snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +151 -78
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +2 -50
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +9 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
snowflake/ml/modeling/svm/svr.py
CHANGED
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -263,12 +262,7 @@ class SVR(BaseTransformer):
|
|
263
262
|
)
|
264
263
|
return selected_cols
|
265
264
|
|
266
|
-
|
267
|
-
project=_PROJECT,
|
268
|
-
subproject=_SUBPROJECT,
|
269
|
-
custom_tags=dict([("autogen", True)]),
|
270
|
-
)
|
271
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SVR":
|
265
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SVR":
|
272
266
|
"""Fit the SVM model according to the given training data
|
273
267
|
For more details on this function, see [sklearn.svm.SVR.fit]
|
274
268
|
(https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR.fit)
|
@@ -295,12 +289,14 @@ class SVR(BaseTransformer):
|
|
295
289
|
|
296
290
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
297
291
|
|
298
|
-
|
292
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
299
293
|
if SNOWML_SPROC_ENV in os.environ:
|
300
294
|
statement_params = telemetry.get_function_usage_statement_params(
|
301
295
|
project=_PROJECT,
|
302
296
|
subproject=_SUBPROJECT,
|
303
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
297
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
298
|
+
inspect.currentframe(), SVR.__class__.__name__
|
299
|
+
),
|
304
300
|
api_calls=[Session.call],
|
305
301
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
306
302
|
)
|
@@ -321,7 +317,7 @@ class SVR(BaseTransformer):
|
|
321
317
|
)
|
322
318
|
self._sklearn_object = model_trainer.train()
|
323
319
|
self._is_fitted = True
|
324
|
-
self.
|
320
|
+
self._generate_model_signatures(dataset)
|
325
321
|
return self
|
326
322
|
|
327
323
|
def _batch_inference_validate_snowpark(
|
@@ -397,7 +393,9 @@ class SVR(BaseTransformer):
|
|
397
393
|
# when it is classifier, infer the datatype from label columns
|
398
394
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
399
395
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
400
|
-
label_cols_signatures = [
|
396
|
+
label_cols_signatures = [
|
397
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
398
|
+
]
|
401
399
|
if len(label_cols_signatures) == 0:
|
402
400
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
403
401
|
raise exceptions.SnowflakeMLException(
|
@@ -405,25 +403,22 @@ class SVR(BaseTransformer):
|
|
405
403
|
original_exception=ValueError(error_str),
|
406
404
|
)
|
407
405
|
|
408
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
409
|
-
label_cols_signatures[0].as_snowpark_type()
|
410
|
-
)
|
406
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
411
407
|
|
412
408
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
413
|
-
assert isinstance(
|
409
|
+
assert isinstance(
|
410
|
+
dataset._session, Session
|
411
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
414
412
|
|
415
413
|
transform_kwargs = dict(
|
416
|
-
session
|
417
|
-
dependencies
|
418
|
-
drop_input_cols
|
419
|
-
expected_output_cols_type
|
414
|
+
session=dataset._session,
|
415
|
+
dependencies=self._deps,
|
416
|
+
drop_input_cols=self._drop_input_cols,
|
417
|
+
expected_output_cols_type=expected_type_inferred,
|
420
418
|
)
|
421
419
|
|
422
420
|
elif isinstance(dataset, pd.DataFrame):
|
423
|
-
transform_kwargs = dict(
|
424
|
-
snowpark_input_cols = self._snowpark_cols,
|
425
|
-
drop_input_cols = self._drop_input_cols
|
426
|
-
)
|
421
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
427
422
|
|
428
423
|
transform_handlers = ModelTransformerBuilder.build(
|
429
424
|
dataset=dataset,
|
@@ -463,7 +458,7 @@ class SVR(BaseTransformer):
|
|
463
458
|
Transformed dataset.
|
464
459
|
"""
|
465
460
|
super()._check_dataset_type(dataset)
|
466
|
-
inference_method="transform"
|
461
|
+
inference_method = "transform"
|
467
462
|
|
468
463
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
469
464
|
# are specific to the type of dataset used.
|
@@ -500,17 +495,14 @@ class SVR(BaseTransformer):
|
|
500
495
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
501
496
|
|
502
497
|
transform_kwargs = dict(
|
503
|
-
session
|
504
|
-
dependencies
|
505
|
-
drop_input_cols
|
506
|
-
expected_output_cols_type
|
498
|
+
session=dataset._session,
|
499
|
+
dependencies=self._deps,
|
500
|
+
drop_input_cols=self._drop_input_cols,
|
501
|
+
expected_output_cols_type=expected_dtype,
|
507
502
|
)
|
508
503
|
|
509
504
|
elif isinstance(dataset, pd.DataFrame):
|
510
|
-
transform_kwargs = dict(
|
511
|
-
snowpark_input_cols = self._snowpark_cols,
|
512
|
-
drop_input_cols = self._drop_input_cols
|
513
|
-
)
|
505
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
514
506
|
|
515
507
|
transform_handlers = ModelTransformerBuilder.build(
|
516
508
|
dataset=dataset,
|
@@ -529,7 +521,11 @@ class SVR(BaseTransformer):
|
|
529
521
|
return output_df
|
530
522
|
|
531
523
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
532
|
-
def fit_predict(
|
524
|
+
def fit_predict(
|
525
|
+
self,
|
526
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
527
|
+
output_cols_prefix: str = "fit_predict_",
|
528
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
533
529
|
""" Method not supported for this class.
|
534
530
|
|
535
531
|
|
@@ -554,7 +550,9 @@ class SVR(BaseTransformer):
|
|
554
550
|
)
|
555
551
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
556
552
|
drop_input_cols=self._drop_input_cols,
|
557
|
-
expected_output_cols_list=
|
553
|
+
expected_output_cols_list=(
|
554
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
555
|
+
),
|
558
556
|
)
|
559
557
|
self._sklearn_object = fitted_estimator
|
560
558
|
self._is_fitted = True
|
@@ -571,6 +569,62 @@ class SVR(BaseTransformer):
|
|
571
569
|
assert self._sklearn_object is not None
|
572
570
|
return self._sklearn_object.embedding_
|
573
571
|
|
572
|
+
|
573
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
574
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
575
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
576
|
+
"""
|
577
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
578
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
579
|
+
if output_cols:
|
580
|
+
output_cols = [
|
581
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
582
|
+
for c in output_cols
|
583
|
+
]
|
584
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
585
|
+
output_cols = [output_cols_prefix]
|
586
|
+
elif self._sklearn_object is not None:
|
587
|
+
classes = self._sklearn_object.classes_
|
588
|
+
if isinstance(classes, numpy.ndarray):
|
589
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
590
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
591
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
592
|
+
output_cols = []
|
593
|
+
for i, cl in enumerate(classes):
|
594
|
+
# For binary classification, there is only one output column for each class
|
595
|
+
# ndarray as the two classes are complementary.
|
596
|
+
if len(cl) == 2:
|
597
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
598
|
+
else:
|
599
|
+
output_cols.extend([
|
600
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
601
|
+
])
|
602
|
+
else:
|
603
|
+
output_cols = []
|
604
|
+
|
605
|
+
# Make sure column names are valid snowflake identifiers.
|
606
|
+
assert output_cols is not None # Make MyPy happy
|
607
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
608
|
+
|
609
|
+
return rv
|
610
|
+
|
611
|
+
def _align_expected_output_names(
|
612
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
613
|
+
) -> List[str]:
|
614
|
+
# in case the inferred output column names dimension is different
|
615
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
616
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
617
|
+
output_df_columns = list(output_df_pd.columns)
|
618
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
619
|
+
if self.sample_weight_col:
|
620
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
621
|
+
# if the dimension of inferred output column names is correct; use it
|
622
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
623
|
+
return expected_output_cols_list
|
624
|
+
# otherwise, use the sklearn estimator's output
|
625
|
+
else:
|
626
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
627
|
+
|
574
628
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
575
629
|
@telemetry.send_api_usage_telemetry(
|
576
630
|
project=_PROJECT,
|
@@ -601,24 +655,28 @@ class SVR(BaseTransformer):
|
|
601
655
|
# are specific to the type of dataset used.
|
602
656
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
603
657
|
|
658
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
659
|
+
|
604
660
|
if isinstance(dataset, DataFrame):
|
605
661
|
self._deps = self._batch_inference_validate_snowpark(
|
606
662
|
dataset=dataset,
|
607
663
|
inference_method=inference_method,
|
608
664
|
)
|
609
|
-
assert isinstance(
|
665
|
+
assert isinstance(
|
666
|
+
dataset._session, Session
|
667
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
610
668
|
transform_kwargs = dict(
|
611
669
|
session=dataset._session,
|
612
670
|
dependencies=self._deps,
|
613
|
-
drop_input_cols
|
671
|
+
drop_input_cols=self._drop_input_cols,
|
614
672
|
expected_output_cols_type="float",
|
615
673
|
)
|
674
|
+
expected_output_cols = self._align_expected_output_names(
|
675
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
676
|
+
)
|
616
677
|
|
617
678
|
elif isinstance(dataset, pd.DataFrame):
|
618
|
-
transform_kwargs = dict(
|
619
|
-
snowpark_input_cols = self._snowpark_cols,
|
620
|
-
drop_input_cols = self._drop_input_cols
|
621
|
-
)
|
679
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
622
680
|
|
623
681
|
transform_handlers = ModelTransformerBuilder.build(
|
624
682
|
dataset=dataset,
|
@@ -630,7 +688,7 @@ class SVR(BaseTransformer):
|
|
630
688
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
631
689
|
inference_method=inference_method,
|
632
690
|
input_cols=self.input_cols,
|
633
|
-
expected_output_cols=
|
691
|
+
expected_output_cols=expected_output_cols,
|
634
692
|
**transform_kwargs
|
635
693
|
)
|
636
694
|
return output_df
|
@@ -660,7 +718,8 @@ class SVR(BaseTransformer):
|
|
660
718
|
Output dataset with log probability of the sample for each class in the model.
|
661
719
|
"""
|
662
720
|
super()._check_dataset_type(dataset)
|
663
|
-
inference_method="predict_log_proba"
|
721
|
+
inference_method = "predict_log_proba"
|
722
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
664
723
|
|
665
724
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
666
725
|
# are specific to the type of dataset used.
|
@@ -671,18 +730,20 @@ class SVR(BaseTransformer):
|
|
671
730
|
dataset=dataset,
|
672
731
|
inference_method=inference_method,
|
673
732
|
)
|
674
|
-
assert isinstance(
|
733
|
+
assert isinstance(
|
734
|
+
dataset._session, Session
|
735
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
675
736
|
transform_kwargs = dict(
|
676
737
|
session=dataset._session,
|
677
738
|
dependencies=self._deps,
|
678
|
-
drop_input_cols
|
739
|
+
drop_input_cols=self._drop_input_cols,
|
679
740
|
expected_output_cols_type="float",
|
680
741
|
)
|
742
|
+
expected_output_cols = self._align_expected_output_names(
|
743
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
744
|
+
)
|
681
745
|
elif isinstance(dataset, pd.DataFrame):
|
682
|
-
transform_kwargs = dict(
|
683
|
-
snowpark_input_cols = self._snowpark_cols,
|
684
|
-
drop_input_cols = self._drop_input_cols
|
685
|
-
)
|
746
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
686
747
|
|
687
748
|
transform_handlers = ModelTransformerBuilder.build(
|
688
749
|
dataset=dataset,
|
@@ -695,7 +756,7 @@ class SVR(BaseTransformer):
|
|
695
756
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
696
757
|
inference_method=inference_method,
|
697
758
|
input_cols=self.input_cols,
|
698
|
-
expected_output_cols=
|
759
|
+
expected_output_cols=expected_output_cols,
|
699
760
|
**transform_kwargs
|
700
761
|
)
|
701
762
|
return output_df
|
@@ -721,30 +782,34 @@ class SVR(BaseTransformer):
|
|
721
782
|
Output dataset with results of the decision function for the samples in input dataset.
|
722
783
|
"""
|
723
784
|
super()._check_dataset_type(dataset)
|
724
|
-
inference_method="decision_function"
|
785
|
+
inference_method = "decision_function"
|
725
786
|
|
726
787
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
727
788
|
# are specific to the type of dataset used.
|
728
789
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
729
790
|
|
791
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
792
|
+
|
730
793
|
if isinstance(dataset, DataFrame):
|
731
794
|
self._deps = self._batch_inference_validate_snowpark(
|
732
795
|
dataset=dataset,
|
733
796
|
inference_method=inference_method,
|
734
797
|
)
|
735
|
-
assert isinstance(
|
798
|
+
assert isinstance(
|
799
|
+
dataset._session, Session
|
800
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
736
801
|
transform_kwargs = dict(
|
737
802
|
session=dataset._session,
|
738
803
|
dependencies=self._deps,
|
739
|
-
drop_input_cols
|
804
|
+
drop_input_cols=self._drop_input_cols,
|
740
805
|
expected_output_cols_type="float",
|
741
806
|
)
|
807
|
+
expected_output_cols = self._align_expected_output_names(
|
808
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
809
|
+
)
|
742
810
|
|
743
811
|
elif isinstance(dataset, pd.DataFrame):
|
744
|
-
transform_kwargs = dict(
|
745
|
-
snowpark_input_cols = self._snowpark_cols,
|
746
|
-
drop_input_cols = self._drop_input_cols
|
747
|
-
)
|
812
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
748
813
|
|
749
814
|
transform_handlers = ModelTransformerBuilder.build(
|
750
815
|
dataset=dataset,
|
@@ -757,7 +822,7 @@ class SVR(BaseTransformer):
|
|
757
822
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
758
823
|
inference_method=inference_method,
|
759
824
|
input_cols=self.input_cols,
|
760
|
-
expected_output_cols=
|
825
|
+
expected_output_cols=expected_output_cols,
|
761
826
|
**transform_kwargs
|
762
827
|
)
|
763
828
|
return output_df
|
@@ -786,12 +851,14 @@ class SVR(BaseTransformer):
|
|
786
851
|
Output dataset with probability of the sample for each class in the model.
|
787
852
|
"""
|
788
853
|
super()._check_dataset_type(dataset)
|
789
|
-
inference_method="score_samples"
|
854
|
+
inference_method = "score_samples"
|
790
855
|
|
791
856
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
792
857
|
# are specific to the type of dataset used.
|
793
858
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
794
859
|
|
860
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
861
|
+
|
795
862
|
if isinstance(dataset, DataFrame):
|
796
863
|
self._deps = self._batch_inference_validate_snowpark(
|
797
864
|
dataset=dataset,
|
@@ -804,6 +871,9 @@ class SVR(BaseTransformer):
|
|
804
871
|
drop_input_cols = self._drop_input_cols,
|
805
872
|
expected_output_cols_type="float",
|
806
873
|
)
|
874
|
+
expected_output_cols = self._align_expected_output_names(
|
875
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
876
|
+
)
|
807
877
|
|
808
878
|
elif isinstance(dataset, pd.DataFrame):
|
809
879
|
transform_kwargs = dict(
|
@@ -822,7 +892,7 @@ class SVR(BaseTransformer):
|
|
822
892
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
823
893
|
inference_method=inference_method,
|
824
894
|
input_cols=self.input_cols,
|
825
|
-
expected_output_cols=
|
895
|
+
expected_output_cols=expected_output_cols,
|
826
896
|
**transform_kwargs
|
827
897
|
)
|
828
898
|
return output_df
|
@@ -969,50 +1039,84 @@ class SVR(BaseTransformer):
|
|
969
1039
|
)
|
970
1040
|
return output_df
|
971
1041
|
|
1042
|
+
|
1043
|
+
|
1044
|
+
def to_sklearn(self) -> Any:
|
1045
|
+
"""Get sklearn.svm.SVR object.
|
1046
|
+
"""
|
1047
|
+
if self._sklearn_object is None:
|
1048
|
+
self._sklearn_object = self._create_sklearn_object()
|
1049
|
+
return self._sklearn_object
|
1050
|
+
|
1051
|
+
def to_xgboost(self) -> Any:
|
1052
|
+
raise exceptions.SnowflakeMLException(
|
1053
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1054
|
+
original_exception=AttributeError(
|
1055
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1056
|
+
"to_xgboost()",
|
1057
|
+
"to_sklearn()"
|
1058
|
+
)
|
1059
|
+
),
|
1060
|
+
)
|
1061
|
+
|
1062
|
+
def to_lightgbm(self) -> Any:
|
1063
|
+
raise exceptions.SnowflakeMLException(
|
1064
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1065
|
+
original_exception=AttributeError(
|
1066
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1067
|
+
"to_lightgbm()",
|
1068
|
+
"to_sklearn()"
|
1069
|
+
)
|
1070
|
+
),
|
1071
|
+
)
|
972
1072
|
|
973
|
-
def
|
1073
|
+
def _get_dependencies(self) -> List[str]:
|
1074
|
+
return self._deps
|
1075
|
+
|
1076
|
+
|
1077
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
974
1078
|
self._model_signature_dict = dict()
|
975
1079
|
|
976
1080
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
977
1081
|
|
978
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1082
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
979
1083
|
outputs: List[BaseFeatureSpec] = []
|
980
1084
|
if hasattr(self, "predict"):
|
981
1085
|
# keep mypy happy
|
982
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1086
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
983
1087
|
# For classifier, the type of predict is the same as the type of label
|
984
|
-
if self._sklearn_object._estimator_type ==
|
985
|
-
|
1088
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1089
|
+
# label columns is the desired type for output
|
986
1090
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
987
1091
|
# rename the output columns
|
988
1092
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
989
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
990
|
-
|
991
|
-
|
1093
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1094
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1095
|
+
)
|
992
1096
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
993
1097
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
994
|
-
# Clusterer returns int64 cluster labels.
|
1098
|
+
# Clusterer returns int64 cluster labels.
|
995
1099
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
996
1100
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
997
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
998
|
-
|
999
|
-
|
1000
|
-
|
1101
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1102
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1103
|
+
)
|
1104
|
+
|
1001
1105
|
# For regressor, the type of predict is float64
|
1002
|
-
elif self._sklearn_object._estimator_type ==
|
1106
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1003
1107
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1004
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1005
|
-
|
1006
|
-
|
1007
|
-
|
1108
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1109
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1110
|
+
)
|
1111
|
+
|
1008
1112
|
for prob_func in PROB_FUNCTIONS:
|
1009
1113
|
if hasattr(self, prob_func):
|
1010
1114
|
output_cols_prefix: str = f"{prob_func}_"
|
1011
1115
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1012
1116
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1013
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1014
|
-
|
1015
|
-
|
1117
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1118
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1119
|
+
)
|
1016
1120
|
|
1017
1121
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1018
1122
|
items = list(self._model_signature_dict.items())
|
@@ -1025,10 +1129,10 @@ class SVR(BaseTransformer):
|
|
1025
1129
|
"""Returns model signature of current class.
|
1026
1130
|
|
1027
1131
|
Raises:
|
1028
|
-
|
1132
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1029
1133
|
|
1030
1134
|
Returns:
|
1031
|
-
Dict
|
1135
|
+
Dict with each method and its input output signature
|
1032
1136
|
"""
|
1033
1137
|
if self._model_signature_dict is None:
|
1034
1138
|
raise exceptions.SnowflakeMLException(
|
@@ -1036,35 +1140,3 @@ class SVR(BaseTransformer):
|
|
1036
1140
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1037
1141
|
)
|
1038
1142
|
return self._model_signature_dict
|
1039
|
-
|
1040
|
-
def to_sklearn(self) -> Any:
|
1041
|
-
"""Get sklearn.svm.SVR object.
|
1042
|
-
"""
|
1043
|
-
if self._sklearn_object is None:
|
1044
|
-
self._sklearn_object = self._create_sklearn_object()
|
1045
|
-
return self._sklearn_object
|
1046
|
-
|
1047
|
-
def to_xgboost(self) -> Any:
|
1048
|
-
raise exceptions.SnowflakeMLException(
|
1049
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1050
|
-
original_exception=AttributeError(
|
1051
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1052
|
-
"to_xgboost()",
|
1053
|
-
"to_sklearn()"
|
1054
|
-
)
|
1055
|
-
),
|
1056
|
-
)
|
1057
|
-
|
1058
|
-
def to_lightgbm(self) -> Any:
|
1059
|
-
raise exceptions.SnowflakeMLException(
|
1060
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1061
|
-
original_exception=AttributeError(
|
1062
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1063
|
-
"to_lightgbm()",
|
1064
|
-
"to_sklearn()"
|
1065
|
-
)
|
1066
|
-
),
|
1067
|
-
)
|
1068
|
-
|
1069
|
-
def _get_dependencies(self) -> List[str]:
|
1070
|
-
return self._deps
|