snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -391,12 +390,7 @@ class GradientBoostingClassifier(BaseTransformer):
391
390
  )
392
391
  return selected_cols
393
392
 
394
- @telemetry.send_api_usage_telemetry(
395
- project=_PROJECT,
396
- subproject=_SUBPROJECT,
397
- custom_tags=dict([("autogen", True)]),
398
- )
399
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GradientBoostingClassifier":
393
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GradientBoostingClassifier":
400
394
  """Fit the gradient boosting model
401
395
  For more details on this function, see [sklearn.ensemble.GradientBoostingClassifier.fit]
402
396
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier.fit)
@@ -423,12 +417,14 @@ class GradientBoostingClassifier(BaseTransformer):
423
417
 
424
418
  self._snowpark_cols = dataset.select(self.input_cols).columns
425
419
 
426
- # If we are already in a stored procedure, no need to kick off another one.
420
+ # If we are already in a stored procedure, no need to kick off another one.
427
421
  if SNOWML_SPROC_ENV in os.environ:
428
422
  statement_params = telemetry.get_function_usage_statement_params(
429
423
  project=_PROJECT,
430
424
  subproject=_SUBPROJECT,
431
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GradientBoostingClassifier.__class__.__name__),
425
+ function_name=telemetry.get_statement_params_full_func_name(
426
+ inspect.currentframe(), GradientBoostingClassifier.__class__.__name__
427
+ ),
432
428
  api_calls=[Session.call],
433
429
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
434
430
  )
@@ -449,7 +445,7 @@ class GradientBoostingClassifier(BaseTransformer):
449
445
  )
450
446
  self._sklearn_object = model_trainer.train()
451
447
  self._is_fitted = True
452
- self._get_model_signatures(dataset)
448
+ self._generate_model_signatures(dataset)
453
449
  return self
454
450
 
455
451
  def _batch_inference_validate_snowpark(
@@ -525,7 +521,9 @@ class GradientBoostingClassifier(BaseTransformer):
525
521
  # when it is classifier, infer the datatype from label columns
526
522
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
527
523
  # Batch inference takes a single expected output column type. Use the first columns type for now.
528
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
524
+ label_cols_signatures = [
525
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
526
+ ]
529
527
  if len(label_cols_signatures) == 0:
530
528
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
531
529
  raise exceptions.SnowflakeMLException(
@@ -533,25 +531,22 @@ class GradientBoostingClassifier(BaseTransformer):
533
531
  original_exception=ValueError(error_str),
534
532
  )
535
533
 
536
- expected_type_inferred = convert_sp_to_sf_type(
537
- label_cols_signatures[0].as_snowpark_type()
538
- )
534
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
539
535
 
540
536
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
541
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
537
+ assert isinstance(
538
+ dataset._session, Session
539
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
542
540
 
543
541
  transform_kwargs = dict(
544
- session = dataset._session,
545
- dependencies = self._deps,
546
- drop_input_cols = self._drop_input_cols,
547
- expected_output_cols_type = expected_type_inferred,
542
+ session=dataset._session,
543
+ dependencies=self._deps,
544
+ drop_input_cols=self._drop_input_cols,
545
+ expected_output_cols_type=expected_type_inferred,
548
546
  )
549
547
 
550
548
  elif isinstance(dataset, pd.DataFrame):
551
- transform_kwargs = dict(
552
- snowpark_input_cols = self._snowpark_cols,
553
- drop_input_cols = self._drop_input_cols
554
- )
549
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
555
550
 
556
551
  transform_handlers = ModelTransformerBuilder.build(
557
552
  dataset=dataset,
@@ -591,7 +586,7 @@ class GradientBoostingClassifier(BaseTransformer):
591
586
  Transformed dataset.
592
587
  """
593
588
  super()._check_dataset_type(dataset)
594
- inference_method="transform"
589
+ inference_method = "transform"
595
590
 
596
591
  # This dictionary contains optional kwargs for batch inference. These kwargs
597
592
  # are specific to the type of dataset used.
@@ -628,17 +623,14 @@ class GradientBoostingClassifier(BaseTransformer):
628
623
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
629
624
 
630
625
  transform_kwargs = dict(
631
- session = dataset._session,
632
- dependencies = self._deps,
633
- drop_input_cols = self._drop_input_cols,
634
- expected_output_cols_type = expected_dtype,
626
+ session=dataset._session,
627
+ dependencies=self._deps,
628
+ drop_input_cols=self._drop_input_cols,
629
+ expected_output_cols_type=expected_dtype,
635
630
  )
636
631
 
637
632
  elif isinstance(dataset, pd.DataFrame):
638
- transform_kwargs = dict(
639
- snowpark_input_cols = self._snowpark_cols,
640
- drop_input_cols = self._drop_input_cols
641
- )
633
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
642
634
 
643
635
  transform_handlers = ModelTransformerBuilder.build(
644
636
  dataset=dataset,
@@ -657,7 +649,11 @@ class GradientBoostingClassifier(BaseTransformer):
657
649
  return output_df
658
650
 
659
651
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
660
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
652
+ def fit_predict(
653
+ self,
654
+ dataset: Union[DataFrame, pd.DataFrame],
655
+ output_cols_prefix: str = "fit_predict_",
656
+ ) -> Union[DataFrame, pd.DataFrame]:
661
657
  """ Method not supported for this class.
662
658
 
663
659
 
@@ -682,7 +678,9 @@ class GradientBoostingClassifier(BaseTransformer):
682
678
  )
683
679
  output_result, fitted_estimator = model_trainer.train_fit_predict(
684
680
  drop_input_cols=self._drop_input_cols,
685
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
681
+ expected_output_cols_list=(
682
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
683
+ ),
686
684
  )
687
685
  self._sklearn_object = fitted_estimator
688
686
  self._is_fitted = True
@@ -699,6 +697,62 @@ class GradientBoostingClassifier(BaseTransformer):
699
697
  assert self._sklearn_object is not None
700
698
  return self._sklearn_object.embedding_
701
699
 
700
+
701
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
702
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
703
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
704
+ """
705
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
706
+ # The following condition is introduced for kneighbors methods, and not used in other methods
707
+ if output_cols:
708
+ output_cols = [
709
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
710
+ for c in output_cols
711
+ ]
712
+ elif getattr(self._sklearn_object, "classes_", None) is None:
713
+ output_cols = [output_cols_prefix]
714
+ elif self._sklearn_object is not None:
715
+ classes = self._sklearn_object.classes_
716
+ if isinstance(classes, numpy.ndarray):
717
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
718
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
719
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
720
+ output_cols = []
721
+ for i, cl in enumerate(classes):
722
+ # For binary classification, there is only one output column for each class
723
+ # ndarray as the two classes are complementary.
724
+ if len(cl) == 2:
725
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
726
+ else:
727
+ output_cols.extend([
728
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
729
+ ])
730
+ else:
731
+ output_cols = []
732
+
733
+ # Make sure column names are valid snowflake identifiers.
734
+ assert output_cols is not None # Make MyPy happy
735
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
736
+
737
+ return rv
738
+
739
+ def _align_expected_output_names(
740
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
741
+ ) -> List[str]:
742
+ # in case the inferred output column names dimension is different
743
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
744
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
745
+ output_df_columns = list(output_df_pd.columns)
746
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
747
+ if self.sample_weight_col:
748
+ output_df_columns_set -= set(self.sample_weight_col)
749
+ # if the dimension of inferred output column names is correct; use it
750
+ if len(expected_output_cols_list) == len(output_df_columns_set):
751
+ return expected_output_cols_list
752
+ # otherwise, use the sklearn estimator's output
753
+ else:
754
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
755
+
702
756
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
703
757
  @telemetry.send_api_usage_telemetry(
704
758
  project=_PROJECT,
@@ -731,24 +785,28 @@ class GradientBoostingClassifier(BaseTransformer):
731
785
  # are specific to the type of dataset used.
732
786
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
733
787
 
788
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
789
+
734
790
  if isinstance(dataset, DataFrame):
735
791
  self._deps = self._batch_inference_validate_snowpark(
736
792
  dataset=dataset,
737
793
  inference_method=inference_method,
738
794
  )
739
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
795
+ assert isinstance(
796
+ dataset._session, Session
797
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
740
798
  transform_kwargs = dict(
741
799
  session=dataset._session,
742
800
  dependencies=self._deps,
743
- drop_input_cols = self._drop_input_cols,
801
+ drop_input_cols=self._drop_input_cols,
744
802
  expected_output_cols_type="float",
745
803
  )
804
+ expected_output_cols = self._align_expected_output_names(
805
+ inference_method, dataset, expected_output_cols, output_cols_prefix
806
+ )
746
807
 
747
808
  elif isinstance(dataset, pd.DataFrame):
748
- transform_kwargs = dict(
749
- snowpark_input_cols = self._snowpark_cols,
750
- drop_input_cols = self._drop_input_cols
751
- )
809
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
752
810
 
753
811
  transform_handlers = ModelTransformerBuilder.build(
754
812
  dataset=dataset,
@@ -760,7 +818,7 @@ class GradientBoostingClassifier(BaseTransformer):
760
818
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
761
819
  inference_method=inference_method,
762
820
  input_cols=self.input_cols,
763
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
821
+ expected_output_cols=expected_output_cols,
764
822
  **transform_kwargs
765
823
  )
766
824
  return output_df
@@ -792,7 +850,8 @@ class GradientBoostingClassifier(BaseTransformer):
792
850
  Output dataset with log probability of the sample for each class in the model.
793
851
  """
794
852
  super()._check_dataset_type(dataset)
795
- inference_method="predict_log_proba"
853
+ inference_method = "predict_log_proba"
854
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
796
855
 
797
856
  # This dictionary contains optional kwargs for batch inference. These kwargs
798
857
  # are specific to the type of dataset used.
@@ -803,18 +862,20 @@ class GradientBoostingClassifier(BaseTransformer):
803
862
  dataset=dataset,
804
863
  inference_method=inference_method,
805
864
  )
806
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
865
+ assert isinstance(
866
+ dataset._session, Session
867
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
807
868
  transform_kwargs = dict(
808
869
  session=dataset._session,
809
870
  dependencies=self._deps,
810
- drop_input_cols = self._drop_input_cols,
871
+ drop_input_cols=self._drop_input_cols,
811
872
  expected_output_cols_type="float",
812
873
  )
874
+ expected_output_cols = self._align_expected_output_names(
875
+ inference_method, dataset, expected_output_cols, output_cols_prefix
876
+ )
813
877
  elif isinstance(dataset, pd.DataFrame):
814
- transform_kwargs = dict(
815
- snowpark_input_cols = self._snowpark_cols,
816
- drop_input_cols = self._drop_input_cols
817
- )
878
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
818
879
 
819
880
  transform_handlers = ModelTransformerBuilder.build(
820
881
  dataset=dataset,
@@ -827,7 +888,7 @@ class GradientBoostingClassifier(BaseTransformer):
827
888
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
828
889
  inference_method=inference_method,
829
890
  input_cols=self.input_cols,
830
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
891
+ expected_output_cols=expected_output_cols,
831
892
  **transform_kwargs
832
893
  )
833
894
  return output_df
@@ -855,30 +916,34 @@ class GradientBoostingClassifier(BaseTransformer):
855
916
  Output dataset with results of the decision function for the samples in input dataset.
856
917
  """
857
918
  super()._check_dataset_type(dataset)
858
- inference_method="decision_function"
919
+ inference_method = "decision_function"
859
920
 
860
921
  # This dictionary contains optional kwargs for batch inference. These kwargs
861
922
  # are specific to the type of dataset used.
862
923
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
863
924
 
925
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
926
+
864
927
  if isinstance(dataset, DataFrame):
865
928
  self._deps = self._batch_inference_validate_snowpark(
866
929
  dataset=dataset,
867
930
  inference_method=inference_method,
868
931
  )
869
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
932
+ assert isinstance(
933
+ dataset._session, Session
934
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
870
935
  transform_kwargs = dict(
871
936
  session=dataset._session,
872
937
  dependencies=self._deps,
873
- drop_input_cols = self._drop_input_cols,
938
+ drop_input_cols=self._drop_input_cols,
874
939
  expected_output_cols_type="float",
875
940
  )
941
+ expected_output_cols = self._align_expected_output_names(
942
+ inference_method, dataset, expected_output_cols, output_cols_prefix
943
+ )
876
944
 
877
945
  elif isinstance(dataset, pd.DataFrame):
878
- transform_kwargs = dict(
879
- snowpark_input_cols = self._snowpark_cols,
880
- drop_input_cols = self._drop_input_cols
881
- )
946
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
882
947
 
883
948
  transform_handlers = ModelTransformerBuilder.build(
884
949
  dataset=dataset,
@@ -891,7 +956,7 @@ class GradientBoostingClassifier(BaseTransformer):
891
956
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
892
957
  inference_method=inference_method,
893
958
  input_cols=self.input_cols,
894
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
959
+ expected_output_cols=expected_output_cols,
895
960
  **transform_kwargs
896
961
  )
897
962
  return output_df
@@ -920,12 +985,14 @@ class GradientBoostingClassifier(BaseTransformer):
920
985
  Output dataset with probability of the sample for each class in the model.
921
986
  """
922
987
  super()._check_dataset_type(dataset)
923
- inference_method="score_samples"
988
+ inference_method = "score_samples"
924
989
 
925
990
  # This dictionary contains optional kwargs for batch inference. These kwargs
926
991
  # are specific to the type of dataset used.
927
992
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
928
993
 
994
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
995
+
929
996
  if isinstance(dataset, DataFrame):
930
997
  self._deps = self._batch_inference_validate_snowpark(
931
998
  dataset=dataset,
@@ -938,6 +1005,9 @@ class GradientBoostingClassifier(BaseTransformer):
938
1005
  drop_input_cols = self._drop_input_cols,
939
1006
  expected_output_cols_type="float",
940
1007
  )
1008
+ expected_output_cols = self._align_expected_output_names(
1009
+ inference_method, dataset, expected_output_cols, output_cols_prefix
1010
+ )
941
1011
 
942
1012
  elif isinstance(dataset, pd.DataFrame):
943
1013
  transform_kwargs = dict(
@@ -956,7 +1026,7 @@ class GradientBoostingClassifier(BaseTransformer):
956
1026
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
957
1027
  inference_method=inference_method,
958
1028
  input_cols=self.input_cols,
959
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1029
+ expected_output_cols=expected_output_cols,
960
1030
  **transform_kwargs
961
1031
  )
962
1032
  return output_df
@@ -1103,50 +1173,84 @@ class GradientBoostingClassifier(BaseTransformer):
1103
1173
  )
1104
1174
  return output_df
1105
1175
 
1176
+
1177
+
1178
+ def to_sklearn(self) -> Any:
1179
+ """Get sklearn.ensemble.GradientBoostingClassifier object.
1180
+ """
1181
+ if self._sklearn_object is None:
1182
+ self._sklearn_object = self._create_sklearn_object()
1183
+ return self._sklearn_object
1184
+
1185
+ def to_xgboost(self) -> Any:
1186
+ raise exceptions.SnowflakeMLException(
1187
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1188
+ original_exception=AttributeError(
1189
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1190
+ "to_xgboost()",
1191
+ "to_sklearn()"
1192
+ )
1193
+ ),
1194
+ )
1195
+
1196
+ def to_lightgbm(self) -> Any:
1197
+ raise exceptions.SnowflakeMLException(
1198
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1199
+ original_exception=AttributeError(
1200
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1201
+ "to_lightgbm()",
1202
+ "to_sklearn()"
1203
+ )
1204
+ ),
1205
+ )
1106
1206
 
1107
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1207
+ def _get_dependencies(self) -> List[str]:
1208
+ return self._deps
1209
+
1210
+
1211
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1108
1212
  self._model_signature_dict = dict()
1109
1213
 
1110
1214
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1111
1215
 
1112
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1216
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1113
1217
  outputs: List[BaseFeatureSpec] = []
1114
1218
  if hasattr(self, "predict"):
1115
1219
  # keep mypy happy
1116
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1220
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1117
1221
  # For classifier, the type of predict is the same as the type of label
1118
- if self._sklearn_object._estimator_type == 'classifier':
1119
- # label columns is the desired type for output
1222
+ if self._sklearn_object._estimator_type == "classifier":
1223
+ # label columns is the desired type for output
1120
1224
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1121
1225
  # rename the output columns
1122
1226
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1123
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1124
- ([] if self._drop_input_cols else inputs)
1125
- + outputs)
1227
+ self._model_signature_dict["predict"] = ModelSignature(
1228
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1229
+ )
1126
1230
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1127
1231
  # For outlier models, returns -1 for outliers and 1 for inliers.
1128
- # Clusterer returns int64 cluster labels.
1232
+ # Clusterer returns int64 cluster labels.
1129
1233
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1130
1234
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1131
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1132
- ([] if self._drop_input_cols else inputs)
1133
- + outputs)
1134
-
1235
+ self._model_signature_dict["predict"] = ModelSignature(
1236
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1237
+ )
1238
+
1135
1239
  # For regressor, the type of predict is float64
1136
- elif self._sklearn_object._estimator_type == 'regressor':
1240
+ elif self._sklearn_object._estimator_type == "regressor":
1137
1241
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1138
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1139
- ([] if self._drop_input_cols else inputs)
1140
- + outputs)
1141
-
1242
+ self._model_signature_dict["predict"] = ModelSignature(
1243
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1244
+ )
1245
+
1142
1246
  for prob_func in PROB_FUNCTIONS:
1143
1247
  if hasattr(self, prob_func):
1144
1248
  output_cols_prefix: str = f"{prob_func}_"
1145
1249
  output_column_names = self._get_output_column_names(output_cols_prefix)
1146
1250
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1147
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1148
- ([] if self._drop_input_cols else inputs)
1149
- + outputs)
1251
+ self._model_signature_dict[prob_func] = ModelSignature(
1252
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1253
+ )
1150
1254
 
1151
1255
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1152
1256
  items = list(self._model_signature_dict.items())
@@ -1159,10 +1263,10 @@ class GradientBoostingClassifier(BaseTransformer):
1159
1263
  """Returns model signature of current class.
1160
1264
 
1161
1265
  Raises:
1162
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1266
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1163
1267
 
1164
1268
  Returns:
1165
- Dict[str, ModelSignature]: each method and its input output signature
1269
+ Dict with each method and its input output signature
1166
1270
  """
1167
1271
  if self._model_signature_dict is None:
1168
1272
  raise exceptions.SnowflakeMLException(
@@ -1170,35 +1274,3 @@ class GradientBoostingClassifier(BaseTransformer):
1170
1274
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1171
1275
  )
1172
1276
  return self._model_signature_dict
1173
-
1174
- def to_sklearn(self) -> Any:
1175
- """Get sklearn.ensemble.GradientBoostingClassifier object.
1176
- """
1177
- if self._sklearn_object is None:
1178
- self._sklearn_object = self._create_sklearn_object()
1179
- return self._sklearn_object
1180
-
1181
- def to_xgboost(self) -> Any:
1182
- raise exceptions.SnowflakeMLException(
1183
- error_code=error_codes.METHOD_NOT_ALLOWED,
1184
- original_exception=AttributeError(
1185
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1186
- "to_xgboost()",
1187
- "to_sklearn()"
1188
- )
1189
- ),
1190
- )
1191
-
1192
- def to_lightgbm(self) -> Any:
1193
- raise exceptions.SnowflakeMLException(
1194
- error_code=error_codes.METHOD_NOT_ALLOWED,
1195
- original_exception=AttributeError(
1196
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1197
- "to_lightgbm()",
1198
- "to_sklearn()"
1199
- )
1200
- ),
1201
- )
1202
-
1203
- def _get_dependencies(self) -> List[str]:
1204
- return self._deps