snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -285,12 +284,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
285
284
  )
286
285
  return selected_cols
287
286
 
288
- @telemetry.send_api_usage_telemetry(
289
- project=_PROJECT,
290
- subproject=_SUBPROJECT,
291
- custom_tags=dict([("autogen", True)]),
292
- )
293
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RadiusNeighborsClassifier":
287
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RadiusNeighborsClassifier":
294
288
  """Fit the radius neighbors classifier from the training dataset
295
289
  For more details on this function, see [sklearn.neighbors.RadiusNeighborsClassifier.fit]
296
290
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsClassifier.html#sklearn.neighbors.RadiusNeighborsClassifier.fit)
@@ -317,12 +311,14 @@ class RadiusNeighborsClassifier(BaseTransformer):
317
311
 
318
312
  self._snowpark_cols = dataset.select(self.input_cols).columns
319
313
 
320
- # If we are already in a stored procedure, no need to kick off another one.
314
+ # If we are already in a stored procedure, no need to kick off another one.
321
315
  if SNOWML_SPROC_ENV in os.environ:
322
316
  statement_params = telemetry.get_function_usage_statement_params(
323
317
  project=_PROJECT,
324
318
  subproject=_SUBPROJECT,
325
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RadiusNeighborsClassifier.__class__.__name__),
319
+ function_name=telemetry.get_statement_params_full_func_name(
320
+ inspect.currentframe(), RadiusNeighborsClassifier.__class__.__name__
321
+ ),
326
322
  api_calls=[Session.call],
327
323
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
328
324
  )
@@ -343,7 +339,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
343
339
  )
344
340
  self._sklearn_object = model_trainer.train()
345
341
  self._is_fitted = True
346
- self._get_model_signatures(dataset)
342
+ self._generate_model_signatures(dataset)
347
343
  return self
348
344
 
349
345
  def _batch_inference_validate_snowpark(
@@ -419,7 +415,9 @@ class RadiusNeighborsClassifier(BaseTransformer):
419
415
  # when it is classifier, infer the datatype from label columns
420
416
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
421
417
  # Batch inference takes a single expected output column type. Use the first columns type for now.
422
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
418
+ label_cols_signatures = [
419
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
420
+ ]
423
421
  if len(label_cols_signatures) == 0:
424
422
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
425
423
  raise exceptions.SnowflakeMLException(
@@ -427,25 +425,22 @@ class RadiusNeighborsClassifier(BaseTransformer):
427
425
  original_exception=ValueError(error_str),
428
426
  )
429
427
 
430
- expected_type_inferred = convert_sp_to_sf_type(
431
- label_cols_signatures[0].as_snowpark_type()
432
- )
428
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
433
429
 
434
430
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
435
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
431
+ assert isinstance(
432
+ dataset._session, Session
433
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
436
434
 
437
435
  transform_kwargs = dict(
438
- session = dataset._session,
439
- dependencies = self._deps,
440
- drop_input_cols = self._drop_input_cols,
441
- expected_output_cols_type = expected_type_inferred,
436
+ session=dataset._session,
437
+ dependencies=self._deps,
438
+ drop_input_cols=self._drop_input_cols,
439
+ expected_output_cols_type=expected_type_inferred,
442
440
  )
443
441
 
444
442
  elif isinstance(dataset, pd.DataFrame):
445
- transform_kwargs = dict(
446
- snowpark_input_cols = self._snowpark_cols,
447
- drop_input_cols = self._drop_input_cols
448
- )
443
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
449
444
 
450
445
  transform_handlers = ModelTransformerBuilder.build(
451
446
  dataset=dataset,
@@ -485,7 +480,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
485
480
  Transformed dataset.
486
481
  """
487
482
  super()._check_dataset_type(dataset)
488
- inference_method="transform"
483
+ inference_method = "transform"
489
484
 
490
485
  # This dictionary contains optional kwargs for batch inference. These kwargs
491
486
  # are specific to the type of dataset used.
@@ -522,17 +517,14 @@ class RadiusNeighborsClassifier(BaseTransformer):
522
517
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
523
518
 
524
519
  transform_kwargs = dict(
525
- session = dataset._session,
526
- dependencies = self._deps,
527
- drop_input_cols = self._drop_input_cols,
528
- expected_output_cols_type = expected_dtype,
520
+ session=dataset._session,
521
+ dependencies=self._deps,
522
+ drop_input_cols=self._drop_input_cols,
523
+ expected_output_cols_type=expected_dtype,
529
524
  )
530
525
 
531
526
  elif isinstance(dataset, pd.DataFrame):
532
- transform_kwargs = dict(
533
- snowpark_input_cols = self._snowpark_cols,
534
- drop_input_cols = self._drop_input_cols
535
- )
527
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
536
528
 
537
529
  transform_handlers = ModelTransformerBuilder.build(
538
530
  dataset=dataset,
@@ -551,7 +543,11 @@ class RadiusNeighborsClassifier(BaseTransformer):
551
543
  return output_df
552
544
 
553
545
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
554
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
546
+ def fit_predict(
547
+ self,
548
+ dataset: Union[DataFrame, pd.DataFrame],
549
+ output_cols_prefix: str = "fit_predict_",
550
+ ) -> Union[DataFrame, pd.DataFrame]:
555
551
  """ Method not supported for this class.
556
552
 
557
553
 
@@ -576,7 +572,9 @@ class RadiusNeighborsClassifier(BaseTransformer):
576
572
  )
577
573
  output_result, fitted_estimator = model_trainer.train_fit_predict(
578
574
  drop_input_cols=self._drop_input_cols,
579
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
575
+ expected_output_cols_list=(
576
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
577
+ ),
580
578
  )
581
579
  self._sklearn_object = fitted_estimator
582
580
  self._is_fitted = True
@@ -593,6 +591,62 @@ class RadiusNeighborsClassifier(BaseTransformer):
593
591
  assert self._sklearn_object is not None
594
592
  return self._sklearn_object.embedding_
595
593
 
594
+
595
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
596
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
597
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
598
+ """
599
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
600
+ # The following condition is introduced for kneighbors methods, and not used in other methods
601
+ if output_cols:
602
+ output_cols = [
603
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
604
+ for c in output_cols
605
+ ]
606
+ elif getattr(self._sklearn_object, "classes_", None) is None:
607
+ output_cols = [output_cols_prefix]
608
+ elif self._sklearn_object is not None:
609
+ classes = self._sklearn_object.classes_
610
+ if isinstance(classes, numpy.ndarray):
611
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
612
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
613
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
614
+ output_cols = []
615
+ for i, cl in enumerate(classes):
616
+ # For binary classification, there is only one output column for each class
617
+ # ndarray as the two classes are complementary.
618
+ if len(cl) == 2:
619
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
620
+ else:
621
+ output_cols.extend([
622
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
623
+ ])
624
+ else:
625
+ output_cols = []
626
+
627
+ # Make sure column names are valid snowflake identifiers.
628
+ assert output_cols is not None # Make MyPy happy
629
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
630
+
631
+ return rv
632
+
633
+ def _align_expected_output_names(
634
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
635
+ ) -> List[str]:
636
+ # in case the inferred output column names dimension is different
637
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
638
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
639
+ output_df_columns = list(output_df_pd.columns)
640
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
641
+ if self.sample_weight_col:
642
+ output_df_columns_set -= set(self.sample_weight_col)
643
+ # if the dimension of inferred output column names is correct; use it
644
+ if len(expected_output_cols_list) == len(output_df_columns_set):
645
+ return expected_output_cols_list
646
+ # otherwise, use the sklearn estimator's output
647
+ else:
648
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
649
+
596
650
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
597
651
  @telemetry.send_api_usage_telemetry(
598
652
  project=_PROJECT,
@@ -625,24 +679,28 @@ class RadiusNeighborsClassifier(BaseTransformer):
625
679
  # are specific to the type of dataset used.
626
680
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
627
681
 
682
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
683
+
628
684
  if isinstance(dataset, DataFrame):
629
685
  self._deps = self._batch_inference_validate_snowpark(
630
686
  dataset=dataset,
631
687
  inference_method=inference_method,
632
688
  )
633
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
689
+ assert isinstance(
690
+ dataset._session, Session
691
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
634
692
  transform_kwargs = dict(
635
693
  session=dataset._session,
636
694
  dependencies=self._deps,
637
- drop_input_cols = self._drop_input_cols,
695
+ drop_input_cols=self._drop_input_cols,
638
696
  expected_output_cols_type="float",
639
697
  )
698
+ expected_output_cols = self._align_expected_output_names(
699
+ inference_method, dataset, expected_output_cols, output_cols_prefix
700
+ )
640
701
 
641
702
  elif isinstance(dataset, pd.DataFrame):
642
- transform_kwargs = dict(
643
- snowpark_input_cols = self._snowpark_cols,
644
- drop_input_cols = self._drop_input_cols
645
- )
703
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
646
704
 
647
705
  transform_handlers = ModelTransformerBuilder.build(
648
706
  dataset=dataset,
@@ -654,7 +712,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
654
712
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
655
713
  inference_method=inference_method,
656
714
  input_cols=self.input_cols,
657
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
715
+ expected_output_cols=expected_output_cols,
658
716
  **transform_kwargs
659
717
  )
660
718
  return output_df
@@ -686,7 +744,8 @@ class RadiusNeighborsClassifier(BaseTransformer):
686
744
  Output dataset with log probability of the sample for each class in the model.
687
745
  """
688
746
  super()._check_dataset_type(dataset)
689
- inference_method="predict_log_proba"
747
+ inference_method = "predict_log_proba"
748
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
690
749
 
691
750
  # This dictionary contains optional kwargs for batch inference. These kwargs
692
751
  # are specific to the type of dataset used.
@@ -697,18 +756,20 @@ class RadiusNeighborsClassifier(BaseTransformer):
697
756
  dataset=dataset,
698
757
  inference_method=inference_method,
699
758
  )
700
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
759
+ assert isinstance(
760
+ dataset._session, Session
761
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
701
762
  transform_kwargs = dict(
702
763
  session=dataset._session,
703
764
  dependencies=self._deps,
704
- drop_input_cols = self._drop_input_cols,
765
+ drop_input_cols=self._drop_input_cols,
705
766
  expected_output_cols_type="float",
706
767
  )
768
+ expected_output_cols = self._align_expected_output_names(
769
+ inference_method, dataset, expected_output_cols, output_cols_prefix
770
+ )
707
771
  elif isinstance(dataset, pd.DataFrame):
708
- transform_kwargs = dict(
709
- snowpark_input_cols = self._snowpark_cols,
710
- drop_input_cols = self._drop_input_cols
711
- )
772
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
712
773
 
713
774
  transform_handlers = ModelTransformerBuilder.build(
714
775
  dataset=dataset,
@@ -721,7 +782,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
721
782
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
722
783
  inference_method=inference_method,
723
784
  input_cols=self.input_cols,
724
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
785
+ expected_output_cols=expected_output_cols,
725
786
  **transform_kwargs
726
787
  )
727
788
  return output_df
@@ -747,30 +808,34 @@ class RadiusNeighborsClassifier(BaseTransformer):
747
808
  Output dataset with results of the decision function for the samples in input dataset.
748
809
  """
749
810
  super()._check_dataset_type(dataset)
750
- inference_method="decision_function"
811
+ inference_method = "decision_function"
751
812
 
752
813
  # This dictionary contains optional kwargs for batch inference. These kwargs
753
814
  # are specific to the type of dataset used.
754
815
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
755
816
 
817
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
818
+
756
819
  if isinstance(dataset, DataFrame):
757
820
  self._deps = self._batch_inference_validate_snowpark(
758
821
  dataset=dataset,
759
822
  inference_method=inference_method,
760
823
  )
761
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
824
+ assert isinstance(
825
+ dataset._session, Session
826
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
762
827
  transform_kwargs = dict(
763
828
  session=dataset._session,
764
829
  dependencies=self._deps,
765
- drop_input_cols = self._drop_input_cols,
830
+ drop_input_cols=self._drop_input_cols,
766
831
  expected_output_cols_type="float",
767
832
  )
833
+ expected_output_cols = self._align_expected_output_names(
834
+ inference_method, dataset, expected_output_cols, output_cols_prefix
835
+ )
768
836
 
769
837
  elif isinstance(dataset, pd.DataFrame):
770
- transform_kwargs = dict(
771
- snowpark_input_cols = self._snowpark_cols,
772
- drop_input_cols = self._drop_input_cols
773
- )
838
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
774
839
 
775
840
  transform_handlers = ModelTransformerBuilder.build(
776
841
  dataset=dataset,
@@ -783,7 +848,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
783
848
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
784
849
  inference_method=inference_method,
785
850
  input_cols=self.input_cols,
786
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
851
+ expected_output_cols=expected_output_cols,
787
852
  **transform_kwargs
788
853
  )
789
854
  return output_df
@@ -812,12 +877,14 @@ class RadiusNeighborsClassifier(BaseTransformer):
812
877
  Output dataset with probability of the sample for each class in the model.
813
878
  """
814
879
  super()._check_dataset_type(dataset)
815
- inference_method="score_samples"
880
+ inference_method = "score_samples"
816
881
 
817
882
  # This dictionary contains optional kwargs for batch inference. These kwargs
818
883
  # are specific to the type of dataset used.
819
884
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
820
885
 
886
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
887
+
821
888
  if isinstance(dataset, DataFrame):
822
889
  self._deps = self._batch_inference_validate_snowpark(
823
890
  dataset=dataset,
@@ -830,6 +897,9 @@ class RadiusNeighborsClassifier(BaseTransformer):
830
897
  drop_input_cols = self._drop_input_cols,
831
898
  expected_output_cols_type="float",
832
899
  )
900
+ expected_output_cols = self._align_expected_output_names(
901
+ inference_method, dataset, expected_output_cols, output_cols_prefix
902
+ )
833
903
 
834
904
  elif isinstance(dataset, pd.DataFrame):
835
905
  transform_kwargs = dict(
@@ -848,7 +918,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
848
918
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
849
919
  inference_method=inference_method,
850
920
  input_cols=self.input_cols,
851
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
921
+ expected_output_cols=expected_output_cols,
852
922
  **transform_kwargs
853
923
  )
854
924
  return output_df
@@ -995,50 +1065,84 @@ class RadiusNeighborsClassifier(BaseTransformer):
995
1065
  )
996
1066
  return output_df
997
1067
 
1068
+
1069
+
1070
+ def to_sklearn(self) -> Any:
1071
+ """Get sklearn.neighbors.RadiusNeighborsClassifier object.
1072
+ """
1073
+ if self._sklearn_object is None:
1074
+ self._sklearn_object = self._create_sklearn_object()
1075
+ return self._sklearn_object
1076
+
1077
+ def to_xgboost(self) -> Any:
1078
+ raise exceptions.SnowflakeMLException(
1079
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1080
+ original_exception=AttributeError(
1081
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1082
+ "to_xgboost()",
1083
+ "to_sklearn()"
1084
+ )
1085
+ ),
1086
+ )
1087
+
1088
+ def to_lightgbm(self) -> Any:
1089
+ raise exceptions.SnowflakeMLException(
1090
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1091
+ original_exception=AttributeError(
1092
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1093
+ "to_lightgbm()",
1094
+ "to_sklearn()"
1095
+ )
1096
+ ),
1097
+ )
998
1098
 
999
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1099
+ def _get_dependencies(self) -> List[str]:
1100
+ return self._deps
1101
+
1102
+
1103
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1000
1104
  self._model_signature_dict = dict()
1001
1105
 
1002
1106
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1003
1107
 
1004
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1108
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1005
1109
  outputs: List[BaseFeatureSpec] = []
1006
1110
  if hasattr(self, "predict"):
1007
1111
  # keep mypy happy
1008
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1112
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1009
1113
  # For classifier, the type of predict is the same as the type of label
1010
- if self._sklearn_object._estimator_type == 'classifier':
1011
- # label columns is the desired type for output
1114
+ if self._sklearn_object._estimator_type == "classifier":
1115
+ # label columns is the desired type for output
1012
1116
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1013
1117
  # rename the output columns
1014
1118
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1015
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1016
- ([] if self._drop_input_cols else inputs)
1017
- + outputs)
1119
+ self._model_signature_dict["predict"] = ModelSignature(
1120
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1121
+ )
1018
1122
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1019
1123
  # For outlier models, returns -1 for outliers and 1 for inliers.
1020
- # Clusterer returns int64 cluster labels.
1124
+ # Clusterer returns int64 cluster labels.
1021
1125
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1022
1126
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1023
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1024
- ([] if self._drop_input_cols else inputs)
1025
- + outputs)
1026
-
1127
+ self._model_signature_dict["predict"] = ModelSignature(
1128
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1129
+ )
1130
+
1027
1131
  # For regressor, the type of predict is float64
1028
- elif self._sklearn_object._estimator_type == 'regressor':
1132
+ elif self._sklearn_object._estimator_type == "regressor":
1029
1133
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1030
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1031
- ([] if self._drop_input_cols else inputs)
1032
- + outputs)
1033
-
1134
+ self._model_signature_dict["predict"] = ModelSignature(
1135
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1136
+ )
1137
+
1034
1138
  for prob_func in PROB_FUNCTIONS:
1035
1139
  if hasattr(self, prob_func):
1036
1140
  output_cols_prefix: str = f"{prob_func}_"
1037
1141
  output_column_names = self._get_output_column_names(output_cols_prefix)
1038
1142
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1039
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1040
- ([] if self._drop_input_cols else inputs)
1041
- + outputs)
1143
+ self._model_signature_dict[prob_func] = ModelSignature(
1144
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1145
+ )
1042
1146
 
1043
1147
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1044
1148
  items = list(self._model_signature_dict.items())
@@ -1051,10 +1155,10 @@ class RadiusNeighborsClassifier(BaseTransformer):
1051
1155
  """Returns model signature of current class.
1052
1156
 
1053
1157
  Raises:
1054
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1158
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1055
1159
 
1056
1160
  Returns:
1057
- Dict[str, ModelSignature]: each method and its input output signature
1161
+ Dict with each method and its input output signature
1058
1162
  """
1059
1163
  if self._model_signature_dict is None:
1060
1164
  raise exceptions.SnowflakeMLException(
@@ -1062,35 +1166,3 @@ class RadiusNeighborsClassifier(BaseTransformer):
1062
1166
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1063
1167
  )
1064
1168
  return self._model_signature_dict
1065
-
1066
- def to_sklearn(self) -> Any:
1067
- """Get sklearn.neighbors.RadiusNeighborsClassifier object.
1068
- """
1069
- if self._sklearn_object is None:
1070
- self._sklearn_object = self._create_sklearn_object()
1071
- return self._sklearn_object
1072
-
1073
- def to_xgboost(self) -> Any:
1074
- raise exceptions.SnowflakeMLException(
1075
- error_code=error_codes.METHOD_NOT_ALLOWED,
1076
- original_exception=AttributeError(
1077
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1078
- "to_xgboost()",
1079
- "to_sklearn()"
1080
- )
1081
- ),
1082
- )
1083
-
1084
- def to_lightgbm(self) -> Any:
1085
- raise exceptions.SnowflakeMLException(
1086
- error_code=error_codes.METHOD_NOT_ALLOWED,
1087
- original_exception=AttributeError(
1088
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1089
- "to_lightgbm()",
1090
- "to_sklearn()"
1091
- )
1092
- ),
1093
- )
1094
-
1095
- def _get_dependencies(self) -> List[str]:
1096
- return self._deps