the type of dataset used.
787
852
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
788
853
 
854
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
855
+
789
856
  if isinstance(dataset, DataFrame):
790
857
  self._deps = self._batch_inference_validate_snowpark(
791
858
  dataset=dataset,
@@ -798,6 +865,9 @@ class StackingRegressor(BaseTransformer):
798
865
  drop_input_cols = self._drop_input_cols,
799
866
  expected_output_cols_type="float",
800
867
  )
868
+ expected_output_cols = self._align_expected_output_names(
869
+ inference_method, dataset, expected_output_cols, output_cols_prefix
870
+ )
801
871
 
802
872
  elif isinstance(dataset, pd.DataFrame):
803
873
  transform_kwargs = dict(
@@ -816,7 +886,7 @@ class StackingRegressor(BaseTransformer):
816
886
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
817
887
  inference_method=inference_method,
818
888
  input_cols=self.input_cols,
819
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
889
+ expected_output_cols=expected_output_cols,
820
890
  **transform_kwargs
821
891
  )
822
892
  return output_df
@@ -963,50 +1033,84 @@ class StackingRegressor(BaseTransformer):
963
1033
  )
964
1034
  return output_df
965
1035
 
1036
+
1037
+
1038
+ def to_sklearn(self) -> Any:
1039
+ """Get sklearn.ensemble.StackingRegressor object.
1040
+ """
1041
+ if self._sklearn_object is None:
1042
+ self._sklearn_object = self._create_sklearn_object()
1043
+ return self._sklearn_object
1044
+
1045
+ def to_xgboost(self) -> Any:
1046
+ raise exceptions.SnowflakeMLException(
1047
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1048
+ original_exception=AttributeError(
1049
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1050
+ "to_xgboost()",
1051
+ "to_sklearn()"
1052
+ )
1053
+ ),
1054
+ )
1055
+
1056
+ def to_lightgbm(self) -> Any:
1057
+ raise exceptions.SnowflakeMLException(
1058
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1059
+ original_exception=AttributeError(
1060
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1061
+ "to_lightgbm()",
1062
+ "to_sklearn()"
1063
+ )
1064
+ ),
1065
+ )
966
1066
 
967
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1067
+ def _get_dependencies(self) -> List[str]:
1068
+ return self._deps
1069
+
1070
+
1071
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
968
1072
  self._model_signature_dict = dict()
969
1073
 
970
1074
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
971
1075
 
972
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1076
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
973
1077
  outputs: List[BaseFeatureSpec] = []
974
1078
  if hasattr(self, "predict"):
975
1079
  # keep mypy happy
976
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1080
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
977
1081
  # For classifier, the type of predict is the same as the type of label
978
- if self._sklearn_object._estimator_type == 'classifier':
979
- # label columns is the desired type for output
1082
+ if self._sklearn_object._estimator_type == "classifier":
1083
+ # label columns is the desired type for output
980
1084
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
981
1085
  # rename the output columns
982
1086
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
983
- self._model_signature_dict["predict"] = ModelSignature(inputs,
984
- ([] if self._drop_input_cols else inputs)
985
- + outputs)
1087
+ self._model_signature_dict["predict"] = ModelSignature(
1088
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1089
+ )
986
1090
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
987
1091
  # For outlier models, returns -1 for outliers and 1 for inliers.
988
- # Clusterer returns int64 cluster labels.
1092
+ # Clusterer returns int64 cluster labels.
989
1093
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
990
1094
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
994
-
1095
+ self._model_signature_dict["predict"] = ModelSignature(
1096
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1097
+ )
1098
+
995
1099
  # For regressor, the type of predict is float64
996
- elif self._sklearn_object._estimator_type == 'regressor':
1100
+ elif self._sklearn_object._estimator_type == "regressor":
997
1101
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
998
- self._model_signature_dict["predict"] = ModelSignature(inputs,
999
- ([] if self._drop_input_cols else inputs)
1000
- + outputs)
1001
-
1102
+ self._model_signature_dict["predict"] = ModelSignature(
1103
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1104
+ )
1105
+
1002
1106
  for prob_func in PROB_FUNCTIONS:
1003
1107
  if hasattr(self, prob_func):
1004
1108
  output_cols_prefix: str = f"{prob_func}_"
1005
1109
  output_column_names = self._get_output_column_names(output_cols_prefix)
1006
1110
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1007
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1008
- ([] if self._drop_input_cols else inputs)
1009
- + outputs)
1111
+ self._model_signature_dict[prob_func] = ModelSignature(
1112
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1113
+ )
1010
1114
 
1011
1115
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1012
1116
  items = list(self._model_signature_dict.items())
@@ -1019,10 +1123,10 @@ class StackingRegressor(BaseTransformer):
1019
1123
  """Returns model signature of current class.
1020
1124
 
1021
1125
  Raises:
1022
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1126
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1023
1127
 
1024
1128
  Returns:
1025
- Dict[str, ModelSignature]: each method and its input output signature
1129
+ Dict with each method and its input output signature
1026
1130
  """
1027
1131
  if self._model_signature_dict is None:
1028
1132
  raise exceptions.SnowflakeMLException(
@@ -1030,35 +1134,3 @@ class StackingRegressor(BaseTransformer):
1030
1134
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1031
1135
  )
1032
1136
  return self._model_signature_dict
1033
-
1034
- def to_sklearn(self) -> Any:
1035
- """Get sklearn.ensemble.StackingRegressor object.
1036
- """
1037
- if self._sklearn_object is None:
1038
- self._sklearn_object = self._create_sklearn_object()
1039
- return self._sklearn_object
1040
-
1041
- def to_xgboost(self) -> Any:
1042
- raise exceptions.SnowflakeMLException(
1043
- error_code=error_codes.METHOD_NOT_ALLOWED,
1044
- original_exception=AttributeError(
1045
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1046
- "to_xgboost()",
1047
- "to_sklearn()"
1048
- )
1049
- ),
1050
- )
1051
-
1052
- def to_lightgbm(self) -> Any:
1053
- raise exceptions.SnowflakeMLException(
1054
- error_code=error_codes.METHOD_NOT_ALLOWED,
1055
- original_exception=AttributeError(
1056
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1057
- "to_lightgbm()",
1058
- "to_sklearn()"
1059
- )
1060
- ),
1061
- )
1062
-
1063
- def _get_dependencies(self) -> List[str]:
1064
- return self._deps