snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -233,12 +232,7 @@ class LGBMClassifier(BaseTransformer):
233
232
  )
234
233
  return selected_cols
235
234
 
236
- @telemetry.send_api_usage_telemetry(
237
- project=_PROJECT,
238
- subproject=_SUBPROJECT,
239
- custom_tags=dict([("autogen", True)]),
240
- )
241
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMClassifier":
235
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMClassifier":
242
236
  """Build a gradient boosting model from the training set (X, y)
243
237
  For more details on this function, see [lightgbm.LGBMClassifier.fit]
244
238
  (https://lightgbm.readthedocs.io/en/v3.3.2/pythonapi/lightgbm.LGBMClassifier.html#lightgbm.LGBMClassifier.fit)
@@ -265,12 +259,14 @@ class LGBMClassifier(BaseTransformer):
265
259
 
266
260
  self._snowpark_cols = dataset.select(self.input_cols).columns
267
261
 
268
- # If we are already in a stored procedure, no need to kick off another one.
262
+ # If we are already in a stored procedure, no need to kick off another one.
269
263
  if SNOWML_SPROC_ENV in os.environ:
270
264
  statement_params = telemetry.get_function_usage_statement_params(
271
265
  project=_PROJECT,
272
266
  subproject=_SUBPROJECT,
273
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LGBMClassifier.__class__.__name__),
267
+ function_name=telemetry.get_statement_params_full_func_name(
268
+ inspect.currentframe(), LGBMClassifier.__class__.__name__
269
+ ),
274
270
  api_calls=[Session.call],
275
271
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
276
272
  )
@@ -291,7 +287,7 @@ class LGBMClassifier(BaseTransformer):
291
287
  )
292
288
  self._sklearn_object = model_trainer.train()
293
289
  self._is_fitted = True
294
- self._get_model_signatures(dataset)
290
+ self._generate_model_signatures(dataset)
295
291
  return self
296
292
 
297
293
  def _batch_inference_validate_snowpark(
@@ -367,7 +363,9 @@ class LGBMClassifier(BaseTransformer):
367
363
  # when it is classifier, infer the datatype from label columns
368
364
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
369
365
  # Batch inference takes a single expected output column type. Use the first columns type for now.
370
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
366
+ label_cols_signatures = [
367
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
368
+ ]
371
369
  if len(label_cols_signatures) == 0:
372
370
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
373
371
  raise exceptions.SnowflakeMLException(
@@ -375,25 +373,22 @@ class LGBMClassifier(BaseTransformer):
375
373
  original_exception=ValueError(error_str),
376
374
  )
377
375
 
378
- expected_type_inferred = convert_sp_to_sf_type(
379
- label_cols_signatures[0].as_snowpark_type()
380
- )
376
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
381
377
 
382
378
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
383
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
379
+ assert isinstance(
380
+ dataset._session, Session
381
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
384
382
 
385
383
  transform_kwargs = dict(
386
- session = dataset._session,
387
- dependencies = self._deps,
388
- drop_input_cols = self._drop_input_cols,
389
- expected_output_cols_type = expected_type_inferred,
384
+ session=dataset._session,
385
+ dependencies=self._deps,
386
+ drop_input_cols=self._drop_input_cols,
387
+ expected_output_cols_type=expected_type_inferred,
390
388
  )
391
389
 
392
390
  elif isinstance(dataset, pd.DataFrame):
393
- transform_kwargs = dict(
394
- snowpark_input_cols = self._snowpark_cols,
395
- drop_input_cols = self._drop_input_cols
396
- )
391
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
397
392
 
398
393
  transform_handlers = ModelTransformerBuilder.build(
399
394
  dataset=dataset,
@@ -433,7 +428,7 @@ class LGBMClassifier(BaseTransformer):
433
428
  Transformed dataset.
434
429
  """
435
430
  super()._check_dataset_type(dataset)
436
- inference_method="transform"
431
+ inference_method = "transform"
437
432
 
438
433
  # This dictionary contains optional kwargs for batch inference. These kwargs
439
434
  # are specific to the type of dataset used.
@@ -470,17 +465,14 @@ class LGBMClassifier(BaseTransformer):
470
465
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
471
466
 
472
467
  transform_kwargs = dict(
473
- session = dataset._session,
474
- dependencies = self._deps,
475
- drop_input_cols = self._drop_input_cols,
476
- expected_output_cols_type = expected_dtype,
468
+ session=dataset._session,
469
+ dependencies=self._deps,
470
+ drop_input_cols=self._drop_input_cols,
471
+ expected_output_cols_type=expected_dtype,
477
472
  )
478
473
 
479
474
  elif isinstance(dataset, pd.DataFrame):
480
- transform_kwargs = dict(
481
- snowpark_input_cols = self._snowpark_cols,
482
- drop_input_cols = self._drop_input_cols
483
- )
475
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
484
476
 
485
477
  transform_handlers = ModelTransformerBuilder.build(
486
478
  dataset=dataset,
@@ -499,7 +491,11 @@ class LGBMClassifier(BaseTransformer):
499
491
  return output_df
500
492
 
501
493
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
502
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
494
+ def fit_predict(
495
+ self,
496
+ dataset: Union[DataFrame, pd.DataFrame],
497
+ output_cols_prefix: str = "fit_predict_",
498
+ ) -> Union[DataFrame, pd.DataFrame]:
503
499
  """ Method not supported for this class.
504
500
 
505
501
 
@@ -524,7 +520,9 @@ class LGBMClassifier(BaseTransformer):
524
520
  )
525
521
  output_result, fitted_estimator = model_trainer.train_fit_predict(
526
522
  drop_input_cols=self._drop_input_cols,
527
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
523
+ expected_output_cols_list=(
524
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
525
+ ),
528
526
  )
529
527
  self._sklearn_object = fitted_estimator
530
528
  self._is_fitted = True
@@ -541,6 +539,62 @@ class LGBMClassifier(BaseTransformer):
541
539
  assert self._sklearn_object is not None
542
540
  return self._sklearn_object.embedding_
543
541
 
542
+
543
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
544
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
545
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
546
+ """
547
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
548
+ # The following condition is introduced for kneighbors methods, and not used in other methods
549
+ if output_cols:
550
+ output_cols = [
551
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
552
+ for c in output_cols
553
+ ]
554
+ elif getattr(self._sklearn_object, "classes_", None) is None:
555
+ output_cols = [output_cols_prefix]
556
+ elif self._sklearn_object is not None:
557
+ classes = self._sklearn_object.classes_
558
+ if isinstance(classes, numpy.ndarray):
559
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
560
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
561
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
562
+ output_cols = []
563
+ for i, cl in enumerate(classes):
564
+ # For binary classification, there is only one output column for each class
565
+ # ndarray as the two classes are complementary.
566
+ if len(cl) == 2:
567
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
568
+ else:
569
+ output_cols.extend([
570
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
571
+ ])
572
+ else:
573
+ output_cols = []
574
+
575
+ # Make sure column names are valid snowflake identifiers.
576
+ assert output_cols is not None # Make MyPy happy
577
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
578
+
579
+ return rv
580
+
581
+ def _align_expected_output_names(
582
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
583
+ ) -> List[str]:
584
+ # in case the inferred output column names dimension is different
585
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
586
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
587
+ output_df_columns = list(output_df_pd.columns)
588
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
589
+ if self.sample_weight_col:
590
+ output_df_columns_set -= set(self.sample_weight_col)
591
+ # if the dimension of inferred output column names is correct; use it
592
+ if len(expected_output_cols_list) == len(output_df_columns_set):
593
+ return expected_output_cols_list
594
+ # otherwise, use the sklearn estimator's output
595
+ else:
596
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
597
+
544
598
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
545
599
  @telemetry.send_api_usage_telemetry(
546
600
  project=_PROJECT,
@@ -573,24 +627,28 @@ class LGBMClassifier(BaseTransformer):
573
627
  # are specific to the type of dataset used.
574
628
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
575
629
 
630
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
631
+
576
632
  if isinstance(dataset, DataFrame):
577
633
  self._deps = self._batch_inference_validate_snowpark(
578
634
  dataset=dataset,
579
635
  inference_method=inference_method,
580
636
  )
581
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
637
+ assert isinstance(
638
+ dataset._session, Session
639
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
582
640
  transform_kwargs = dict(
583
641
  session=dataset._session,
584
642
  dependencies=self._deps,
585
- drop_input_cols = self._drop_input_cols,
643
+ drop_input_cols=self._drop_input_cols,
586
644
  expected_output_cols_type="float",
587
645
  )
646
+ expected_output_cols = self._align_expected_output_names(
647
+ inference_method, dataset, expected_output_cols, output_cols_prefix
648
+ )
588
649
 
589
650
  elif isinstance(dataset, pd.DataFrame):
590
- transform_kwargs = dict(
591
- snowpark_input_cols = self._snowpark_cols,
592
- drop_input_cols = self._drop_input_cols
593
- )
651
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
594
652
 
595
653
  transform_handlers = ModelTransformerBuilder.build(
596
654
  dataset=dataset,
@@ -602,7 +660,7 @@ class LGBMClassifier(BaseTransformer):
602
660
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
603
661
  inference_method=inference_method,
604
662
  input_cols=self.input_cols,
605
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
663
+ expected_output_cols=expected_output_cols,
606
664
  **transform_kwargs
607
665
  )
608
666
  return output_df
@@ -634,7 +692,8 @@ class LGBMClassifier(BaseTransformer):
634
692
  Output dataset with log probability of the sample for each class in the model.
635
693
  """
636
694
  super()._check_dataset_type(dataset)
637
- inference_method="predict_log_proba"
695
+ inference_method = "predict_log_proba"
696
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
638
697
 
639
698
  # This dictionary contains optional kwargs for batch inference. These kwargs
640
699
  # are specific to the type of dataset used.
@@ -645,18 +704,20 @@ class LGBMClassifier(BaseTransformer):
645
704
  dataset=dataset,
646
705
  inference_method=inference_method,
647
706
  )
648
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
707
+ assert isinstance(
708
+ dataset._session, Session
709
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
649
710
  transform_kwargs = dict(
650
711
  session=dataset._session,
651
712
  dependencies=self._deps,
652
- drop_input_cols = self._drop_input_cols,
713
+ drop_input_cols=self._drop_input_cols,
653
714
  expected_output_cols_type="float",
654
715
  )
716
+ expected_output_cols = self._align_expected_output_names(
717
+ inference_method, dataset, expected_output_cols, output_cols_prefix
718
+ )
655
719
  elif isinstance(dataset, pd.DataFrame):
656
- transform_kwargs = dict(
657
- snowpark_input_cols = self._snowpark_cols,
658
- drop_input_cols = self._drop_input_cols
659
- )
720
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
660
721
 
661
722
  transform_handlers = ModelTransformerBuilder.build(
662
723
  dataset=dataset,
@@ -669,7 +730,7 @@ class LGBMClassifier(BaseTransformer):
669
730
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
670
731
  inference_method=inference_method,
671
732
  input_cols=self.input_cols,
672
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
733
+ expected_output_cols=expected_output_cols,
673
734
  **transform_kwargs
674
735
  )
675
736
  return output_df
@@ -695,30 +756,34 @@ class LGBMClassifier(BaseTransformer):
695
756
  Output dataset with results of the decision function for the samples in input dataset.
696
757
  """
697
758
  super()._check_dataset_type(dataset)
698
- inference_method="decision_function"
759
+ inference_method = "decision_function"
699
760
 
700
761
  # This dictionary contains optional kwargs for batch inference. These kwargs
701
762
  # are specific to the type of dataset used.
702
763
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
703
764
 
765
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
766
+
704
767
  if isinstance(dataset, DataFrame):
705
768
  self._deps = self._batch_inference_validate_snowpark(
706
769
  dataset=dataset,
707
770
  inference_method=inference_method,
708
771
  )
709
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
772
+ assert isinstance(
773
+ dataset._session, Session
774
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
710
775
  transform_kwargs = dict(
711
776
  session=dataset._session,
712
777
  dependencies=self._deps,
713
- drop_input_cols = self._drop_input_cols,
778
+ drop_input_cols=self._drop_input_cols,
714
779
  expected_output_cols_type="float",
715
780
  )
781
+ expected_output_cols = self._align_expected_output_names(
782
+ inference_method, dataset, expected_output_cols, output_cols_prefix
783
+ )
716
784
 
717
785
  elif isinstance(dataset, pd.DataFrame):
718
- transform_kwargs = dict(
719
- snowpark_input_cols = self._snowpark_cols,
720
- drop_input_cols = self._drop_input_cols
721
- )
786
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
722
787
 
723
788
  transform_handlers = ModelTransformerBuilder.build(
724
789
  dataset=dataset,
@@ -731,7 +796,7 @@ class LGBMClassifier(BaseTransformer):
731
796
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
732
797
  inference_method=inference_method,
733
798
  input_cols=self.input_cols,
734
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
799
+ expected_output_cols=expected_output_cols,
735
800
  **transform_kwargs
736
801
  )
737
802
  return output_df
@@ -760,12 +825,14 @@ class LGBMClassifier(BaseTransformer):
760
825
  Output dataset with probability of the sample for each class in the model.
761
826
  """
762
827
  super()._check_dataset_type(dataset)
763
- inference_method="score_samples"
828
+ inference_method = "score_samples"
764
829
 
765
830
  # This dictionary contains optional kwargs for batch inference. These kwargs
766
831
  # are specific to the type of dataset used.
767
832
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
768
833
 
834
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
835
+
769
836
  if isinstance(dataset, DataFrame):
770
837
  self._deps = self._batch_inference_validate_snowpark(
771
838
  dataset=dataset,
@@ -778,6 +845,9 @@ class LGBMClassifier(BaseTransformer):
778
845
  drop_input_cols = self._drop_input_cols,
779
846
  expected_output_cols_type="float",
780
847
  )
848
+ expected_output_cols = self._align_expected_output_names(
849
+ inference_method, dataset, expected_output_cols, output_cols_prefix
850
+ )
781
851
 
782
852
  elif isinstance(dataset, pd.DataFrame):
783
853
  transform_kwargs = dict(
@@ -796,7 +866,7 @@ class LGBMClassifier(BaseTransformer):
796
866
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
797
867
  inference_method=inference_method,
798
868
  input_cols=self.input_cols,
799
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
869
+ expected_output_cols=expected_output_cols,
800
870
  **transform_kwargs
801
871
  )
802
872
  return output_df
@@ -943,50 +1013,84 @@ class LGBMClassifier(BaseTransformer):
943
1013
  )
944
1014
  return output_df
945
1015
 
1016
+
1017
+
1018
+ def to_lightgbm(self) -> Any:
1019
+ """Get lightgbm.LGBMClassifier object.
1020
+ """
1021
+ if self._sklearn_object is None:
1022
+ self._sklearn_object = self._create_sklearn_object()
1023
+ return self._sklearn_object
1024
+
1025
+ def to_sklearn(self) -> Any:
1026
+ raise exceptions.SnowflakeMLException(
1027
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1028
+ original_exception=AttributeError(
1029
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1030
+ "to_sklearn()",
1031
+ "to_lightgbm()"
1032
+ )
1033
+ ),
1034
+ )
1035
+
1036
+ def to_xgboost(self) -> Any:
1037
+ raise exceptions.SnowflakeMLException(
1038
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1039
+ original_exception=AttributeError(
1040
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1041
+ "to_xgboost()",
1042
+ "to_lightgbm()"
1043
+ )
1044
+ ),
1045
+ )
946
1046
 
947
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1047
+ def _get_dependencies(self) -> List[str]:
1048
+ return self._deps
1049
+
1050
+
1051
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
948
1052
  self._model_signature_dict = dict()
949
1053
 
950
1054
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
951
1055
 
952
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1056
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
953
1057
  outputs: List[BaseFeatureSpec] = []
954
1058
  if hasattr(self, "predict"):
955
1059
  # keep mypy happy
956
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1060
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
957
1061
  # For classifier, the type of predict is the same as the type of label
958
- if self._sklearn_object._estimator_type == 'classifier':
959
- # label columns is the desired type for output
1062
+ if self._sklearn_object._estimator_type == "classifier":
1063
+ # label columns is the desired type for output
960
1064
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
961
1065
  # rename the output columns
962
1066
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
963
- self._model_signature_dict["predict"] = ModelSignature(inputs,
964
- ([] if self._drop_input_cols else inputs)
965
- + outputs)
1067
+ self._model_signature_dict["predict"] = ModelSignature(
1068
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1069
+ )
966
1070
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
967
1071
  # For outlier models, returns -1 for outliers and 1 for inliers.
968
- # Clusterer returns int64 cluster labels.
1072
+ # Clusterer returns int64 cluster labels.
969
1073
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
970
1074
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
971
- self._model_signature_dict["predict"] = ModelSignature(inputs,
972
- ([] if self._drop_input_cols else inputs)
973
- + outputs)
974
-
1075
+ self._model_signature_dict["predict"] = ModelSignature(
1076
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1077
+ )
1078
+
975
1079
  # For regressor, the type of predict is float64
976
- elif self._sklearn_object._estimator_type == 'regressor':
1080
+ elif self._sklearn_object._estimator_type == "regressor":
977
1081
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
978
- self._model_signature_dict["predict"] = ModelSignature(inputs,
979
- ([] if self._drop_input_cols else inputs)
980
- + outputs)
981
-
1082
+ self._model_signature_dict["predict"] = ModelSignature(
1083
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1084
+ )
1085
+
982
1086
  for prob_func in PROB_FUNCTIONS:
983
1087
  if hasattr(self, prob_func):
984
1088
  output_cols_prefix: str = f"{prob_func}_"
985
1089
  output_column_names = self._get_output_column_names(output_cols_prefix)
986
1090
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
987
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
988
- ([] if self._drop_input_cols else inputs)
989
- + outputs)
1091
+ self._model_signature_dict[prob_func] = ModelSignature(
1092
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1093
+ )
990
1094
 
991
1095
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
992
1096
  items = list(self._model_signature_dict.items())
@@ -999,10 +1103,10 @@ class LGBMClassifier(BaseTransformer):
999
1103
  """Returns model signature of current class.
1000
1104
 
1001
1105
  Raises:
1002
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1106
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1003
1107
 
1004
1108
  Returns:
1005
- Dict[str, ModelSignature]: each method and its input output signature
1109
+ Dict with each method and its input output signature
1006
1110
  """
1007
1111
  if self._model_signature_dict is None:
1008
1112
  raise exceptions.SnowflakeMLException(
@@ -1010,35 +1114,3 @@ class LGBMClassifier(BaseTransformer):
1010
1114
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1011
1115
  )
1012
1116
  return self._model_signature_dict
1013
-
1014
- def to_lightgbm(self) -> Any:
1015
- """Get lightgbm.LGBMClassifier object.
1016
- """
1017
- if self._sklearn_object is None:
1018
- self._sklearn_object = self._create_sklearn_object()
1019
- return self._sklearn_object
1020
-
1021
- def to_sklearn(self) -> Any:
1022
- raise exceptions.SnowflakeMLException(
1023
- error_code=error_codes.METHOD_NOT_ALLOWED,
1024
- original_exception=AttributeError(
1025
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1026
- "to_sklearn()",
1027
- "to_lightgbm()"
1028
- )
1029
- ),
1030
- )
1031
-
1032
- def to_xgboost(self) -> Any:
1033
- raise exceptions.SnowflakeMLException(
1034
- error_code=error_codes.METHOD_NOT_ALLOWED,
1035
- original_exception=AttributeError(
1036
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1037
- "to_xgboost()",
1038
- "to_lightgbm()"
1039
- )
1040
- ),
1041
- )
1042
-
1043
- def _get_dependencies(self) -> List[str]:
1044
- return self._deps