snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -250,12 +249,7 @@ class DBSCAN(BaseTransformer):
250
249
  )
251
250
  return selected_cols
252
251
 
253
- @telemetry.send_api_usage_telemetry(
254
- project=_PROJECT,
255
- subproject=_SUBPROJECT,
256
- custom_tags=dict([("autogen", True)]),
257
- )
258
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DBSCAN":
252
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DBSCAN":
259
253
  """Perform DBSCAN clustering from features, or distance matrix
260
254
  For more details on this function, see [sklearn.cluster.DBSCAN.fit]
261
255
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN.fit)
@@ -282,12 +276,14 @@ class DBSCAN(BaseTransformer):
282
276
 
283
277
  self._snowpark_cols = dataset.select(self.input_cols).columns
284
278
 
285
- # If we are already in a stored procedure, no need to kick off another one.
279
+ # If we are already in a stored procedure, no need to kick off another one.
286
280
  if SNOWML_SPROC_ENV in os.environ:
287
281
  statement_params = telemetry.get_function_usage_statement_params(
288
282
  project=_PROJECT,
289
283
  subproject=_SUBPROJECT,
290
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DBSCAN.__class__.__name__),
284
+ function_name=telemetry.get_statement_params_full_func_name(
285
+ inspect.currentframe(), DBSCAN.__class__.__name__
286
+ ),
291
287
  api_calls=[Session.call],
292
288
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
293
289
  )
@@ -308,7 +304,7 @@ class DBSCAN(BaseTransformer):
308
304
  )
309
305
  self._sklearn_object = model_trainer.train()
310
306
  self._is_fitted = True
311
- self._get_model_signatures(dataset)
307
+ self._generate_model_signatures(dataset)
312
308
  return self
313
309
 
314
310
  def _batch_inference_validate_snowpark(
@@ -382,7 +378,9 @@ class DBSCAN(BaseTransformer):
382
378
  # when it is classifier, infer the datatype from label columns
383
379
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
384
380
  # Batch inference takes a single expected output column type. Use the first columns type for now.
385
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
381
+ label_cols_signatures = [
382
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
383
+ ]
386
384
  if len(label_cols_signatures) == 0:
387
385
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
388
386
  raise exceptions.SnowflakeMLException(
@@ -390,25 +388,22 @@ class DBSCAN(BaseTransformer):
390
388
  original_exception=ValueError(error_str),
391
389
  )
392
390
 
393
- expected_type_inferred = convert_sp_to_sf_type(
394
- label_cols_signatures[0].as_snowpark_type()
395
- )
391
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
396
392
 
397
393
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
398
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
394
+ assert isinstance(
395
+ dataset._session, Session
396
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
399
397
 
400
398
  transform_kwargs = dict(
401
- session = dataset._session,
402
- dependencies = self._deps,
403
- drop_input_cols = self._drop_input_cols,
404
- expected_output_cols_type = expected_type_inferred,
399
+ session=dataset._session,
400
+ dependencies=self._deps,
401
+ drop_input_cols=self._drop_input_cols,
402
+ expected_output_cols_type=expected_type_inferred,
405
403
  )
406
404
 
407
405
  elif isinstance(dataset, pd.DataFrame):
408
- transform_kwargs = dict(
409
- snowpark_input_cols = self._snowpark_cols,
410
- drop_input_cols = self._drop_input_cols
411
- )
406
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
412
407
 
413
408
  transform_handlers = ModelTransformerBuilder.build(
414
409
  dataset=dataset,
@@ -448,7 +443,7 @@ class DBSCAN(BaseTransformer):
448
443
  Transformed dataset.
449
444
  """
450
445
  super()._check_dataset_type(dataset)
451
- inference_method="transform"
446
+ inference_method = "transform"
452
447
 
453
448
  # This dictionary contains optional kwargs for batch inference. These kwargs
454
449
  # are specific to the type of dataset used.
@@ -485,17 +480,14 @@ class DBSCAN(BaseTransformer):
485
480
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
486
481
 
487
482
  transform_kwargs = dict(
488
- session = dataset._session,
489
- dependencies = self._deps,
490
- drop_input_cols = self._drop_input_cols,
491
- expected_output_cols_type = expected_dtype,
483
+ session=dataset._session,
484
+ dependencies=self._deps,
485
+ drop_input_cols=self._drop_input_cols,
486
+ expected_output_cols_type=expected_dtype,
492
487
  )
493
488
 
494
489
  elif isinstance(dataset, pd.DataFrame):
495
- transform_kwargs = dict(
496
- snowpark_input_cols = self._snowpark_cols,
497
- drop_input_cols = self._drop_input_cols
498
- )
490
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
499
491
 
500
492
  transform_handlers = ModelTransformerBuilder.build(
501
493
  dataset=dataset,
@@ -514,7 +506,11 @@ class DBSCAN(BaseTransformer):
514
506
  return output_df
515
507
 
516
508
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
517
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
509
+ def fit_predict(
510
+ self,
511
+ dataset: Union[DataFrame, pd.DataFrame],
512
+ output_cols_prefix: str = "fit_predict_",
513
+ ) -> Union[DataFrame, pd.DataFrame]:
518
514
  """ Compute clusters from a data or distance matrix and predict labels
519
515
  For more details on this function, see [sklearn.cluster.DBSCAN.fit_predict]
520
516
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN.fit_predict)
@@ -541,7 +537,9 @@ class DBSCAN(BaseTransformer):
541
537
  )
542
538
  output_result, fitted_estimator = model_trainer.train_fit_predict(
543
539
  drop_input_cols=self._drop_input_cols,
544
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
540
+ expected_output_cols_list=(
541
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
542
+ ),
545
543
  )
546
544
  self._sklearn_object = fitted_estimator
547
545
  self._is_fitted = True
@@ -558,6 +556,62 @@ class DBSCAN(BaseTransformer):
558
556
  assert self._sklearn_object is not None
559
557
  return self._sklearn_object.embedding_
560
558
 
559
+
560
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
561
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
562
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
563
+ """
564
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
565
+ # The following condition is introduced for kneighbors methods, and not used in other methods
566
+ if output_cols:
567
+ output_cols = [
568
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
569
+ for c in output_cols
570
+ ]
571
+ elif getattr(self._sklearn_object, "classes_", None) is None:
572
+ output_cols = [output_cols_prefix]
573
+ elif self._sklearn_object is not None:
574
+ classes = self._sklearn_object.classes_
575
+ if isinstance(classes, numpy.ndarray):
576
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
577
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
578
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
579
+ output_cols = []
580
+ for i, cl in enumerate(classes):
581
+ # For binary classification, there is only one output column for each class
582
+ # ndarray as the two classes are complementary.
583
+ if len(cl) == 2:
584
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
585
+ else:
586
+ output_cols.extend([
587
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
588
+ ])
589
+ else:
590
+ output_cols = []
591
+
592
+ # Make sure column names are valid snowflake identifiers.
593
+ assert output_cols is not None # Make MyPy happy
594
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
595
+
596
+ return rv
597
+
598
+ def _align_expected_output_names(
599
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
600
+ ) -> List[str]:
601
+ # in case the inferred output column names dimension is different
602
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
603
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
604
+ output_df_columns = list(output_df_pd.columns)
605
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
606
+ if self.sample_weight_col:
607
+ output_df_columns_set -= set(self.sample_weight_col)
608
+ # if the dimension of inferred output column names is correct; use it
609
+ if len(expected_output_cols_list) == len(output_df_columns_set):
610
+ return expected_output_cols_list
611
+ # otherwise, use the sklearn estimator's output
612
+ else:
613
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
614
+
561
615
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
562
616
  @telemetry.send_api_usage_telemetry(
563
617
  project=_PROJECT,
@@ -588,24 +642,28 @@ class DBSCAN(BaseTransformer):
588
642
  # are specific to the type of dataset used.
589
643
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
590
644
 
645
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
646
+
591
647
  if isinstance(dataset, DataFrame):
592
648
  self._deps = self._batch_inference_validate_snowpark(
593
649
  dataset=dataset,
594
650
  inference_method=inference_method,
595
651
  )
596
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
652
+ assert isinstance(
653
+ dataset._session, Session
654
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
597
655
  transform_kwargs = dict(
598
656
  session=dataset._session,
599
657
  dependencies=self._deps,
600
- drop_input_cols = self._drop_input_cols,
658
+ drop_input_cols=self._drop_input_cols,
601
659
  expected_output_cols_type="float",
602
660
  )
661
+ expected_output_cols = self._align_expected_output_names(
662
+ inference_method, dataset, expected_output_cols, output_cols_prefix
663
+ )
603
664
 
604
665
  elif isinstance(dataset, pd.DataFrame):
605
- transform_kwargs = dict(
606
- snowpark_input_cols = self._snowpark_cols,
607
- drop_input_cols = self._drop_input_cols
608
- )
666
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
609
667
 
610
668
  transform_handlers = ModelTransformerBuilder.build(
611
669
  dataset=dataset,
@@ -617,7 +675,7 @@ class DBSCAN(BaseTransformer):
617
675
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
618
676
  inference_method=inference_method,
619
677
  input_cols=self.input_cols,
620
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
678
+ expected_output_cols=expected_output_cols,
621
679
  **transform_kwargs
622
680
  )
623
681
  return output_df
@@ -647,7 +705,8 @@ class DBSCAN(BaseTransformer):
647
705
  Output dataset with log probability of the sample for each class in the model.
648
706
  """
649
707
  super()._check_dataset_type(dataset)
650
- inference_method="predict_log_proba"
708
+ inference_method = "predict_log_proba"
709
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
651
710
 
652
711
  # This dictionary contains optional kwargs for batch inference. These kwargs
653
712
  # are specific to the type of dataset used.
@@ -658,18 +717,20 @@ class DBSCAN(BaseTransformer):
658
717
  dataset=dataset,
659
718
  inference_method=inference_method,
660
719
  )
661
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
720
+ assert isinstance(
721
+ dataset._session, Session
722
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
662
723
  transform_kwargs = dict(
663
724
  session=dataset._session,
664
725
  dependencies=self._deps,
665
- drop_input_cols = self._drop_input_cols,
726
+ drop_input_cols=self._drop_input_cols,
666
727
  expected_output_cols_type="float",
667
728
  )
729
+ expected_output_cols = self._align_expected_output_names(
730
+ inference_method, dataset, expected_output_cols, output_cols_prefix
731
+ )
668
732
  elif isinstance(dataset, pd.DataFrame):
669
- transform_kwargs = dict(
670
- snowpark_input_cols = self._snowpark_cols,
671
- drop_input_cols = self._drop_input_cols
672
- )
733
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
673
734
 
674
735
  transform_handlers = ModelTransformerBuilder.build(
675
736
  dataset=dataset,
@@ -682,7 +743,7 @@ class DBSCAN(BaseTransformer):
682
743
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
683
744
  inference_method=inference_method,
684
745
  input_cols=self.input_cols,
685
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
746
+ expected_output_cols=expected_output_cols,
686
747
  **transform_kwargs
687
748
  )
688
749
  return output_df
@@ -708,30 +769,34 @@ class DBSCAN(BaseTransformer):
708
769
  Output dataset with results of the decision function for the samples in input dataset.
709
770
  """
710
771
  super()._check_dataset_type(dataset)
711
- inference_method="decision_function"
772
+ inference_method = "decision_function"
712
773
 
713
774
  # This dictionary contains optional kwargs for batch inference. These kwargs
714
775
  # are specific to the type of dataset used.
715
776
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
716
777
 
778
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
779
+
717
780
  if isinstance(dataset, DataFrame):
718
781
  self._deps = self._batch_inference_validate_snowpark(
719
782
  dataset=dataset,
720
783
  inference_method=inference_method,
721
784
  )
722
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
785
+ assert isinstance(
786
+ dataset._session, Session
787
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
723
788
  transform_kwargs = dict(
724
789
  session=dataset._session,
725
790
  dependencies=self._deps,
726
- drop_input_cols = self._drop_input_cols,
791
+ drop_input_cols=self._drop_input_cols,
727
792
  expected_output_cols_type="float",
728
793
  )
794
+ expected_output_cols = self._align_expected_output_names(
795
+ inference_method, dataset, expected_output_cols, output_cols_prefix
796
+ )
729
797
 
730
798
  elif isinstance(dataset, pd.DataFrame):
731
- transform_kwargs = dict(
732
- snowpark_input_cols = self._snowpark_cols,
733
- drop_input_cols = self._drop_input_cols
734
- )
799
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
735
800
 
736
801
  transform_handlers = ModelTransformerBuilder.build(
737
802
  dataset=dataset,
@@ -744,7 +809,7 @@ class DBSCAN(BaseTransformer):
744
809
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
745
810
  inference_method=inference_method,
746
811
  input_cols=self.input_cols,
747
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
812
+ expected_output_cols=expected_output_cols,
748
813
  **transform_kwargs
749
814
  )
750
815
  return output_df
@@ -773,12 +838,14 @@ class DBSCAN(BaseTransformer):
773
838
  Output dataset with probability of the sample for each class in the model.
774
839
  """
775
840
  super()._check_dataset_type(dataset)
776
- inference_method="score_samples"
841
+ inference_method = "score_samples"
777
842
 
778
843
  # This dictionary contains optional kwargs for batch inference. These kwargs
779
844
  # are specific to the type of dataset used.
780
845
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
781
846
 
847
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
848
+
782
849
  if isinstance(dataset, DataFrame):
783
850
  self._deps = self._batch_inference_validate_snowpark(
784
851
  dataset=dataset,
@@ -791,6 +858,9 @@ class DBSCAN(BaseTransformer):
791
858
  drop_input_cols = self._drop_input_cols,
792
859
  expected_output_cols_type="float",
793
860
  )
861
+ expected_output_cols = self._align_expected_output_names(
862
+ inference_method, dataset, expected_output_cols, output_cols_prefix
863
+ )
794
864
 
795
865
  elif isinstance(dataset, pd.DataFrame):
796
866
  transform_kwargs = dict(
@@ -809,7 +879,7 @@ class DBSCAN(BaseTransformer):
809
879
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
810
880
  inference_method=inference_method,
811
881
  input_cols=self.input_cols,
812
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
882
+ expected_output_cols=expected_output_cols,
813
883
  **transform_kwargs
814
884
  )
815
885
  return output_df
@@ -954,50 +1024,84 @@ class DBSCAN(BaseTransformer):
954
1024
  )
955
1025
  return output_df
956
1026
 
1027
+
1028
+
1029
+ def to_sklearn(self) -> Any:
1030
+ """Get sklearn.cluster.DBSCAN object.
1031
+ """
1032
+ if self._sklearn_object is None:
1033
+ self._sklearn_object = self._create_sklearn_object()
1034
+ return self._sklearn_object
1035
+
1036
+ def to_xgboost(self) -> Any:
1037
+ raise exceptions.SnowflakeMLException(
1038
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1039
+ original_exception=AttributeError(
1040
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1041
+ "to_xgboost()",
1042
+ "to_sklearn()"
1043
+ )
1044
+ ),
1045
+ )
1046
+
1047
+ def to_lightgbm(self) -> Any:
1048
+ raise exceptions.SnowflakeMLException(
1049
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1050
+ original_exception=AttributeError(
1051
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1052
+ "to_lightgbm()",
1053
+ "to_sklearn()"
1054
+ )
1055
+ ),
1056
+ )
957
1057
 
958
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1058
+ def _get_dependencies(self) -> List[str]:
1059
+ return self._deps
1060
+
1061
+
1062
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
959
1063
  self._model_signature_dict = dict()
960
1064
 
961
1065
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
962
1066
 
963
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1067
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
964
1068
  outputs: List[BaseFeatureSpec] = []
965
1069
  if hasattr(self, "predict"):
966
1070
  # keep mypy happy
967
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1071
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
968
1072
  # For classifier, the type of predict is the same as the type of label
969
- if self._sklearn_object._estimator_type == 'classifier':
970
- # label columns is the desired type for output
1073
+ if self._sklearn_object._estimator_type == "classifier":
1074
+ # label columns is the desired type for output
971
1075
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
972
1076
  # rename the output columns
973
1077
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
974
- self._model_signature_dict["predict"] = ModelSignature(inputs,
975
- ([] if self._drop_input_cols else inputs)
976
- + outputs)
1078
+ self._model_signature_dict["predict"] = ModelSignature(
1079
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1080
+ )
977
1081
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
978
1082
  # For outlier models, returns -1 for outliers and 1 for inliers.
979
- # Clusterer returns int64 cluster labels.
1083
+ # Clusterer returns int64 cluster labels.
980
1084
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
981
1085
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
982
- self._model_signature_dict["predict"] = ModelSignature(inputs,
983
- ([] if self._drop_input_cols else inputs)
984
- + outputs)
985
-
1086
+ self._model_signature_dict["predict"] = ModelSignature(
1087
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1088
+ )
1089
+
986
1090
  # For regressor, the type of predict is float64
987
- elif self._sklearn_object._estimator_type == 'regressor':
1091
+ elif self._sklearn_object._estimator_type == "regressor":
988
1092
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
989
- self._model_signature_dict["predict"] = ModelSignature(inputs,
990
- ([] if self._drop_input_cols else inputs)
991
- + outputs)
992
-
1093
+ self._model_signature_dict["predict"] = ModelSignature(
1094
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1095
+ )
1096
+
993
1097
  for prob_func in PROB_FUNCTIONS:
994
1098
  if hasattr(self, prob_func):
995
1099
  output_cols_prefix: str = f"{prob_func}_"
996
1100
  output_column_names = self._get_output_column_names(output_cols_prefix)
997
1101
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
998
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
999
- ([] if self._drop_input_cols else inputs)
1000
- + outputs)
1102
+ self._model_signature_dict[prob_func] = ModelSignature(
1103
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1104
+ )
1001
1105
 
1002
1106
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1003
1107
  items = list(self._model_signature_dict.items())
@@ -1010,10 +1114,10 @@ class DBSCAN(BaseTransformer):
1010
1114
  """Returns model signature of current class.
1011
1115
 
1012
1116
  Raises:
1013
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1117
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1014
1118
 
1015
1119
  Returns:
1016
- Dict[str, ModelSignature]: each method and its input output signature
1120
+ Dict with each method and its input output signature
1017
1121
  """
1018
1122
  if self._model_signature_dict is None:
1019
1123
  raise exceptions.SnowflakeMLException(
@@ -1021,35 +1125,3 @@ class DBSCAN(BaseTransformer):
1021
1125
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1022
1126
  )
1023
1127
  return self._model_signature_dict
1024
-
1025
- def to_sklearn(self) -> Any:
1026
- """Get sklearn.cluster.DBSCAN object.
1027
- """
1028
- if self._sklearn_object is None:
1029
- self._sklearn_object = self._create_sklearn_object()
1030
- return self._sklearn_object
1031
-
1032
- def to_xgboost(self) -> Any:
1033
- raise exceptions.SnowflakeMLException(
1034
- error_code=error_codes.METHOD_NOT_ALLOWED,
1035
- original_exception=AttributeError(
1036
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1037
- "to_xgboost()",
1038
- "to_sklearn()"
1039
- )
1040
- ),
1041
- )
1042
-
1043
- def to_lightgbm(self) -> Any:
1044
- raise exceptions.SnowflakeMLException(
1045
- error_code=error_codes.METHOD_NOT_ALLOWED,
1046
- original_exception=AttributeError(
1047
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1048
- "to_lightgbm()",
1049
- "to_sklearn()"
1050
- )
1051
- ),
1052
- )
1053
-
1054
- def _get_dependencies(self) -> List[str]:
1055
- return self._deps