snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -240,12 +239,7 @@ class SpectralCoclustering(BaseTransformer):
240
239
  )
241
240
  return selected_cols
242
241
 
243
- @telemetry.send_api_usage_telemetry(
244
- project=_PROJECT,
245
- subproject=_SUBPROJECT,
246
- custom_tags=dict([("autogen", True)]),
247
- )
248
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralCoclustering":
242
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralCoclustering":
249
243
  """Create a biclustering for X
250
244
  For more details on this function, see [sklearn.cluster.SpectralCoclustering.fit]
251
245
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralCoclustering.html#sklearn.cluster.SpectralCoclustering.fit)
@@ -272,12 +266,14 @@ class SpectralCoclustering(BaseTransformer):
272
266
 
273
267
  self._snowpark_cols = dataset.select(self.input_cols).columns
274
268
 
275
- # If we are already in a stored procedure, no need to kick off another one.
269
+ # If we are already in a stored procedure, no need to kick off another one.
276
270
  if SNOWML_SPROC_ENV in os.environ:
277
271
  statement_params = telemetry.get_function_usage_statement_params(
278
272
  project=_PROJECT,
279
273
  subproject=_SUBPROJECT,
280
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SpectralCoclustering.__class__.__name__),
274
+ function_name=telemetry.get_statement_params_full_func_name(
275
+ inspect.currentframe(), SpectralCoclustering.__class__.__name__
276
+ ),
281
277
  api_calls=[Session.call],
282
278
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
283
279
  )
@@ -298,7 +294,7 @@ class SpectralCoclustering(BaseTransformer):
298
294
  )
299
295
  self._sklearn_object = model_trainer.train()
300
296
  self._is_fitted = True
301
- self._get_model_signatures(dataset)
297
+ self._generate_model_signatures(dataset)
302
298
  return self
303
299
 
304
300
  def _batch_inference_validate_snowpark(
@@ -372,7 +368,9 @@ class SpectralCoclustering(BaseTransformer):
372
368
  # when it is classifier, infer the datatype from label columns
373
369
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
374
370
  # Batch inference takes a single expected output column type. Use the first columns type for now.
375
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
371
+ label_cols_signatures = [
372
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
373
+ ]
376
374
  if len(label_cols_signatures) == 0:
377
375
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
378
376
  raise exceptions.SnowflakeMLException(
@@ -380,25 +378,22 @@ class SpectralCoclustering(BaseTransformer):
380
378
  original_exception=ValueError(error_str),
381
379
  )
382
380
 
383
- expected_type_inferred = convert_sp_to_sf_type(
384
- label_cols_signatures[0].as_snowpark_type()
385
- )
381
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
386
382
 
387
383
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
388
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
384
+ assert isinstance(
385
+ dataset._session, Session
386
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
389
387
 
390
388
  transform_kwargs = dict(
391
- session = dataset._session,
392
- dependencies = self._deps,
393
- drop_input_cols = self._drop_input_cols,
394
- expected_output_cols_type = expected_type_inferred,
389
+ session=dataset._session,
390
+ dependencies=self._deps,
391
+ drop_input_cols=self._drop_input_cols,
392
+ expected_output_cols_type=expected_type_inferred,
395
393
  )
396
394
 
397
395
  elif isinstance(dataset, pd.DataFrame):
398
- transform_kwargs = dict(
399
- snowpark_input_cols = self._snowpark_cols,
400
- drop_input_cols = self._drop_input_cols
401
- )
396
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
402
397
 
403
398
  transform_handlers = ModelTransformerBuilder.build(
404
399
  dataset=dataset,
@@ -438,7 +433,7 @@ class SpectralCoclustering(BaseTransformer):
438
433
  Transformed dataset.
439
434
  """
440
435
  super()._check_dataset_type(dataset)
441
- inference_method="transform"
436
+ inference_method = "transform"
442
437
 
443
438
  # This dictionary contains optional kwargs for batch inference. These kwargs
444
439
  # are specific to the type of dataset used.
@@ -475,17 +470,14 @@ class SpectralCoclustering(BaseTransformer):
475
470
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
476
471
 
477
472
  transform_kwargs = dict(
478
- session = dataset._session,
479
- dependencies = self._deps,
480
- drop_input_cols = self._drop_input_cols,
481
- expected_output_cols_type = expected_dtype,
473
+ session=dataset._session,
474
+ dependencies=self._deps,
475
+ drop_input_cols=self._drop_input_cols,
476
+ expected_output_cols_type=expected_dtype,
482
477
  )
483
478
 
484
479
  elif isinstance(dataset, pd.DataFrame):
485
- transform_kwargs = dict(
486
- snowpark_input_cols = self._snowpark_cols,
487
- drop_input_cols = self._drop_input_cols
488
- )
480
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
489
481
 
490
482
  transform_handlers = ModelTransformerBuilder.build(
491
483
  dataset=dataset,
@@ -504,7 +496,11 @@ class SpectralCoclustering(BaseTransformer):
504
496
  return output_df
505
497
 
506
498
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
507
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
499
+ def fit_predict(
500
+ self,
501
+ dataset: Union[DataFrame, pd.DataFrame],
502
+ output_cols_prefix: str = "fit_predict_",
503
+ ) -> Union[DataFrame, pd.DataFrame]:
508
504
  """ Method not supported for this class.
509
505
 
510
506
 
@@ -529,7 +525,9 @@ class SpectralCoclustering(BaseTransformer):
529
525
  )
530
526
  output_result, fitted_estimator = model_trainer.train_fit_predict(
531
527
  drop_input_cols=self._drop_input_cols,
532
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
528
+ expected_output_cols_list=(
529
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
530
+ ),
533
531
  )
534
532
  self._sklearn_object = fitted_estimator
535
533
  self._is_fitted = True
@@ -546,6 +544,62 @@ class SpectralCoclustering(BaseTransformer):
546
544
  assert self._sklearn_object is not None
547
545
  return self._sklearn_object.embedding_
548
546
 
547
+
548
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
549
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
550
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
551
+ """
552
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
553
+ # The following condition is introduced for kneighbors methods, and not used in other methods
554
+ if output_cols:
555
+ output_cols = [
556
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
557
+ for c in output_cols
558
+ ]
559
+ elif getattr(self._sklearn_object, "classes_", None) is None:
560
+ output_cols = [output_cols_prefix]
561
+ elif self._sklearn_object is not None:
562
+ classes = self._sklearn_object.classes_
563
+ if isinstance(classes, numpy.ndarray):
564
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
565
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
566
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
567
+ output_cols = []
568
+ for i, cl in enumerate(classes):
569
+ # For binary classification, there is only one output column for each class
570
+ # ndarray as the two classes are complementary.
571
+ if len(cl) == 2:
572
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
573
+ else:
574
+ output_cols.extend([
575
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
576
+ ])
577
+ else:
578
+ output_cols = []
579
+
580
+ # Make sure column names are valid snowflake identifiers.
581
+ assert output_cols is not None # Make MyPy happy
582
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
583
+
584
+ return rv
585
+
586
+ def _align_expected_output_names(
587
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
588
+ ) -> List[str]:
589
+ # in case the inferred output column names dimension is different
590
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
591
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
592
+ output_df_columns = list(output_df_pd.columns)
593
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
594
+ if self.sample_weight_col:
595
+ output_df_columns_set -= set(self.sample_weight_col)
596
+ # if the dimension of inferred output column names is correct; use it
597
+ if len(expected_output_cols_list) == len(output_df_columns_set):
598
+ return expected_output_cols_list
599
+ # otherwise, use the sklearn estimator's output
600
+ else:
601
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
602
+
549
603
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
550
604
  @telemetry.send_api_usage_telemetry(
551
605
  project=_PROJECT,
@@ -576,24 +630,28 @@ class SpectralCoclustering(BaseTransformer):
576
630
  # are specific to the type of dataset used.
577
631
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
578
632
 
633
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
634
+
579
635
  if isinstance(dataset, DataFrame):
580
636
  self._deps = self._batch_inference_validate_snowpark(
581
637
  dataset=dataset,
582
638
  inference_method=inference_method,
583
639
  )
584
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
640
+ assert isinstance(
641
+ dataset._session, Session
642
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
585
643
  transform_kwargs = dict(
586
644
  session=dataset._session,
587
645
  dependencies=self._deps,
588
- drop_input_cols = self._drop_input_cols,
646
+ drop_input_cols=self._drop_input_cols,
589
647
  expected_output_cols_type="float",
590
648
  )
649
+ expected_output_cols = self._align_expected_output_names(
650
+ inference_method, dataset, expected_output_cols, output_cols_prefix
651
+ )
591
652
 
592
653
  elif isinstance(dataset, pd.DataFrame):
593
- transform_kwargs = dict(
594
- snowpark_input_cols = self._snowpark_cols,
595
- drop_input_cols = self._drop_input_cols
596
- )
654
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
597
655
 
598
656
  transform_handlers = ModelTransformerBuilder.build(
599
657
  dataset=dataset,
@@ -605,7 +663,7 @@ class SpectralCoclustering(BaseTransformer):
605
663
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
606
664
  inference_method=inference_method,
607
665
  input_cols=self.input_cols,
608
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
666
+ expected_output_cols=expected_output_cols,
609
667
  **transform_kwargs
610
668
  )
611
669
  return output_df
@@ -635,7 +693,8 @@ class SpectralCoclustering(BaseTransformer):
635
693
  Output dataset with log probability of the sample for each class in the model.
636
694
  """
637
695
  super()._check_dataset_type(dataset)
638
- inference_method="predict_log_proba"
696
+ inference_method = "predict_log_proba"
697
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
639
698
 
640
699
  # This dictionary contains optional kwargs for batch inference. These kwargs
641
700
  # are specific to the type of dataset used.
@@ -646,18 +705,20 @@ class SpectralCoclustering(BaseTransformer):
646
705
  dataset=dataset,
647
706
  inference_method=inference_method,
648
707
  )
649
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
708
+ assert isinstance(
709
+ dataset._session, Session
710
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
650
711
  transform_kwargs = dict(
651
712
  session=dataset._session,
652
713
  dependencies=self._deps,
653
- drop_input_cols = self._drop_input_cols,
714
+ drop_input_cols=self._drop_input_cols,
654
715
  expected_output_cols_type="float",
655
716
  )
717
+ expected_output_cols = self._align_expected_output_names(
718
+ inference_method, dataset, expected_output_cols, output_cols_prefix
719
+ )
656
720
  elif isinstance(dataset, pd.DataFrame):
657
- transform_kwargs = dict(
658
- snowpark_input_cols = self._snowpark_cols,
659
- drop_input_cols = self._drop_input_cols
660
- )
721
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
661
722
 
662
723
  transform_handlers = ModelTransformerBuilder.build(
663
724
  dataset=dataset,
@@ -670,7 +731,7 @@ class SpectralCoclustering(BaseTransformer):
670
731
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
671
732
  inference_method=inference_method,
672
733
  input_cols=self.input_cols,
673
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
734
+ expected_output_cols=expected_output_cols,
674
735
  **transform_kwargs
675
736
  )
676
737
  return output_df
@@ -696,30 +757,34 @@ class SpectralCoclustering(BaseTransformer):
696
757
  Output dataset with results of the decision function for the samples in input dataset.
697
758
  """
698
759
  super()._check_dataset_type(dataset)
699
- inference_method="decision_function"
760
+ inference_method = "decision_function"
700
761
 
701
762
  # This dictionary contains optional kwargs for batch inference. These kwargs
702
763
  # are specific to the type of dataset used.
703
764
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
704
765
 
766
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
767
+
705
768
  if isinstance(dataset, DataFrame):
706
769
  self._deps = self._batch_inference_validate_snowpark(
707
770
  dataset=dataset,
708
771
  inference_method=inference_method,
709
772
  )
710
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
773
+ assert isinstance(
774
+ dataset._session, Session
775
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
711
776
  transform_kwargs = dict(
712
777
  session=dataset._session,
713
778
  dependencies=self._deps,
714
- drop_input_cols = self._drop_input_cols,
779
+ drop_input_cols=self._drop_input_cols,
715
780
  expected_output_cols_type="float",
716
781
  )
782
+ expected_output_cols = self._align_expected_output_names(
783
+ inference_method, dataset, expected_output_cols, output_cols_prefix
784
+ )
717
785
 
718
786
  elif isinstance(dataset, pd.DataFrame):
719
- transform_kwargs = dict(
720
- snowpark_input_cols = self._snowpark_cols,
721
- drop_input_cols = self._drop_input_cols
722
- )
787
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
723
788
 
724
789
  transform_handlers = ModelTransformerBuilder.build(
725
790
  dataset=dataset,
@@ -732,7 +797,7 @@ class SpectralCoclustering(BaseTransformer):
732
797
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
733
798
  inference_method=inference_method,
734
799
  input_cols=self.input_cols,
735
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
800
+ expected_output_cols=expected_output_cols,
736
801
  **transform_kwargs
737
802
  )
738
803
  return output_df
@@ -761,12 +826,14 @@ class SpectralCoclustering(BaseTransformer):
761
826
  Output dataset with probability of the sample for each class in the model.
762
827
  """
763
828
  super()._check_dataset_type(dataset)
764
- inference_method="score_samples"
829
+ inference_method = "score_samples"
765
830
 
766
831
  # This dictionary contains optional kwargs for batch inference. These kwargs
767
832
  # are specific to the type of dataset used.
768
833
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
769
834
 
835
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
836
+
770
837
  if isinstance(dataset, DataFrame):
771
838
  self._deps = self._batch_inference_validate_snowpark(
772
839
  dataset=dataset,
@@ -779,6 +846,9 @@ class SpectralCoclustering(BaseTransformer):
779
846
  drop_input_cols = self._drop_input_cols,
780
847
  expected_output_cols_type="float",
781
848
  )
849
+ expected_output_cols = self._align_expected_output_names(
850
+ inference_method, dataset, expected_output_cols, output_cols_prefix
851
+ )
782
852
 
783
853
  elif isinstance(dataset, pd.DataFrame):
784
854
  transform_kwargs = dict(
@@ -797,7 +867,7 @@ class SpectralCoclustering(BaseTransformer):
797
867
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
798
868
  inference_method=inference_method,
799
869
  input_cols=self.input_cols,
800
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
870
+ expected_output_cols=expected_output_cols,
801
871
  **transform_kwargs
802
872
  )
803
873
  return output_df
@@ -942,50 +1012,84 @@ class SpectralCoclustering(BaseTransformer):
942
1012
  )
943
1013
  return output_df
944
1014
 
1015
+
1016
+
1017
+ def to_sklearn(self) -> Any:
1018
+ """Get sklearn.cluster.SpectralCoclustering object.
1019
+ """
1020
+ if self._sklearn_object is None:
1021
+ self._sklearn_object = self._create_sklearn_object()
1022
+ return self._sklearn_object
1023
+
1024
+ def to_xgboost(self) -> Any:
1025
+ raise exceptions.SnowflakeMLException(
1026
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1027
+ original_exception=AttributeError(
1028
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1029
+ "to_xgboost()",
1030
+ "to_sklearn()"
1031
+ )
1032
+ ),
1033
+ )
1034
+
1035
+ def to_lightgbm(self) -> Any:
1036
+ raise exceptions.SnowflakeMLException(
1037
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1038
+ original_exception=AttributeError(
1039
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1040
+ "to_lightgbm()",
1041
+ "to_sklearn()"
1042
+ )
1043
+ ),
1044
+ )
945
1045
 
946
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1046
+ def _get_dependencies(self) -> List[str]:
1047
+ return self._deps
1048
+
1049
+
1050
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
947
1051
  self._model_signature_dict = dict()
948
1052
 
949
1053
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
950
1054
 
951
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1055
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
952
1056
  outputs: List[BaseFeatureSpec] = []
953
1057
  if hasattr(self, "predict"):
954
1058
  # keep mypy happy
955
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1059
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
956
1060
  # For classifier, the type of predict is the same as the type of label
957
- if self._sklearn_object._estimator_type == 'classifier':
958
- # label columns is the desired type for output
1061
+ if self._sklearn_object._estimator_type == "classifier":
1062
+ # label columns is the desired type for output
959
1063
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
960
1064
  # rename the output columns
961
1065
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
962
- self._model_signature_dict["predict"] = ModelSignature(inputs,
963
- ([] if self._drop_input_cols else inputs)
964
- + outputs)
1066
+ self._model_signature_dict["predict"] = ModelSignature(
1067
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1068
+ )
965
1069
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
966
1070
  # For outlier models, returns -1 for outliers and 1 for inliers.
967
- # Clusterer returns int64 cluster labels.
1071
+ # Clusterer returns int64 cluster labels.
968
1072
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
969
1073
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
970
- self._model_signature_dict["predict"] = ModelSignature(inputs,
971
- ([] if self._drop_input_cols else inputs)
972
- + outputs)
973
-
1074
+ self._model_signature_dict["predict"] = ModelSignature(
1075
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1076
+ )
1077
+
974
1078
  # For regressor, the type of predict is float64
975
- elif self._sklearn_object._estimator_type == 'regressor':
1079
+ elif self._sklearn_object._estimator_type == "regressor":
976
1080
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
977
- self._model_signature_dict["predict"] = ModelSignature(inputs,
978
- ([] if self._drop_input_cols else inputs)
979
- + outputs)
980
-
1081
+ self._model_signature_dict["predict"] = ModelSignature(
1082
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1083
+ )
1084
+
981
1085
  for prob_func in PROB_FUNCTIONS:
982
1086
  if hasattr(self, prob_func):
983
1087
  output_cols_prefix: str = f"{prob_func}_"
984
1088
  output_column_names = self._get_output_column_names(output_cols_prefix)
985
1089
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
986
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
987
- ([] if self._drop_input_cols else inputs)
988
- + outputs)
1090
+ self._model_signature_dict[prob_func] = ModelSignature(
1091
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1092
+ )
989
1093
 
990
1094
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
991
1095
  items = list(self._model_signature_dict.items())
@@ -998,10 +1102,10 @@ class SpectralCoclustering(BaseTransformer):
998
1102
  """Returns model signature of current class.
999
1103
 
1000
1104
  Raises:
1001
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1105
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1002
1106
 
1003
1107
  Returns:
1004
- Dict[str, ModelSignature]: each method and its input output signature
1108
+ Dict with each method and its input output signature
1005
1109
  """
1006
1110
  if self._model_signature_dict is None:
1007
1111
  raise exceptions.SnowflakeMLException(
@@ -1009,35 +1113,3 @@ class SpectralCoclustering(BaseTransformer):
1009
1113
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1010
1114
  )
1011
1115
  return self._model_signature_dict
1012
-
1013
- def to_sklearn(self) -> Any:
1014
- """Get sklearn.cluster.SpectralCoclustering object.
1015
- """
1016
- if self._sklearn_object is None:
1017
- self._sklearn_object = self._create_sklearn_object()
1018
- return self._sklearn_object
1019
-
1020
- def to_xgboost(self) -> Any:
1021
- raise exceptions.SnowflakeMLException(
1022
- error_code=error_codes.METHOD_NOT_ALLOWED,
1023
- original_exception=AttributeError(
1024
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1025
- "to_xgboost()",
1026
- "to_sklearn()"
1027
- )
1028
- ),
1029
- )
1030
-
1031
- def to_lightgbm(self) -> Any:
1032
- raise exceptions.SnowflakeMLException(
1033
- error_code=error_codes.METHOD_NOT_ALLOWED,
1034
- original_exception=AttributeError(
1035
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1036
- "to_lightgbm()",
1037
- "to_sklearn()"
1038
- )
1039
- ),
1040
- )
1041
-
1042
- def _get_dependencies(self) -> List[str]:
1043
- return self._deps