snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -138,11 +138,7 @@ class MinMaxScaler(base.BaseTransformer):
138
138
  ),
139
139
  )
140
140
 
141
- @telemetry.send_api_usage_telemetry(
142
- project=base.PROJECT,
143
- subproject=base.SUBPROJECT,
144
- )
145
- def fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "MinMaxScaler":
141
+ def _fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "MinMaxScaler":
146
142
  """
147
143
  Compute min and max values of the dataset.
148
144
 
@@ -175,11 +171,13 @@ class MinMaxScaler(base.BaseTransformer):
175
171
  sklearn_scaler.fit(dataset[self.input_cols])
176
172
 
177
173
  for i, input_col in enumerate(self.input_cols):
178
- self.min_[input_col] = float(sklearn_scaler.min_[i])
179
- self.scale_[input_col] = float(sklearn_scaler.scale_[i])
180
- self.data_min_[input_col] = float(sklearn_scaler.data_min_[i])
181
- self.data_max_[input_col] = float(sklearn_scaler.data_max_[i])
182
- self.data_range_[input_col] = float(sklearn_scaler.data_range_[i])
174
+ self.min_[input_col] = _utils.to_float_if_valid(sklearn_scaler.min_[i], input_col, "min_")
175
+ self.scale_[input_col] = _utils.to_float_if_valid(sklearn_scaler.scale_[i], input_col, "scale_")
176
+ self.data_min_[input_col] = _utils.to_float_if_valid(sklearn_scaler.data_min_[i], input_col, "data_min_")
177
+ self.data_max_[input_col] = _utils.to_float_if_valid(sklearn_scaler.data_max_[i], input_col, "data_max_")
178
+ self.data_range_[input_col] = _utils.to_float_if_valid(
179
+ sklearn_scaler.data_range_[i], input_col, "data_range_"
180
+ )
183
181
 
184
182
  def _fit_snowpark(self, dataset: snowpark.DataFrame) -> None:
185
183
  self._check_input_column_types(dataset)
@@ -189,8 +187,8 @@ class MinMaxScaler(base.BaseTransformer):
189
187
  for input_col in self.input_cols:
190
188
  numeric_stats = computed_states[input_col]
191
189
 
192
- data_min = float(numeric_stats[_utils.NumericStatistics.MIN])
193
- data_max = float(numeric_stats[_utils.NumericStatistics.MAX])
190
+ data_min = _utils.to_float_if_valid(numeric_stats[_utils.NumericStatistics.MIN], input_col, "data_min_")
191
+ data_max = _utils.to_float_if_valid(numeric_stats[_utils.NumericStatistics.MAX], input_col, "data_max_")
194
192
  data_range = data_max - data_min
195
193
  self.scale_[input_col] = (
196
194
  self.feature_range[1] - self.feature_range[0]
@@ -70,11 +70,7 @@ class Normalizer(base.BaseTransformer):
70
70
  """
71
71
  pass
72
72
 
73
- @telemetry.send_api_usage_telemetry(
74
- project=base.PROJECT,
75
- subproject=base.SUBPROJECT,
76
- )
77
- def fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "Normalizer":
73
+ def _fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "Normalizer":
78
74
  """
79
75
  Does nothing, because the normalizer is a stateless transformer.
80
76
 
@@ -267,11 +267,7 @@ class OneHotEncoder(base.BaseTransformer):
267
267
  if hasattr(self, "_state_pandas"):
268
268
  del self._state_pandas
269
269
 
270
- @telemetry.send_api_usage_telemetry(
271
- project=base.PROJECT,
272
- subproject=base.SUBPROJECT,
273
- )
274
- def fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "OneHotEncoder":
270
+ def _fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "OneHotEncoder":
275
271
  """
276
272
  Fit OneHotEncoder to dataset.
277
273
 
@@ -171,11 +171,7 @@ class OrdinalEncoder(base.BaseTransformer):
171
171
  if hasattr(self, "_state_pandas"):
172
172
  del self._state_pandas
173
173
 
174
- @telemetry.send_api_usage_telemetry(
175
- project=base.PROJECT,
176
- subproject=base.SUBPROJECT,
177
- )
178
- def fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "OrdinalEncoder":
174
+ def _fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "OrdinalEncoder":
179
175
  """
180
176
  Fit the OrdinalEncoder to dataset.
181
177
 
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -222,12 +221,7 @@ class PolynomialFeatures(BaseTransformer):
222
221
  )
223
222
  return selected_cols
224
223
 
225
- @telemetry.send_api_usage_telemetry(
226
- project=_PROJECT,
227
- subproject=_SUBPROJECT,
228
- custom_tags=dict([("autogen", True)]),
229
- )
230
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PolynomialFeatures":
224
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PolynomialFeatures":
231
225
  """Compute number of output features
232
226
  For more details on this function, see [sklearn.preprocessing.PolynomialFeatures.fit]
233
227
  (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures.fit)
@@ -254,12 +248,14 @@ class PolynomialFeatures(BaseTransformer):
254
248
 
255
249
  self._snowpark_cols = dataset.select(self.input_cols).columns
256
250
 
257
- # If we are already in a stored procedure, no need to kick off another one.
251
+ # If we are already in a stored procedure, no need to kick off another one.
258
252
  if SNOWML_SPROC_ENV in os.environ:
259
253
  statement_params = telemetry.get_function_usage_statement_params(
260
254
  project=_PROJECT,
261
255
  subproject=_SUBPROJECT,
262
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PolynomialFeatures.__class__.__name__),
256
+ function_name=telemetry.get_statement_params_full_func_name(
257
+ inspect.currentframe(), PolynomialFeatures.__class__.__name__
258
+ ),
263
259
  api_calls=[Session.call],
264
260
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
265
261
  )
@@ -280,7 +276,7 @@ class PolynomialFeatures(BaseTransformer):
280
276
  )
281
277
  self._sklearn_object = model_trainer.train()
282
278
  self._is_fitted = True
283
- self._get_model_signatures(dataset)
279
+ self._generate_model_signatures(dataset)
284
280
  return self
285
281
 
286
282
  def _batch_inference_validate_snowpark(
@@ -354,7 +350,9 @@ class PolynomialFeatures(BaseTransformer):
354
350
  # when it is classifier, infer the datatype from label columns
355
351
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
356
352
  # Batch inference takes a single expected output column type. Use the first columns type for now.
357
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
353
+ label_cols_signatures = [
354
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
355
+ ]
358
356
  if len(label_cols_signatures) == 0:
359
357
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
360
358
  raise exceptions.SnowflakeMLException(
@@ -362,25 +360,22 @@ class PolynomialFeatures(BaseTransformer):
362
360
  original_exception=ValueError(error_str),
363
361
  )
364
362
 
365
- expected_type_inferred = convert_sp_to_sf_type(
366
- label_cols_signatures[0].as_snowpark_type()
367
- )
363
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
368
364
 
369
365
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
370
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
366
+ assert isinstance(
367
+ dataset._session, Session
368
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
371
369
 
372
370
  transform_kwargs = dict(
373
- session = dataset._session,
374
- dependencies = self._deps,
375
- drop_input_cols = self._drop_input_cols,
376
- expected_output_cols_type = expected_type_inferred,
371
+ session=dataset._session,
372
+ dependencies=self._deps,
373
+ drop_input_cols=self._drop_input_cols,
374
+ expected_output_cols_type=expected_type_inferred,
377
375
  )
378
376
 
379
377
  elif isinstance(dataset, pd.DataFrame):
380
- transform_kwargs = dict(
381
- snowpark_input_cols = self._snowpark_cols,
382
- drop_input_cols = self._drop_input_cols
383
- )
378
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
384
379
 
385
380
  transform_handlers = ModelTransformerBuilder.build(
386
381
  dataset=dataset,
@@ -422,7 +417,7 @@ class PolynomialFeatures(BaseTransformer):
422
417
  Transformed dataset.
423
418
  """
424
419
  super()._check_dataset_type(dataset)
425
- inference_method="transform"
420
+ inference_method = "transform"
426
421
 
427
422
  # This dictionary contains optional kwargs for batch inference. These kwargs
428
423
  # are specific to the type of dataset used.
@@ -459,17 +454,14 @@ class PolynomialFeatures(BaseTransformer):
459
454
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
460
455
 
461
456
  transform_kwargs = dict(
462
- session = dataset._session,
463
- dependencies = self._deps,
464
- drop_input_cols = self._drop_input_cols,
465
- expected_output_cols_type = expected_dtype,
457
+ session=dataset._session,
458
+ dependencies=self._deps,
459
+ drop_input_cols=self._drop_input_cols,
460
+ expected_output_cols_type=expected_dtype,
466
461
  )
467
462
 
468
463
  elif isinstance(dataset, pd.DataFrame):
469
- transform_kwargs = dict(
470
- snowpark_input_cols = self._snowpark_cols,
471
- drop_input_cols = self._drop_input_cols
472
- )
464
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
473
465
 
474
466
  transform_handlers = ModelTransformerBuilder.build(
475
467
  dataset=dataset,
@@ -488,7 +480,11 @@ class PolynomialFeatures(BaseTransformer):
488
480
  return output_df
489
481
 
490
482
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
491
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
483
+ def fit_predict(
484
+ self,
485
+ dataset: Union[DataFrame, pd.DataFrame],
486
+ output_cols_prefix: str = "fit_predict_",
487
+ ) -> Union[DataFrame, pd.DataFrame]:
492
488
  """ Method not supported for this class.
493
489
 
494
490
 
@@ -513,7 +509,9 @@ class PolynomialFeatures(BaseTransformer):
513
509
  )
514
510
  output_result, fitted_estimator = model_trainer.train_fit_predict(
515
511
  drop_input_cols=self._drop_input_cols,
516
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
512
+ expected_output_cols_list=(
513
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
514
+ ),
517
515
  )
518
516
  self._sklearn_object = fitted_estimator
519
517
  self._is_fitted = True
@@ -530,6 +528,62 @@ class PolynomialFeatures(BaseTransformer):
530
528
  assert self._sklearn_object is not None
531
529
  return self._sklearn_object.embedding_
532
530
 
531
+
532
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
533
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
534
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
535
+ """
536
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
537
+ # The following condition is introduced for kneighbors methods, and not used in other methods
538
+ if output_cols:
539
+ output_cols = [
540
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
541
+ for c in output_cols
542
+ ]
543
+ elif getattr(self._sklearn_object, "classes_", None) is None:
544
+ output_cols = [output_cols_prefix]
545
+ elif self._sklearn_object is not None:
546
+ classes = self._sklearn_object.classes_
547
+ if isinstance(classes, numpy.ndarray):
548
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
549
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
550
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
551
+ output_cols = []
552
+ for i, cl in enumerate(classes):
553
+ # For binary classification, there is only one output column for each class
554
+ # ndarray as the two classes are complementary.
555
+ if len(cl) == 2:
556
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
557
+ else:
558
+ output_cols.extend([
559
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
560
+ ])
561
+ else:
562
+ output_cols = []
563
+
564
+ # Make sure column names are valid snowflake identifiers.
565
+ assert output_cols is not None # Make MyPy happy
566
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
567
+
568
+ return rv
569
+
570
+ def _align_expected_output_names(
571
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
572
+ ) -> List[str]:
573
+ # in case the inferred output column names dimension is different
574
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
575
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
576
+ output_df_columns = list(output_df_pd.columns)
577
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
578
+ if self.sample_weight_col:
579
+ output_df_columns_set -= set(self.sample_weight_col)
580
+ # if the dimension of inferred output column names is correct; use it
581
+ if len(expected_output_cols_list) == len(output_df_columns_set):
582
+ return expected_output_cols_list
583
+ # otherwise, use the sklearn estimator's output
584
+ else:
585
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
586
+
533
587
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
534
588
  @telemetry.send_api_usage_telemetry(
535
589
  project=_PROJECT,
@@ -560,24 +614,28 @@ class PolynomialFeatures(BaseTransformer):
560
614
  # are specific to the type of dataset used.
561
615
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
562
616
 
617
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
618
+
563
619
  if isinstance(dataset, DataFrame):
564
620
  self._deps = self._batch_inference_validate_snowpark(
565
621
  dataset=dataset,
566
622
  inference_method=inference_method,
567
623
  )
568
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
624
+ assert isinstance(
625
+ dataset._session, Session
626
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
569
627
  transform_kwargs = dict(
570
628
  session=dataset._session,
571
629
  dependencies=self._deps,
572
- drop_input_cols = self._drop_input_cols,
630
+ drop_input_cols=self._drop_input_cols,
573
631
  expected_output_cols_type="float",
574
632
  )
633
+ expected_output_cols = self._align_expected_output_names(
634
+ inference_method, dataset, expected_output_cols, output_cols_prefix
635
+ )
575
636
 
576
637
  elif isinstance(dataset, pd.DataFrame):
577
- transform_kwargs = dict(
578
- snowpark_input_cols = self._snowpark_cols,
579
- drop_input_cols = self._drop_input_cols
580
- )
638
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
581
639
 
582
640
  transform_handlers = ModelTransformerBuilder.build(
583
641
  dataset=dataset,
@@ -589,7 +647,7 @@ class PolynomialFeatures(BaseTransformer):
589
647
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
590
648
  inference_method=inference_method,
591
649
  input_cols=self.input_cols,
592
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
650
+ expected_output_cols=expected_output_cols,
593
651
  **transform_kwargs
594
652
  )
595
653
  return output_df
@@ -619,7 +677,8 @@ class PolynomialFeatures(BaseTransformer):
619
677
  Output dataset with log probability of the sample for each class in the model.
620
678
  """
621
679
  super()._check_dataset_type(dataset)
622
- inference_method="predict_log_proba"
680
+ inference_method = "predict_log_proba"
681
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
623
682
 
624
683
  # This dictionary contains optional kwargs for batch inference. These kwargs
625
684
  # are specific to the type of dataset used.
@@ -630,18 +689,20 @@ class PolynomialFeatures(BaseTransformer):
630
689
  dataset=dataset,
631
690
  inference_method=inference_method,
632
691
  )
633
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
692
+ assert isinstance(
693
+ dataset._session, Session
694
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
634
695
  transform_kwargs = dict(
635
696
  session=dataset._session,
636
697
  dependencies=self._deps,
637
- drop_input_cols = self._drop_input_cols,
698
+ drop_input_cols=self._drop_input_cols,
638
699
  expected_output_cols_type="float",
639
700
  )
701
+ expected_output_cols = self._align_expected_output_names(
702
+ inference_method, dataset, expected_output_cols, output_cols_prefix
703
+ )
640
704
  elif isinstance(dataset, pd.DataFrame):
641
- transform_kwargs = dict(
642
- snowpark_input_cols = self._snowpark_cols,
643
- drop_input_cols = self._drop_input_cols
644
- )
705
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
645
706
 
646
707
  transform_handlers = ModelTransformerBuilder.build(
647
708
  dataset=dataset,
@@ -654,7 +715,7 @@ class PolynomialFeatures(BaseTransformer):
654
715
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
655
716
  inference_method=inference_method,
656
717
  input_cols=self.input_cols,
657
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
718
+ expected_output_cols=expected_output_cols,
658
719
  **transform_kwargs
659
720
  )
660
721
  return output_df
@@ -680,30 +741,34 @@ class PolynomialFeatures(BaseTransformer):
680
741
  Output dataset with results of the decision function for the samples in input dataset.
681
742
  """
682
743
  super()._check_dataset_type(dataset)
683
- inference_method="decision_function"
744
+ inference_method = "decision_function"
684
745
 
685
746
  # This dictionary contains optional kwargs for batch inference. These kwargs
686
747
  # are specific to the type of dataset used.
687
748
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
688
749
 
750
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
751
+
689
752
  if isinstance(dataset, DataFrame):
690
753
  self._deps = self._batch_inference_validate_snowpark(
691
754
  dataset=dataset,
692
755
  inference_method=inference_method,
693
756
  )
694
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
757
+ assert isinstance(
758
+ dataset._session, Session
759
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
695
760
  transform_kwargs = dict(
696
761
  session=dataset._session,
697
762
  dependencies=self._deps,
698
- drop_input_cols = self._drop_input_cols,
763
+ drop_input_cols=self._drop_input_cols,
699
764
  expected_output_cols_type="float",
700
765
  )
766
+ expected_output_cols = self._align_expected_output_names(
767
+ inference_method, dataset, expected_output_cols, output_cols_prefix
768
+ )
701
769
 
702
770
  elif isinstance(dataset, pd.DataFrame):
703
- transform_kwargs = dict(
704
- snowpark_input_cols = self._snowpark_cols,
705
- drop_input_cols = self._drop_input_cols
706
- )
771
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
707
772
 
708
773
  transform_handlers = ModelTransformerBuilder.build(
709
774
  dataset=dataset,
@@ -716,7 +781,7 @@ class PolynomialFeatures(BaseTransformer):
716
781
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
717
782
  inference_method=inference_method,
718
783
  input_cols=self.input_cols,
719
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
784
+ expected_output_cols=expected_output_cols,
720
785
  **transform_kwargs
721
786
  )
722
787
  return output_df
@@ -745,12 +810,14 @@ class PolynomialFeatures(BaseTransformer):
745
810
  Output dataset with probability of the sample for each class in the model.
746
811
  """
747
812
  super()._check_dataset_type(dataset)
748
- inference_method="score_samples"
813
+ inference_method = "score_samples"
749
814
 
750
815
  # This dictionary contains optional kwargs for batch inference. These kwargs
751
816
  # are specific to the type of dataset used.
752
817
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
753
818
 
819
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
820
+
754
821
  if isinstance(dataset, DataFrame):
755
822
  self._deps = self._batch_inference_validate_snowpark(
756
823
  dataset=dataset,
@@ -763,6 +830,9 @@ class PolynomialFeatures(BaseTransformer):
763
830
  drop_input_cols = self._drop_input_cols,
764
831
  expected_output_cols_type="float",
765
832
  )
833
+ expected_output_cols = self._align_expected_output_names(
834
+ inference_method, dataset, expected_output_cols, output_cols_prefix
835
+ )
766
836
 
767
837
  elif isinstance(dataset, pd.DataFrame):
768
838
  transform_kwargs = dict(
@@ -781,7 +851,7 @@ class PolynomialFeatures(BaseTransformer):
781
851
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
782
852
  inference_method=inference_method,
783
853
  input_cols=self.input_cols,
784
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
854
+ expected_output_cols=expected_output_cols,
785
855
  **transform_kwargs
786
856
  )
787
857
  return output_df
@@ -926,50 +996,84 @@ class PolynomialFeatures(BaseTransformer):
926
996
  )
927
997
  return output_df
928
998
 
999
+
1000
+
1001
+ def to_sklearn(self) -> Any:
1002
+ """Get sklearn.preprocessing.PolynomialFeatures object.
1003
+ """
1004
+ if self._sklearn_object is None:
1005
+ self._sklearn_object = self._create_sklearn_object()
1006
+ return self._sklearn_object
1007
+
1008
+ def to_xgboost(self) -> Any:
1009
+ raise exceptions.SnowflakeMLException(
1010
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1011
+ original_exception=AttributeError(
1012
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1013
+ "to_xgboost()",
1014
+ "to_sklearn()"
1015
+ )
1016
+ ),
1017
+ )
1018
+
1019
+ def to_lightgbm(self) -> Any:
1020
+ raise exceptions.SnowflakeMLException(
1021
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1022
+ original_exception=AttributeError(
1023
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1024
+ "to_lightgbm()",
1025
+ "to_sklearn()"
1026
+ )
1027
+ ),
1028
+ )
929
1029
 
930
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1030
+ def _get_dependencies(self) -> List[str]:
1031
+ return self._deps
1032
+
1033
+
1034
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
931
1035
  self._model_signature_dict = dict()
932
1036
 
933
1037
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
934
1038
 
935
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1039
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
936
1040
  outputs: List[BaseFeatureSpec] = []
937
1041
  if hasattr(self, "predict"):
938
1042
  # keep mypy happy
939
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1043
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
940
1044
  # For classifier, the type of predict is the same as the type of label
941
- if self._sklearn_object._estimator_type == 'classifier':
942
- # label columns is the desired type for output
1045
+ if self._sklearn_object._estimator_type == "classifier":
1046
+ # label columns is the desired type for output
943
1047
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
944
1048
  # rename the output columns
945
1049
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
946
- self._model_signature_dict["predict"] = ModelSignature(inputs,
947
- ([] if self._drop_input_cols else inputs)
948
- + outputs)
1050
+ self._model_signature_dict["predict"] = ModelSignature(
1051
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1052
+ )
949
1053
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
950
1054
  # For outlier models, returns -1 for outliers and 1 for inliers.
951
- # Clusterer returns int64 cluster labels.
1055
+ # Clusterer returns int64 cluster labels.
952
1056
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
953
1057
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
954
- self._model_signature_dict["predict"] = ModelSignature(inputs,
955
- ([] if self._drop_input_cols else inputs)
956
- + outputs)
957
-
1058
+ self._model_signature_dict["predict"] = ModelSignature(
1059
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1060
+ )
1061
+
958
1062
  # For regressor, the type of predict is float64
959
- elif self._sklearn_object._estimator_type == 'regressor':
1063
+ elif self._sklearn_object._estimator_type == "regressor":
960
1064
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
961
- self._model_signature_dict["predict"] = ModelSignature(inputs,
962
- ([] if self._drop_input_cols else inputs)
963
- + outputs)
964
-
1065
+ self._model_signature_dict["predict"] = ModelSignature(
1066
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1067
+ )
1068
+
965
1069
  for prob_func in PROB_FUNCTIONS:
966
1070
  if hasattr(self, prob_func):
967
1071
  output_cols_prefix: str = f"{prob_func}_"
968
1072
  output_column_names = self._get_output_column_names(output_cols_prefix)
969
1073
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
970
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
971
- ([] if self._drop_input_cols else inputs)
972
- + outputs)
1074
+ self._model_signature_dict[prob_func] = ModelSignature(
1075
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1076
+ )
973
1077
 
974
1078
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
975
1079
  items = list(self._model_signature_dict.items())
@@ -982,10 +1086,10 @@ class PolynomialFeatures(BaseTransformer):
982
1086
  """Returns model signature of current class.
983
1087
 
984
1088
  Raises:
985
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1089
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
986
1090
 
987
1091
  Returns:
988
- Dict[str, ModelSignature]: each method and its input output signature
1092
+ Dict with each method and its input output signature
989
1093
  """
990
1094
  if self._model_signature_dict is None:
991
1095
  raise exceptions.SnowflakeMLException(
@@ -993,35 +1097,3 @@ class PolynomialFeatures(BaseTransformer):
993
1097
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
994
1098
  )
995
1099
  return self._model_signature_dict
996
-
997
- def to_sklearn(self) -> Any:
998
- """Get sklearn.preprocessing.PolynomialFeatures object.
999
- """
1000
- if self._sklearn_object is None:
1001
- self._sklearn_object = self._create_sklearn_object()
1002
- return self._sklearn_object
1003
-
1004
- def to_xgboost(self) -> Any:
1005
- raise exceptions.SnowflakeMLException(
1006
- error_code=error_codes.METHOD_NOT_ALLOWED,
1007
- original_exception=AttributeError(
1008
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1009
- "to_xgboost()",
1010
- "to_sklearn()"
1011
- )
1012
- ),
1013
- )
1014
-
1015
- def to_lightgbm(self) -> Any:
1016
- raise exceptions.SnowflakeMLException(
1017
- error_code=error_codes.METHOD_NOT_ALLOWED,
1018
- original_exception=AttributeError(
1019
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1020
- "to_lightgbm()",
1021
- "to_sklearn()"
1022
- )
1023
- ),
1024
- )
1025
-
1026
- def _get_dependencies(self) -> List[str]:
1027
- return self._deps
@@ -144,11 +144,7 @@ class RobustScaler(base.BaseTransformer):
144
144
  def scale_(self) -> Optional[Dict[str, float]]:
145
145
  return None if (not self.with_scaling or not self._state_is_set) else self._scale
146
146
 
147
- @telemetry.send_api_usage_telemetry(
148
- project=base.PROJECT,
149
- subproject=base.SUBPROJECT,
150
- )
151
- def fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "RobustScaler":
147
+ def _fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "RobustScaler":
152
148
  """
153
149
  Compute center, scale and quantile values of the dataset.
154
150