snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -34,6 +34,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
34
34
  BatchInferenceKwargsTypedDict,
35
35
  ScoreKwargsTypedDict
36
36
  )
37
+ from snowflake.ml.model._signatures import utils as model_signature_utils
38
+ from snowflake.ml.model.model_signature import (
39
+ BaseFeatureSpec,
40
+ DataType,
41
+ FeatureSpec,
42
+ ModelSignature,
43
+ _infer_signature,
44
+ _rename_signature_with_snowflake_identifiers,
45
+ )
37
46
 
38
47
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
39
48
 
@@ -44,16 +53,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
44
53
  validate_sklearn_args,
45
54
  )
46
55
 
47
- from snowflake.ml.model.model_signature import (
48
- DataType,
49
- FeatureSpec,
50
- ModelSignature,
51
- _infer_signature,
52
- _rename_signature_with_snowflake_identifiers,
53
- BaseFeatureSpec,
54
- )
55
- from snowflake.ml.model._signatures import utils as model_signature_utils
56
-
57
56
  _PROJECT = "ModelDevelopment"
58
57
  # Derive subproject from module name by removing "sklearn"
59
58
  # and converting module name from underscore to CamelCase
@@ -324,12 +323,7 @@ class IterativeImputer(BaseTransformer):
324
323
  )
325
324
  return selected_cols
326
325
 
327
- @telemetry.send_api_usage_telemetry(
328
- project=_PROJECT,
329
- subproject=_SUBPROJECT,
330
- custom_tags=dict([("autogen", True)]),
331
- )
332
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IterativeImputer":
326
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IterativeImputer":
333
327
  """Fit the imputer on `X` and return self
334
328
  For more details on this function, see [sklearn.impute.IterativeImputer.fit]
335
329
  (https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer.fit)
@@ -356,12 +350,14 @@ class IterativeImputer(BaseTransformer):
356
350
 
357
351
  self._snowpark_cols = dataset.select(self.input_cols).columns
358
352
 
359
- # If we are already in a stored procedure, no need to kick off another one.
353
+ # If we are already in a stored procedure, no need to kick off another one.
360
354
  if SNOWML_SPROC_ENV in os.environ:
361
355
  statement_params = telemetry.get_function_usage_statement_params(
362
356
  project=_PROJECT,
363
357
  subproject=_SUBPROJECT,
364
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), IterativeImputer.__class__.__name__),
358
+ function_name=telemetry.get_statement_params_full_func_name(
359
+ inspect.currentframe(), IterativeImputer.__class__.__name__
360
+ ),
365
361
  api_calls=[Session.call],
366
362
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
367
363
  )
@@ -382,7 +378,7 @@ class IterativeImputer(BaseTransformer):
382
378
  )
383
379
  self._sklearn_object = model_trainer.train()
384
380
  self._is_fitted = True
385
- self._get_model_signatures(dataset)
381
+ self._generate_model_signatures(dataset)
386
382
  return self
387
383
 
388
384
  def _batch_inference_validate_snowpark(
@@ -456,7 +452,9 @@ class IterativeImputer(BaseTransformer):
456
452
  # when it is classifier, infer the datatype from label columns
457
453
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
458
454
  # Batch inference takes a single expected output column type. Use the first columns type for now.
459
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
455
+ label_cols_signatures = [
456
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
457
+ ]
460
458
  if len(label_cols_signatures) == 0:
461
459
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
462
460
  raise exceptions.SnowflakeMLException(
@@ -464,25 +462,22 @@ class IterativeImputer(BaseTransformer):
464
462
  original_exception=ValueError(error_str),
465
463
  )
466
464
 
467
- expected_type_inferred = convert_sp_to_sf_type(
468
- label_cols_signatures[0].as_snowpark_type()
469
- )
465
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
470
466
 
471
467
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
472
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
468
+ assert isinstance(
469
+ dataset._session, Session
470
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
473
471
 
474
472
  transform_kwargs = dict(
475
- session = dataset._session,
476
- dependencies = self._deps,
477
- drop_input_cols = self._drop_input_cols,
478
- expected_output_cols_type = expected_type_inferred,
473
+ session=dataset._session,
474
+ dependencies=self._deps,
475
+ drop_input_cols=self._drop_input_cols,
476
+ expected_output_cols_type=expected_type_inferred,
479
477
  )
480
478
 
481
479
  elif isinstance(dataset, pd.DataFrame):
482
- transform_kwargs = dict(
483
- snowpark_input_cols = self._snowpark_cols,
484
- drop_input_cols = self._drop_input_cols
485
- )
480
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
486
481
 
487
482
  transform_handlers = ModelTransformerBuilder.build(
488
483
  dataset=dataset,
@@ -524,7 +519,7 @@ class IterativeImputer(BaseTransformer):
524
519
  Transformed dataset.
525
520
  """
526
521
  super()._check_dataset_type(dataset)
527
- inference_method="transform"
522
+ inference_method = "transform"
528
523
 
529
524
  # This dictionary contains optional kwargs for batch inference. These kwargs
530
525
  # are specific to the type of dataset used.
@@ -561,17 +556,14 @@ class IterativeImputer(BaseTransformer):
561
556
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
562
557
 
563
558
  transform_kwargs = dict(
564
- session = dataset._session,
565
- dependencies = self._deps,
566
- drop_input_cols = self._drop_input_cols,
567
- expected_output_cols_type = expected_dtype,
559
+ session=dataset._session,
560
+ dependencies=self._deps,
561
+ drop_input_cols=self._drop_input_cols,
562
+ expected_output_cols_type=expected_dtype,
568
563
  )
569
564
 
570
565
  elif isinstance(dataset, pd.DataFrame):
571
- transform_kwargs = dict(
572
- snowpark_input_cols = self._snowpark_cols,
573
- drop_input_cols = self._drop_input_cols
574
- )
566
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
575
567
 
576
568
  transform_handlers = ModelTransformerBuilder.build(
577
569
  dataset=dataset,
@@ -590,7 +582,11 @@ class IterativeImputer(BaseTransformer):
590
582
  return output_df
591
583
 
592
584
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
593
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
585
+ def fit_predict(
586
+ self,
587
+ dataset: Union[DataFrame, pd.DataFrame],
588
+ output_cols_prefix: str = "fit_predict_",
589
+ ) -> Union[DataFrame, pd.DataFrame]:
594
590
  """ Method not supported for this class.
595
591
 
596
592
 
@@ -615,7 +611,9 @@ class IterativeImputer(BaseTransformer):
615
611
  )
616
612
  output_result, fitted_estimator = model_trainer.train_fit_predict(
617
613
  drop_input_cols=self._drop_input_cols,
618
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
614
+ expected_output_cols_list=(
615
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
616
+ ),
619
617
  )
620
618
  self._sklearn_object = fitted_estimator
621
619
  self._is_fitted = True
@@ -632,6 +630,62 @@ class IterativeImputer(BaseTransformer):
632
630
  assert self._sklearn_object is not None
633
631
  return self._sklearn_object.embedding_
634
632
 
633
+
634
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
635
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
636
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
637
+ """
638
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
639
+ # The following condition is introduced for kneighbors methods, and not used in other methods
640
+ if output_cols:
641
+ output_cols = [
642
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
643
+ for c in output_cols
644
+ ]
645
+ elif getattr(self._sklearn_object, "classes_", None) is None:
646
+ output_cols = [output_cols_prefix]
647
+ elif self._sklearn_object is not None:
648
+ classes = self._sklearn_object.classes_
649
+ if isinstance(classes, numpy.ndarray):
650
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
651
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
652
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
653
+ output_cols = []
654
+ for i, cl in enumerate(classes):
655
+ # For binary classification, there is only one output column for each class
656
+ # ndarray as the two classes are complementary.
657
+ if len(cl) == 2:
658
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
659
+ else:
660
+ output_cols.extend([
661
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
662
+ ])
663
+ else:
664
+ output_cols = []
665
+
666
+ # Make sure column names are valid snowflake identifiers.
667
+ assert output_cols is not None # Make MyPy happy
668
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
669
+
670
+ return rv
671
+
672
+ def _align_expected_output_names(
673
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
674
+ ) -> List[str]:
675
+ # in case the inferred output column names dimension is different
676
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
677
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
678
+ output_df_columns = list(output_df_pd.columns)
679
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
680
+ if self.sample_weight_col:
681
+ output_df_columns_set -= set(self.sample_weight_col)
682
+ # if the dimension of inferred output column names is correct; use it
683
+ if len(expected_output_cols_list) == len(output_df_columns_set):
684
+ return expected_output_cols_list
685
+ # otherwise, use the sklearn estimator's output
686
+ else:
687
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
688
+
635
689
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
636
690
  @telemetry.send_api_usage_telemetry(
637
691
  project=_PROJECT,
@@ -662,24 +716,28 @@ class IterativeImputer(BaseTransformer):
662
716
  # are specific to the type of dataset used.
663
717
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
664
718
 
719
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
720
+
665
721
  if isinstance(dataset, DataFrame):
666
722
  self._deps = self._batch_inference_validate_snowpark(
667
723
  dataset=dataset,
668
724
  inference_method=inference_method,
669
725
  )
670
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
726
+ assert isinstance(
727
+ dataset._session, Session
728
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
671
729
  transform_kwargs = dict(
672
730
  session=dataset._session,
673
731
  dependencies=self._deps,
674
- drop_input_cols = self._drop_input_cols,
732
+ drop_input_cols=self._drop_input_cols,
675
733
  expected_output_cols_type="float",
676
734
  )
735
+ expected_output_cols = self._align_expected_output_names(
736
+ inference_method, dataset, expected_output_cols, output_cols_prefix
737
+ )
677
738
 
678
739
  elif isinstance(dataset, pd.DataFrame):
679
- transform_kwargs = dict(
680
- snowpark_input_cols = self._snowpark_cols,
681
- drop_input_cols = self._drop_input_cols
682
- )
740
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
683
741
 
684
742
  transform_handlers = ModelTransformerBuilder.build(
685
743
  dataset=dataset,
@@ -691,7 +749,7 @@ class IterativeImputer(BaseTransformer):
691
749
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
692
750
  inference_method=inference_method,
693
751
  input_cols=self.input_cols,
694
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
752
+ expected_output_cols=expected_output_cols,
695
753
  **transform_kwargs
696
754
  )
697
755
  return output_df
@@ -721,7 +779,8 @@ class IterativeImputer(BaseTransformer):
721
779
  Output dataset with log probability of the sample for each class in the model.
722
780
  """
723
781
  super()._check_dataset_type(dataset)
724
- inference_method="predict_log_proba"
782
+ inference_method = "predict_log_proba"
783
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
725
784
 
726
785
  # This dictionary contains optional kwargs for batch inference. These kwargs
727
786
  # are specific to the type of dataset used.
@@ -732,18 +791,20 @@ class IterativeImputer(BaseTransformer):
732
791
  dataset=dataset,
733
792
  inference_method=inference_method,
734
793
  )
735
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
794
+ assert isinstance(
795
+ dataset._session, Session
796
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
736
797
  transform_kwargs = dict(
737
798
  session=dataset._session,
738
799
  dependencies=self._deps,
739
- drop_input_cols = self._drop_input_cols,
800
+ drop_input_cols=self._drop_input_cols,
740
801
  expected_output_cols_type="float",
741
802
  )
803
+ expected_output_cols = self._align_expected_output_names(
804
+ inference_method, dataset, expected_output_cols, output_cols_prefix
805
+ )
742
806
  elif isinstance(dataset, pd.DataFrame):
743
- transform_kwargs = dict(
744
- snowpark_input_cols = self._snowpark_cols,
745
- drop_input_cols = self._drop_input_cols
746
- )
807
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
747
808
 
748
809
  transform_handlers = ModelTransformerBuilder.build(
749
810
  dataset=dataset,
@@ -756,7 +817,7 @@ class IterativeImputer(BaseTransformer):
756
817
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
757
818
  inference_method=inference_method,
758
819
  input_cols=self.input_cols,
759
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
820
+ expected_output_cols=expected_output_cols,
760
821
  **transform_kwargs
761
822
  )
762
823
  return output_df
@@ -782,30 +843,34 @@ class IterativeImputer(BaseTransformer):
782
843
  Output dataset with results of the decision function for the samples in input dataset.
783
844
  """
784
845
  super()._check_dataset_type(dataset)
785
- inference_method="decision_function"
846
+ inference_method = "decision_function"
786
847
 
787
848
  # This dictionary contains optional kwargs for batch inference. These kwargs
788
849
  # are specific to the type of dataset used.
789
850
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
790
851
 
852
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
853
+
791
854
  if isinstance(dataset, DataFrame):
792
855
  self._deps = self._batch_inference_validate_snowpark(
793
856
  dataset=dataset,
794
857
  inference_method=inference_method,
795
858
  )
796
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
859
+ assert isinstance(
860
+ dataset._session, Session
861
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
797
862
  transform_kwargs = dict(
798
863
  session=dataset._session,
799
864
  dependencies=self._deps,
800
- drop_input_cols = self._drop_input_cols,
865
+ drop_input_cols=self._drop_input_cols,
801
866
  expected_output_cols_type="float",
802
867
  )
868
+ expected_output_cols = self._align_expected_output_names(
869
+ inference_method, dataset, expected_output_cols, output_cols_prefix
870
+ )
803
871
 
804
872
  elif isinstance(dataset, pd.DataFrame):
805
- transform_kwargs = dict(
806
- snowpark_input_cols = self._snowpark_cols,
807
- drop_input_cols = self._drop_input_cols
808
- )
873
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
809
874
 
810
875
  transform_handlers = ModelTransformerBuilder.build(
811
876
  dataset=dataset,
@@ -818,7 +883,7 @@ class IterativeImputer(BaseTransformer):
818
883
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
819
884
  inference_method=inference_method,
820
885
  input_cols=self.input_cols,
821
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
886
+ expected_output_cols=expected_output_cols,
822
887
  **transform_kwargs
823
888
  )
824
889
  return output_df
@@ -847,12 +912,14 @@ class IterativeImputer(BaseTransformer):
847
912
  Output dataset with probability of the sample for each class in the model.
848
913
  """
849
914
  super()._check_dataset_type(dataset)
850
- inference_method="score_samples"
915
+ inference_method = "score_samples"
851
916
 
852
917
  # This dictionary contains optional kwargs for batch inference. These kwargs
853
918
  # are specific to the type of dataset used.
854
919
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
855
920
 
921
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
922
+
856
923
  if isinstance(dataset, DataFrame):
857
924
  self._deps = self._batch_inference_validate_snowpark(
858
925
  dataset=dataset,
@@ -865,6 +932,9 @@ class IterativeImputer(BaseTransformer):
865
932
  drop_input_cols = self._drop_input_cols,
866
933
  expected_output_cols_type="float",
867
934
  )
935
+ expected_output_cols = self._align_expected_output_names(
936
+ inference_method, dataset, expected_output_cols, output_cols_prefix
937
+ )
868
938
 
869
939
  elif isinstance(dataset, pd.DataFrame):
870
940
  transform_kwargs = dict(
@@ -883,7 +953,7 @@ class IterativeImputer(BaseTransformer):
883
953
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
884
954
  inference_method=inference_method,
885
955
  input_cols=self.input_cols,
886
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
956
+ expected_output_cols=expected_output_cols,
887
957
  **transform_kwargs
888
958
  )
889
959
  return output_df
@@ -1028,50 +1098,84 @@ class IterativeImputer(BaseTransformer):
1028
1098
  )
1029
1099
  return output_df
1030
1100
 
1101
+
1102
+
1103
+ def to_sklearn(self) -> Any:
1104
+ """Get sklearn.impute.IterativeImputer object.
1105
+ """
1106
+ if self._sklearn_object is None:
1107
+ self._sklearn_object = self._create_sklearn_object()
1108
+ return self._sklearn_object
1109
+
1110
+ def to_xgboost(self) -> Any:
1111
+ raise exceptions.SnowflakeMLException(
1112
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1113
+ original_exception=AttributeError(
1114
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1115
+ "to_xgboost()",
1116
+ "to_sklearn()"
1117
+ )
1118
+ ),
1119
+ )
1120
+
1121
+ def to_lightgbm(self) -> Any:
1122
+ raise exceptions.SnowflakeMLException(
1123
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1124
+ original_exception=AttributeError(
1125
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1126
+ "to_lightgbm()",
1127
+ "to_sklearn()"
1128
+ )
1129
+ ),
1130
+ )
1031
1131
 
1032
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1132
+ def _get_dependencies(self) -> List[str]:
1133
+ return self._deps
1134
+
1135
+
1136
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1033
1137
  self._model_signature_dict = dict()
1034
1138
 
1035
1139
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1036
1140
 
1037
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1141
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1038
1142
  outputs: List[BaseFeatureSpec] = []
1039
1143
  if hasattr(self, "predict"):
1040
1144
  # keep mypy happy
1041
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1145
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1042
1146
  # For classifier, the type of predict is the same as the type of label
1043
- if self._sklearn_object._estimator_type == 'classifier':
1044
- # label columns is the desired type for output
1147
+ if self._sklearn_object._estimator_type == "classifier":
1148
+ # label columns is the desired type for output
1045
1149
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1046
1150
  # rename the output columns
1047
1151
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1048
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1049
- ([] if self._drop_input_cols else inputs)
1050
- + outputs)
1152
+ self._model_signature_dict["predict"] = ModelSignature(
1153
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1154
+ )
1051
1155
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1052
1156
  # For outlier models, returns -1 for outliers and 1 for inliers.
1053
- # Clusterer returns int64 cluster labels.
1157
+ # Clusterer returns int64 cluster labels.
1054
1158
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1055
1159
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1056
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1057
- ([] if self._drop_input_cols else inputs)
1058
- + outputs)
1059
-
1160
+ self._model_signature_dict["predict"] = ModelSignature(
1161
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1162
+ )
1163
+
1060
1164
  # For regressor, the type of predict is float64
1061
- elif self._sklearn_object._estimator_type == 'regressor':
1165
+ elif self._sklearn_object._estimator_type == "regressor":
1062
1166
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1063
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1064
- ([] if self._drop_input_cols else inputs)
1065
- + outputs)
1066
-
1167
+ self._model_signature_dict["predict"] = ModelSignature(
1168
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1169
+ )
1170
+
1067
1171
  for prob_func in PROB_FUNCTIONS:
1068
1172
  if hasattr(self, prob_func):
1069
1173
  output_cols_prefix: str = f"{prob_func}_"
1070
1174
  output_column_names = self._get_output_column_names(output_cols_prefix)
1071
1175
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1072
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1073
- ([] if self._drop_input_cols else inputs)
1074
- + outputs)
1176
+ self._model_signature_dict[prob_func] = ModelSignature(
1177
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1178
+ )
1075
1179
 
1076
1180
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1077
1181
  items = list(self._model_signature_dict.items())
@@ -1084,10 +1188,10 @@ class IterativeImputer(BaseTransformer):
1084
1188
  """Returns model signature of current class.
1085
1189
 
1086
1190
  Raises:
1087
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1191
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1088
1192
 
1089
1193
  Returns:
1090
- Dict[str, ModelSignature]: each method and its input output signature
1194
+ Dict with each method and its input output signature
1091
1195
  """
1092
1196
  if self._model_signature_dict is None:
1093
1197
  raise exceptions.SnowflakeMLException(
@@ -1095,35 +1199,3 @@ class IterativeImputer(BaseTransformer):
1095
1199
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1096
1200
  )
1097
1201
  return self._model_signature_dict
1098
-
1099
- def to_sklearn(self) -> Any:
1100
- """Get sklearn.impute.IterativeImputer object.
1101
- """
1102
- if self._sklearn_object is None:
1103
- self._sklearn_object = self._create_sklearn_object()
1104
- return self._sklearn_object
1105
-
1106
- def to_xgboost(self) -> Any:
1107
- raise exceptions.SnowflakeMLException(
1108
- error_code=error_codes.METHOD_NOT_ALLOWED,
1109
- original_exception=AttributeError(
1110
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1111
- "to_xgboost()",
1112
- "to_sklearn()"
1113
- )
1114
- ),
1115
- )
1116
-
1117
- def to_lightgbm(self) -> Any:
1118
- raise exceptions.SnowflakeMLException(
1119
- error_code=error_codes.METHOD_NOT_ALLOWED,
1120
- original_exception=AttributeError(
1121
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1122
- "to_lightgbm()",
1123
- "to_sklearn()"
1124
- )
1125
- ),
1126
- )
1127
-
1128
- def _get_dependencies(self) -> List[str]:
1129
- return self._deps