snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -34,6 +34,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
34
34
  BatchInferenceKwargsTypedDict,
35
35
  ScoreKwargsTypedDict
36
36
  )
37
+ from snowflake.ml.model._signatures import utils as model_signature_utils
38
+ from snowflake.ml.model.model_signature import (
39
+ BaseFeatureSpec,
40
+ DataType,
41
+ FeatureSpec,
42
+ ModelSignature,
43
+ _infer_signature,
44
+ _rename_signature_with_snowflake_identifiers,
45
+ )
37
46
 
38
47
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
39
48
 
@@ -44,16 +53,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
44
53
  validate_sklearn_args,
45
54
  )
46
55
 
47
- from snowflake.ml.model.model_signature import (
48
- DataType,
49
- FeatureSpec,
50
- ModelSignature,
51
- _infer_signature,
52
- _rename_signature_with_snowflake_identifiers,
53
- BaseFeatureSpec,
54
- )
55
- from snowflake.ml.model._signatures import utils as model_signature_utils
56
-
57
56
  _PROJECT = "ModelDevelopment"
58
57
  # Derive subproject from module name by removing "sklearn"
59
58
  # and converting module name from underscore to CamelCase
@@ -209,12 +208,7 @@ class GenericUnivariateSelect(BaseTransformer):
209
208
  )
210
209
  return selected_cols
211
210
 
212
- @telemetry.send_api_usage_telemetry(
213
- project=_PROJECT,
214
- subproject=_SUBPROJECT,
215
- custom_tags=dict([("autogen", True)]),
216
- )
217
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GenericUnivariateSelect":
211
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GenericUnivariateSelect":
218
212
  """Run score function on (X, y) and get the appropriate features
219
213
  For more details on this function, see [sklearn.feature_selection.GenericUnivariateSelect.fit]
220
214
  (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.GenericUnivariateSelect.html#sklearn.feature_selection.GenericUnivariateSelect.fit)
@@ -241,12 +235,14 @@ class GenericUnivariateSelect(BaseTransformer):
241
235
 
242
236
  self._snowpark_cols = dataset.select(self.input_cols).columns
243
237
 
244
- # If we are already in a stored procedure, no need to kick off another one.
238
+ # If we are already in a stored procedure, no need to kick off another one.
245
239
  if SNOWML_SPROC_ENV in os.environ:
246
240
  statement_params = telemetry.get_function_usage_statement_params(
247
241
  project=_PROJECT,
248
242
  subproject=_SUBPROJECT,
249
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GenericUnivariateSelect.__class__.__name__),
243
+ function_name=telemetry.get_statement_params_full_func_name(
244
+ inspect.currentframe(), GenericUnivariateSelect.__class__.__name__
245
+ ),
250
246
  api_calls=[Session.call],
251
247
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
252
248
  )
@@ -267,7 +263,7 @@ class GenericUnivariateSelect(BaseTransformer):
267
263
  )
268
264
  self._sklearn_object = model_trainer.train()
269
265
  self._is_fitted = True
270
- self._get_model_signatures(dataset)
266
+ self._generate_model_signatures(dataset)
271
267
  return self
272
268
 
273
269
  def _batch_inference_validate_snowpark(
@@ -341,7 +337,9 @@ class GenericUnivariateSelect(BaseTransformer):
341
337
  # when it is classifier, infer the datatype from label columns
342
338
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
343
339
  # Batch inference takes a single expected output column type. Use the first columns type for now.
344
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
340
+ label_cols_signatures = [
341
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
342
+ ]
345
343
  if len(label_cols_signatures) == 0:
346
344
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
347
345
  raise exceptions.SnowflakeMLException(
@@ -349,25 +347,22 @@ class GenericUnivariateSelect(BaseTransformer):
349
347
  original_exception=ValueError(error_str),
350
348
  )
351
349
 
352
- expected_type_inferred = convert_sp_to_sf_type(
353
- label_cols_signatures[0].as_snowpark_type()
354
- )
350
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
355
351
 
356
352
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
357
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
353
+ assert isinstance(
354
+ dataset._session, Session
355
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
358
356
 
359
357
  transform_kwargs = dict(
360
- session = dataset._session,
361
- dependencies = self._deps,
362
- drop_input_cols = self._drop_input_cols,
363
- expected_output_cols_type = expected_type_inferred,
358
+ session=dataset._session,
359
+ dependencies=self._deps,
360
+ drop_input_cols=self._drop_input_cols,
361
+ expected_output_cols_type=expected_type_inferred,
364
362
  )
365
363
 
366
364
  elif isinstance(dataset, pd.DataFrame):
367
- transform_kwargs = dict(
368
- snowpark_input_cols = self._snowpark_cols,
369
- drop_input_cols = self._drop_input_cols
370
- )
365
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
371
366
 
372
367
  transform_handlers = ModelTransformerBuilder.build(
373
368
  dataset=dataset,
@@ -409,7 +404,7 @@ class GenericUnivariateSelect(BaseTransformer):
409
404
  Transformed dataset.
410
405
  """
411
406
  super()._check_dataset_type(dataset)
412
- inference_method="transform"
407
+ inference_method = "transform"
413
408
 
414
409
  # This dictionary contains optional kwargs for batch inference. These kwargs
415
410
  # are specific to the type of dataset used.
@@ -446,17 +441,14 @@ class GenericUnivariateSelect(BaseTransformer):
446
441
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
447
442
 
448
443
  transform_kwargs = dict(
449
- session = dataset._session,
450
- dependencies = self._deps,
451
- drop_input_cols = self._drop_input_cols,
452
- expected_output_cols_type = expected_dtype,
444
+ session=dataset._session,
445
+ dependencies=self._deps,
446
+ drop_input_cols=self._drop_input_cols,
447
+ expected_output_cols_type=expected_dtype,
453
448
  )
454
449
 
455
450
  elif isinstance(dataset, pd.DataFrame):
456
- transform_kwargs = dict(
457
- snowpark_input_cols = self._snowpark_cols,
458
- drop_input_cols = self._drop_input_cols
459
- )
451
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
460
452
 
461
453
  transform_handlers = ModelTransformerBuilder.build(
462
454
  dataset=dataset,
@@ -475,7 +467,11 @@ class GenericUnivariateSelect(BaseTransformer):
475
467
  return output_df
476
468
 
477
469
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
478
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
470
+ def fit_predict(
471
+ self,
472
+ dataset: Union[DataFrame, pd.DataFrame],
473
+ output_cols_prefix: str = "fit_predict_",
474
+ ) -> Union[DataFrame, pd.DataFrame]:
479
475
  """ Method not supported for this class.
480
476
 
481
477
 
@@ -500,7 +496,9 @@ class GenericUnivariateSelect(BaseTransformer):
500
496
  )
501
497
  output_result, fitted_estimator = model_trainer.train_fit_predict(
502
498
  drop_input_cols=self._drop_input_cols,
503
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
499
+ expected_output_cols_list=(
500
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
501
+ ),
504
502
  )
505
503
  self._sklearn_object = fitted_estimator
506
504
  self._is_fitted = True
@@ -517,6 +515,62 @@ class GenericUnivariateSelect(BaseTransformer):
517
515
  assert self._sklearn_object is not None
518
516
  return self._sklearn_object.embedding_
519
517
 
518
+
519
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
520
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
521
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
522
+ """
523
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
524
+ # The following condition is introduced for kneighbors methods, and not used in other methods
525
+ if output_cols:
526
+ output_cols = [
527
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
528
+ for c in output_cols
529
+ ]
530
+ elif getattr(self._sklearn_object, "classes_", None) is None:
531
+ output_cols = [output_cols_prefix]
532
+ elif self._sklearn_object is not None:
533
+ classes = self._sklearn_object.classes_
534
+ if isinstance(classes, numpy.ndarray):
535
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
536
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
537
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
538
+ output_cols = []
539
+ for i, cl in enumerate(classes):
540
+ # For binary classification, there is only one output column for each class
541
+ # ndarray as the two classes are complementary.
542
+ if len(cl) == 2:
543
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
544
+ else:
545
+ output_cols.extend([
546
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
547
+ ])
548
+ else:
549
+ output_cols = []
550
+
551
+ # Make sure column names are valid snowflake identifiers.
552
+ assert output_cols is not None # Make MyPy happy
553
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
554
+
555
+ return rv
556
+
557
+ def _align_expected_output_names(
558
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
559
+ ) -> List[str]:
560
+ # in case the inferred output column names dimension is different
561
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
562
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
563
+ output_df_columns = list(output_df_pd.columns)
564
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
565
+ if self.sample_weight_col:
566
+ output_df_columns_set -= set(self.sample_weight_col)
567
+ # if the dimension of inferred output column names is correct; use it
568
+ if len(expected_output_cols_list) == len(output_df_columns_set):
569
+ return expected_output_cols_list
570
+ # otherwise, use the sklearn estimator's output
571
+ else:
572
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
573
+
520
574
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
521
575
  @telemetry.send_api_usage_telemetry(
522
576
  project=_PROJECT,
@@ -547,24 +601,28 @@ class GenericUnivariateSelect(BaseTransformer):
547
601
  # are specific to the type of dataset used.
548
602
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
549
603
 
604
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
605
+
550
606
  if isinstance(dataset, DataFrame):
551
607
  self._deps = self._batch_inference_validate_snowpark(
552
608
  dataset=dataset,
553
609
  inference_method=inference_method,
554
610
  )
555
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
611
+ assert isinstance(
612
+ dataset._session, Session
613
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
556
614
  transform_kwargs = dict(
557
615
  session=dataset._session,
558
616
  dependencies=self._deps,
559
- drop_input_cols = self._drop_input_cols,
617
+ drop_input_cols=self._drop_input_cols,
560
618
  expected_output_cols_type="float",
561
619
  )
620
+ expected_output_cols = self._align_expected_output_names(
621
+ inference_method, dataset, expected_output_cols, output_cols_prefix
622
+ )
562
623
 
563
624
  elif isinstance(dataset, pd.DataFrame):
564
- transform_kwargs = dict(
565
- snowpark_input_cols = self._snowpark_cols,
566
- drop_input_cols = self._drop_input_cols
567
- )
625
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
568
626
 
569
627
  transform_handlers = ModelTransformerBuilder.build(
570
628
  dataset=dataset,
@@ -576,7 +634,7 @@ class GenericUnivariateSelect(BaseTransformer):
576
634
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
577
635
  inference_method=inference_method,
578
636
  input_cols=self.input_cols,
579
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
637
+ expected_output_cols=expected_output_cols,
580
638
  **transform_kwargs
581
639
  )
582
640
  return output_df
@@ -606,7 +664,8 @@ class GenericUnivariateSelect(BaseTransformer):
606
664
  Output dataset with log probability of the sample for each class in the model.
607
665
  """
608
666
  super()._check_dataset_type(dataset)
609
- inference_method="predict_log_proba"
667
+ inference_method = "predict_log_proba"
668
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
610
669
 
611
670
  # This dictionary contains optional kwargs for batch inference. These kwargs
612
671
  # are specific to the type of dataset used.
@@ -617,18 +676,20 @@ class GenericUnivariateSelect(BaseTransformer):
617
676
  dataset=dataset,
618
677
  inference_method=inference_method,
619
678
  )
620
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
679
+ assert isinstance(
680
+ dataset._session, Session
681
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
621
682
  transform_kwargs = dict(
622
683
  session=dataset._session,
623
684
  dependencies=self._deps,
624
- drop_input_cols = self._drop_input_cols,
685
+ drop_input_cols=self._drop_input_cols,
625
686
  expected_output_cols_type="float",
626
687
  )
688
+ expected_output_cols = self._align_expected_output_names(
689
+ inference_method, dataset, expected_output_cols, output_cols_prefix
690
+ )
627
691
  elif isinstance(dataset, pd.DataFrame):
628
- transform_kwargs = dict(
629
- snowpark_input_cols = self._snowpark_cols,
630
- drop_input_cols = self._drop_input_cols
631
- )
692
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
632
693
 
633
694
  transform_handlers = ModelTransformerBuilder.build(
634
695
  dataset=dataset,
@@ -641,7 +702,7 @@ class GenericUnivariateSelect(BaseTransformer):
641
702
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
642
703
  inference_method=inference_method,
643
704
  input_cols=self.input_cols,
644
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
705
+ expected_output_cols=expected_output_cols,
645
706
  **transform_kwargs
646
707
  )
647
708
  return output_df
@@ -667,30 +728,34 @@ class GenericUnivariateSelect(BaseTransformer):
667
728
  Output dataset with results of the decision function for the samples in input dataset.
668
729
  """
669
730
  super()._check_dataset_type(dataset)
670
- inference_method="decision_function"
731
+ inference_method = "decision_function"
671
732
 
672
733
  # This dictionary contains optional kwargs for batch inference. These kwargs
673
734
  # are specific to the type of dataset used.
674
735
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
675
736
 
737
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
738
+
676
739
  if isinstance(dataset, DataFrame):
677
740
  self._deps = self._batch_inference_validate_snowpark(
678
741
  dataset=dataset,
679
742
  inference_method=inference_method,
680
743
  )
681
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
744
+ assert isinstance(
745
+ dataset._session, Session
746
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
682
747
  transform_kwargs = dict(
683
748
  session=dataset._session,
684
749
  dependencies=self._deps,
685
- drop_input_cols = self._drop_input_cols,
750
+ drop_input_cols=self._drop_input_cols,
686
751
  expected_output_cols_type="float",
687
752
  )
753
+ expected_output_cols = self._align_expected_output_names(
754
+ inference_method, dataset, expected_output_cols, output_cols_prefix
755
+ )
688
756
 
689
757
  elif isinstance(dataset, pd.DataFrame):
690
- transform_kwargs = dict(
691
- snowpark_input_cols = self._snowpark_cols,
692
- drop_input_cols = self._drop_input_cols
693
- )
758
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
694
759
 
695
760
  transform_handlers = ModelTransformerBuilder.build(
696
761
  dataset=dataset,
@@ -703,7 +768,7 @@ class GenericUnivariateSelect(BaseTransformer):
703
768
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
704
769
  inference_method=inference_method,
705
770
  input_cols=self.input_cols,
706
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
771
+ expected_output_cols=expected_output_cols,
707
772
  **transform_kwargs
708
773
  )
709
774
  return output_df
@@ -732,12 +797,14 @@ class GenericUnivariateSelect(BaseTransformer):
732
797
  Output dataset with probability of the sample for each class in the model.
733
798
  """
734
799
  super()._check_dataset_type(dataset)
735
- inference_method="score_samples"
800
+ inference_method = "score_samples"
736
801
 
737
802
  # This dictionary contains optional kwargs for batch inference. These kwargs
738
803
  # are specific to the type of dataset used.
739
804
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
740
805
 
806
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
807
+
741
808
  if isinstance(dataset, DataFrame):
742
809
  self._deps = self._batch_inference_validate_snowpark(
743
810
  dataset=dataset,
@@ -750,6 +817,9 @@ class GenericUnivariateSelect(BaseTransformer):
750
817
  drop_input_cols = self._drop_input_cols,
751
818
  expected_output_cols_type="float",
752
819
  )
820
+ expected_output_cols = self._align_expected_output_names(
821
+ inference_method, dataset, expected_output_cols, output_cols_prefix
822
+ )
753
823
 
754
824
  elif isinstance(dataset, pd.DataFrame):
755
825
  transform_kwargs = dict(
@@ -768,7 +838,7 @@ class GenericUnivariateSelect(BaseTransformer):
768
838
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
769
839
  inference_method=inference_method,
770
840
  input_cols=self.input_cols,
771
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
841
+ expected_output_cols=expected_output_cols,
772
842
  **transform_kwargs
773
843
  )
774
844
  return output_df
@@ -913,50 +983,84 @@ class GenericUnivariateSelect(BaseTransformer):
913
983
  )
914
984
  return output_df
915
985
 
986
+
987
+
988
+ def to_sklearn(self) -> Any:
989
+ """Get sklearn.feature_selection.GenericUnivariateSelect object.
990
+ """
991
+ if self._sklearn_object is None:
992
+ self._sklearn_object = self._create_sklearn_object()
993
+ return self._sklearn_object
994
+
995
+ def to_xgboost(self) -> Any:
996
+ raise exceptions.SnowflakeMLException(
997
+ error_code=error_codes.METHOD_NOT_ALLOWED,
998
+ original_exception=AttributeError(
999
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1000
+ "to_xgboost()",
1001
+ "to_sklearn()"
1002
+ )
1003
+ ),
1004
+ )
1005
+
1006
+ def to_lightgbm(self) -> Any:
1007
+ raise exceptions.SnowflakeMLException(
1008
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1009
+ original_exception=AttributeError(
1010
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1011
+ "to_lightgbm()",
1012
+ "to_sklearn()"
1013
+ )
1014
+ ),
1015
+ )
916
1016
 
917
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1017
+ def _get_dependencies(self) -> List[str]:
1018
+ return self._deps
1019
+
1020
+
1021
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
918
1022
  self._model_signature_dict = dict()
919
1023
 
920
1024
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
921
1025
 
922
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1026
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
923
1027
  outputs: List[BaseFeatureSpec] = []
924
1028
  if hasattr(self, "predict"):
925
1029
  # keep mypy happy
926
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1030
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
927
1031
  # For classifier, the type of predict is the same as the type of label
928
- if self._sklearn_object._estimator_type == 'classifier':
929
- # label columns is the desired type for output
1032
+ if self._sklearn_object._estimator_type == "classifier":
1033
+ # label columns is the desired type for output
930
1034
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
931
1035
  # rename the output columns
932
1036
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
933
- self._model_signature_dict["predict"] = ModelSignature(inputs,
934
- ([] if self._drop_input_cols else inputs)
935
- + outputs)
1037
+ self._model_signature_dict["predict"] = ModelSignature(
1038
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1039
+ )
936
1040
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
937
1041
  # For outlier models, returns -1 for outliers and 1 for inliers.
938
- # Clusterer returns int64 cluster labels.
1042
+ # Clusterer returns int64 cluster labels.
939
1043
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
940
1044
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
941
- self._model_signature_dict["predict"] = ModelSignature(inputs,
942
- ([] if self._drop_input_cols else inputs)
943
- + outputs)
944
-
1045
+ self._model_signature_dict["predict"] = ModelSignature(
1046
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1047
+ )
1048
+
945
1049
  # For regressor, the type of predict is float64
946
- elif self._sklearn_object._estimator_type == 'regressor':
1050
+ elif self._sklearn_object._estimator_type == "regressor":
947
1051
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
948
- self._model_signature_dict["predict"] = ModelSignature(inputs,
949
- ([] if self._drop_input_cols else inputs)
950
- + outputs)
951
-
1052
+ self._model_signature_dict["predict"] = ModelSignature(
1053
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1054
+ )
1055
+
952
1056
  for prob_func in PROB_FUNCTIONS:
953
1057
  if hasattr(self, prob_func):
954
1058
  output_cols_prefix: str = f"{prob_func}_"
955
1059
  output_column_names = self._get_output_column_names(output_cols_prefix)
956
1060
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
957
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
958
- ([] if self._drop_input_cols else inputs)
959
- + outputs)
1061
+ self._model_signature_dict[prob_func] = ModelSignature(
1062
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1063
+ )
960
1064
 
961
1065
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
962
1066
  items = list(self._model_signature_dict.items())
@@ -969,10 +1073,10 @@ class GenericUnivariateSelect(BaseTransformer):
969
1073
  """Returns model signature of current class.
970
1074
 
971
1075
  Raises:
972
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1076
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
973
1077
 
974
1078
  Returns:
975
- Dict[str, ModelSignature]: each method and its input output signature
1079
+ Dict with each method and its input output signature
976
1080
  """
977
1081
  if self._model_signature_dict is None:
978
1082
  raise exceptions.SnowflakeMLException(
@@ -980,35 +1084,3 @@ class GenericUnivariateSelect(BaseTransformer):
980
1084
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
981
1085
  )
982
1086
  return self._model_signature_dict
983
-
984
- def to_sklearn(self) -> Any:
985
- """Get sklearn.feature_selection.GenericUnivariateSelect object.
986
- """
987
- if self._sklearn_object is None:
988
- self._sklearn_object = self._create_sklearn_object()
989
- return self._sklearn_object
990
-
991
- def to_xgboost(self) -> Any:
992
- raise exceptions.SnowflakeMLException(
993
- error_code=error_codes.METHOD_NOT_ALLOWED,
994
- original_exception=AttributeError(
995
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
996
- "to_xgboost()",
997
- "to_sklearn()"
998
- )
999
- ),
1000
- )
1001
-
1002
- def to_lightgbm(self) -> Any:
1003
- raise exceptions.SnowflakeMLException(
1004
- error_code=error_codes.METHOD_NOT_ALLOWED,
1005
- original_exception=AttributeError(
1006
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1007
- "to_lightgbm()",
1008
- "to_sklearn()"
1009
- )
1010
- ),
1011
- )
1012
-
1013
- def _get_dependencies(self) -> List[str]:
1014
- return self._deps