snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -223,12 +222,7 @@ class PolynomialCountSketch(BaseTransformer):
223
222
  )
224
223
  return selected_cols
225
224
 
226
- @telemetry.send_api_usage_telemetry(
227
- project=_PROJECT,
228
- subproject=_SUBPROJECT,
229
- custom_tags=dict([("autogen", True)]),
230
- )
231
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PolynomialCountSketch":
225
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PolynomialCountSketch":
232
226
  """Fit the model with X
233
227
  For more details on this function, see [sklearn.kernel_approximation.PolynomialCountSketch.fit]
234
228
  (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.PolynomialCountSketch.html#sklearn.kernel_approximation.PolynomialCountSketch.fit)
@@ -255,12 +249,14 @@ class PolynomialCountSketch(BaseTransformer):
255
249
 
256
250
  self._snowpark_cols = dataset.select(self.input_cols).columns
257
251
 
258
- # If we are already in a stored procedure, no need to kick off another one.
252
+ # If we are already in a stored procedure, no need to kick off another one.
259
253
  if SNOWML_SPROC_ENV in os.environ:
260
254
  statement_params = telemetry.get_function_usage_statement_params(
261
255
  project=_PROJECT,
262
256
  subproject=_SUBPROJECT,
263
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PolynomialCountSketch.__class__.__name__),
257
+ function_name=telemetry.get_statement_params_full_func_name(
258
+ inspect.currentframe(), PolynomialCountSketch.__class__.__name__
259
+ ),
264
260
  api_calls=[Session.call],
265
261
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
266
262
  )
@@ -281,7 +277,7 @@ class PolynomialCountSketch(BaseTransformer):
281
277
  )
282
278
  self._sklearn_object = model_trainer.train()
283
279
  self._is_fitted = True
284
- self._get_model_signatures(dataset)
280
+ self._generate_model_signatures(dataset)
285
281
  return self
286
282
 
287
283
  def _batch_inference_validate_snowpark(
@@ -355,7 +351,9 @@ class PolynomialCountSketch(BaseTransformer):
355
351
  # when it is classifier, infer the datatype from label columns
356
352
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
357
353
  # Batch inference takes a single expected output column type. Use the first columns type for now.
358
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
354
+ label_cols_signatures = [
355
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
356
+ ]
359
357
  if len(label_cols_signatures) == 0:
360
358
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
361
359
  raise exceptions.SnowflakeMLException(
@@ -363,25 +361,22 @@ class PolynomialCountSketch(BaseTransformer):
363
361
  original_exception=ValueError(error_str),
364
362
  )
365
363
 
366
- expected_type_inferred = convert_sp_to_sf_type(
367
- label_cols_signatures[0].as_snowpark_type()
368
- )
364
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
369
365
 
370
366
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
371
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
367
+ assert isinstance(
368
+ dataset._session, Session
369
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
372
370
 
373
371
  transform_kwargs = dict(
374
- session = dataset._session,
375
- dependencies = self._deps,
376
- drop_input_cols = self._drop_input_cols,
377
- expected_output_cols_type = expected_type_inferred,
372
+ session=dataset._session,
373
+ dependencies=self._deps,
374
+ drop_input_cols=self._drop_input_cols,
375
+ expected_output_cols_type=expected_type_inferred,
378
376
  )
379
377
 
380
378
  elif isinstance(dataset, pd.DataFrame):
381
- transform_kwargs = dict(
382
- snowpark_input_cols = self._snowpark_cols,
383
- drop_input_cols = self._drop_input_cols
384
- )
379
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
385
380
 
386
381
  transform_handlers = ModelTransformerBuilder.build(
387
382
  dataset=dataset,
@@ -423,7 +418,7 @@ class PolynomialCountSketch(BaseTransformer):
423
418
  Transformed dataset.
424
419
  """
425
420
  super()._check_dataset_type(dataset)
426
- inference_method="transform"
421
+ inference_method = "transform"
427
422
 
428
423
  # This dictionary contains optional kwargs for batch inference. These kwargs
429
424
  # are specific to the type of dataset used.
@@ -460,17 +455,14 @@ class PolynomialCountSketch(BaseTransformer):
460
455
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
461
456
 
462
457
  transform_kwargs = dict(
463
- session = dataset._session,
464
- dependencies = self._deps,
465
- drop_input_cols = self._drop_input_cols,
466
- expected_output_cols_type = expected_dtype,
458
+ session=dataset._session,
459
+ dependencies=self._deps,
460
+ drop_input_cols=self._drop_input_cols,
461
+ expected_output_cols_type=expected_dtype,
467
462
  )
468
463
 
469
464
  elif isinstance(dataset, pd.DataFrame):
470
- transform_kwargs = dict(
471
- snowpark_input_cols = self._snowpark_cols,
472
- drop_input_cols = self._drop_input_cols
473
- )
465
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
474
466
 
475
467
  transform_handlers = ModelTransformerBuilder.build(
476
468
  dataset=dataset,
@@ -489,7 +481,11 @@ class PolynomialCountSketch(BaseTransformer):
489
481
  return output_df
490
482
 
491
483
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
492
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
484
+ def fit_predict(
485
+ self,
486
+ dataset: Union[DataFrame, pd.DataFrame],
487
+ output_cols_prefix: str = "fit_predict_",
488
+ ) -> Union[DataFrame, pd.DataFrame]:
493
489
  """ Method not supported for this class.
494
490
 
495
491
 
@@ -514,7 +510,9 @@ class PolynomialCountSketch(BaseTransformer):
514
510
  )
515
511
  output_result, fitted_estimator = model_trainer.train_fit_predict(
516
512
  drop_input_cols=self._drop_input_cols,
517
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
513
+ expected_output_cols_list=(
514
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
515
+ ),
518
516
  )
519
517
  self._sklearn_object = fitted_estimator
520
518
  self._is_fitted = True
@@ -531,6 +529,62 @@ class PolynomialCountSketch(BaseTransformer):
531
529
  assert self._sklearn_object is not None
532
530
  return self._sklearn_object.embedding_
533
531
 
532
+
533
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
534
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
535
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
536
+ """
537
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
538
+ # The following condition is introduced for kneighbors methods, and not used in other methods
539
+ if output_cols:
540
+ output_cols = [
541
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
542
+ for c in output_cols
543
+ ]
544
+ elif getattr(self._sklearn_object, "classes_", None) is None:
545
+ output_cols = [output_cols_prefix]
546
+ elif self._sklearn_object is not None:
547
+ classes = self._sklearn_object.classes_
548
+ if isinstance(classes, numpy.ndarray):
549
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
550
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
551
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
552
+ output_cols = []
553
+ for i, cl in enumerate(classes):
554
+ # For binary classification, there is only one output column for each class
555
+ # ndarray as the two classes are complementary.
556
+ if len(cl) == 2:
557
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
558
+ else:
559
+ output_cols.extend([
560
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
561
+ ])
562
+ else:
563
+ output_cols = []
564
+
565
+ # Make sure column names are valid snowflake identifiers.
566
+ assert output_cols is not None # Make MyPy happy
567
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
568
+
569
+ return rv
570
+
571
+ def _align_expected_output_names(
572
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
573
+ ) -> List[str]:
574
+ # in case the inferred output column names dimension is different
575
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
576
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
577
+ output_df_columns = list(output_df_pd.columns)
578
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
579
+ if self.sample_weight_col:
580
+ output_df_columns_set -= set(self.sample_weight_col)
581
+ # if the dimension of inferred output column names is correct; use it
582
+ if len(expected_output_cols_list) == len(output_df_columns_set):
583
+ return expected_output_cols_list
584
+ # otherwise, use the sklearn estimator's output
585
+ else:
586
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
587
+
534
588
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
535
589
  @telemetry.send_api_usage_telemetry(
536
590
  project=_PROJECT,
@@ -561,24 +615,28 @@ class PolynomialCountSketch(BaseTransformer):
561
615
  # are specific to the type of dataset used.
562
616
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
563
617
 
618
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
619
+
564
620
  if isinstance(dataset, DataFrame):
565
621
  self._deps = self._batch_inference_validate_snowpark(
566
622
  dataset=dataset,
567
623
  inference_method=inference_method,
568
624
  )
569
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
625
+ assert isinstance(
626
+ dataset._session, Session
627
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
570
628
  transform_kwargs = dict(
571
629
  session=dataset._session,
572
630
  dependencies=self._deps,
573
- drop_input_cols = self._drop_input_cols,
631
+ drop_input_cols=self._drop_input_cols,
574
632
  expected_output_cols_type="float",
575
633
  )
634
+ expected_output_cols = self._align_expected_output_names(
635
+ inference_method, dataset, expected_output_cols, output_cols_prefix
636
+ )
576
637
 
577
638
  elif isinstance(dataset, pd.DataFrame):
578
- transform_kwargs = dict(
579
- snowpark_input_cols = self._snowpark_cols,
580
- drop_input_cols = self._drop_input_cols
581
- )
639
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
582
640
 
583
641
  transform_handlers = ModelTransformerBuilder.build(
584
642
  dataset=dataset,
@@ -590,7 +648,7 @@ class PolynomialCountSketch(BaseTransformer):
590
648
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
591
649
  inference_method=inference_method,
592
650
  input_cols=self.input_cols,
593
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
651
+ expected_output_cols=expected_output_cols,
594
652
  **transform_kwargs
595
653
  )
596
654
  return output_df
@@ -620,7 +678,8 @@ class PolynomialCountSketch(BaseTransformer):
620
678
  Output dataset with log probability of the sample for each class in the model.
621
679
  """
622
680
  super()._check_dataset_type(dataset)
623
- inference_method="predict_log_proba"
681
+ inference_method = "predict_log_proba"
682
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
624
683
 
625
684
  # This dictionary contains optional kwargs for batch inference. These kwargs
626
685
  # are specific to the type of dataset used.
@@ -631,18 +690,20 @@ class PolynomialCountSketch(BaseTransformer):
631
690
  dataset=dataset,
632
691
  inference_method=inference_method,
633
692
  )
634
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
693
+ assert isinstance(
694
+ dataset._session, Session
695
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
635
696
  transform_kwargs = dict(
636
697
  session=dataset._session,
637
698
  dependencies=self._deps,
638
- drop_input_cols = self._drop_input_cols,
699
+ drop_input_cols=self._drop_input_cols,
639
700
  expected_output_cols_type="float",
640
701
  )
702
+ expected_output_cols = self._align_expected_output_names(
703
+ inference_method, dataset, expected_output_cols, output_cols_prefix
704
+ )
641
705
  elif isinstance(dataset, pd.DataFrame):
642
- transform_kwargs = dict(
643
- snowpark_input_cols = self._snowpark_cols,
644
- drop_input_cols = self._drop_input_cols
645
- )
706
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
646
707
 
647
708
  transform_handlers = ModelTransformerBuilder.build(
648
709
  dataset=dataset,
@@ -655,7 +716,7 @@ class PolynomialCountSketch(BaseTransformer):
655
716
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
656
717
  inference_method=inference_method,
657
718
  input_cols=self.input_cols,
658
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
719
+ expected_output_cols=expected_output_cols,
659
720
  **transform_kwargs
660
721
  )
661
722
  return output_df
@@ -681,30 +742,34 @@ class PolynomialCountSketch(BaseTransformer):
681
742
  Output dataset with results of the decision function for the samples in input dataset.
682
743
  """
683
744
  super()._check_dataset_type(dataset)
684
- inference_method="decision_function"
745
+ inference_method = "decision_function"
685
746
 
686
747
  # This dictionary contains optional kwargs for batch inference. These kwargs
687
748
  # are specific to the type of dataset used.
688
749
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
689
750
 
751
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
752
+
690
753
  if isinstance(dataset, DataFrame):
691
754
  self._deps = self._batch_inference_validate_snowpark(
692
755
  dataset=dataset,
693
756
  inference_method=inference_method,
694
757
  )
695
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
758
+ assert isinstance(
759
+ dataset._session, Session
760
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
696
761
  transform_kwargs = dict(
697
762
  session=dataset._session,
698
763
  dependencies=self._deps,
699
- drop_input_cols = self._drop_input_cols,
764
+ drop_input_cols=self._drop_input_cols,
700
765
  expected_output_cols_type="float",
701
766
  )
767
+ expected_output_cols = self._align_expected_output_names(
768
+ inference_method, dataset, expected_output_cols, output_cols_prefix
769
+ )
702
770
 
703
771
  elif isinstance(dataset, pd.DataFrame):
704
- transform_kwargs = dict(
705
- snowpark_input_cols = self._snowpark_cols,
706
- drop_input_cols = self._drop_input_cols
707
- )
772
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
708
773
 
709
774
  transform_handlers = ModelTransformerBuilder.build(
710
775
  dataset=dataset,
@@ -717,7 +782,7 @@ class PolynomialCountSketch(BaseTransformer):
717
782
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
718
783
  inference_method=inference_method,
719
784
  input_cols=self.input_cols,
720
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
785
+ expected_output_cols=expected_output_cols,
721
786
  **transform_kwargs
722
787
  )
723
788
  return output_df
@@ -746,12 +811,14 @@ class PolynomialCountSketch(BaseTransformer):
746
811
  Output dataset with probability of the sample for each class in the model.
747
812
  """
748
813
  super()._check_dataset_type(dataset)
749
- inference_method="score_samples"
814
+ inference_method = "score_samples"
750
815
 
751
816
  # This dictionary contains optional kwargs for batch inference. These kwargs
752
817
  # are specific to the type of dataset used.
753
818
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
754
819
 
820
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
821
+
755
822
  if isinstance(dataset, DataFrame):
756
823
  self._deps = self._batch_inference_validate_snowpark(
757
824
  dataset=dataset,
@@ -764,6 +831,9 @@ class PolynomialCountSketch(BaseTransformer):
764
831
  drop_input_cols = self._drop_input_cols,
765
832
  expected_output_cols_type="float",
766
833
  )
834
+ expected_output_cols = self._align_expected_output_names(
835
+ inference_method, dataset, expected_output_cols, output_cols_prefix
836
+ )
767
837
 
768
838
  elif isinstance(dataset, pd.DataFrame):
769
839
  transform_kwargs = dict(
@@ -782,7 +852,7 @@ class PolynomialCountSketch(BaseTransformer):
782
852
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
783
853
  inference_method=inference_method,
784
854
  input_cols=self.input_cols,
785
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
855
+ expected_output_cols=expected_output_cols,
786
856
  **transform_kwargs
787
857
  )
788
858
  return output_df
@@ -927,50 +997,84 @@ class PolynomialCountSketch(BaseTransformer):
927
997
  )
928
998
  return output_df
929
999
 
1000
+
1001
+
1002
+ def to_sklearn(self) -> Any:
1003
+ """Get sklearn.kernel_approximation.PolynomialCountSketch object.
1004
+ """
1005
+ if self._sklearn_object is None:
1006
+ self._sklearn_object = self._create_sklearn_object()
1007
+ return self._sklearn_object
1008
+
1009
+ def to_xgboost(self) -> Any:
1010
+ raise exceptions.SnowflakeMLException(
1011
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1012
+ original_exception=AttributeError(
1013
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1014
+ "to_xgboost()",
1015
+ "to_sklearn()"
1016
+ )
1017
+ ),
1018
+ )
1019
+
1020
+ def to_lightgbm(self) -> Any:
1021
+ raise exceptions.SnowflakeMLException(
1022
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1023
+ original_exception=AttributeError(
1024
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1025
+ "to_lightgbm()",
1026
+ "to_sklearn()"
1027
+ )
1028
+ ),
1029
+ )
930
1030
 
931
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1031
+ def _get_dependencies(self) -> List[str]:
1032
+ return self._deps
1033
+
1034
+
1035
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
932
1036
  self._model_signature_dict = dict()
933
1037
 
934
1038
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
935
1039
 
936
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1040
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
937
1041
  outputs: List[BaseFeatureSpec] = []
938
1042
  if hasattr(self, "predict"):
939
1043
  # keep mypy happy
940
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1044
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
941
1045
  # For classifier, the type of predict is the same as the type of label
942
- if self._sklearn_object._estimator_type == 'classifier':
943
- # label columns is the desired type for output
1046
+ if self._sklearn_object._estimator_type == "classifier":
1047
+ # label columns is the desired type for output
944
1048
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
945
1049
  # rename the output columns
946
1050
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
947
- self._model_signature_dict["predict"] = ModelSignature(inputs,
948
- ([] if self._drop_input_cols else inputs)
949
- + outputs)
1051
+ self._model_signature_dict["predict"] = ModelSignature(
1052
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1053
+ )
950
1054
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
951
1055
  # For outlier models, returns -1 for outliers and 1 for inliers.
952
- # Clusterer returns int64 cluster labels.
1056
+ # Clusterer returns int64 cluster labels.
953
1057
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
954
1058
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
955
- self._model_signature_dict["predict"] = ModelSignature(inputs,
956
- ([] if self._drop_input_cols else inputs)
957
- + outputs)
958
-
1059
+ self._model_signature_dict["predict"] = ModelSignature(
1060
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1061
+ )
1062
+
959
1063
  # For regressor, the type of predict is float64
960
- elif self._sklearn_object._estimator_type == 'regressor':
1064
+ elif self._sklearn_object._estimator_type == "regressor":
961
1065
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
962
- self._model_signature_dict["predict"] = ModelSignature(inputs,
963
- ([] if self._drop_input_cols else inputs)
964
- + outputs)
965
-
1066
+ self._model_signature_dict["predict"] = ModelSignature(
1067
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1068
+ )
1069
+
966
1070
  for prob_func in PROB_FUNCTIONS:
967
1071
  if hasattr(self, prob_func):
968
1072
  output_cols_prefix: str = f"{prob_func}_"
969
1073
  output_column_names = self._get_output_column_names(output_cols_prefix)
970
1074
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
971
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
972
- ([] if self._drop_input_cols else inputs)
973
- + outputs)
1075
+ self._model_signature_dict[prob_func] = ModelSignature(
1076
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1077
+ )
974
1078
 
975
1079
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
976
1080
  items = list(self._model_signature_dict.items())
@@ -983,10 +1087,10 @@ class PolynomialCountSketch(BaseTransformer):
983
1087
  """Returns model signature of current class.
984
1088
 
985
1089
  Raises:
986
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1090
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
987
1091
 
988
1092
  Returns:
989
- Dict[str, ModelSignature]: each method and its input output signature
1093
+ Dict with each method and its input output signature
990
1094
  """
991
1095
  if self._model_signature_dict is None:
992
1096
  raise exceptions.SnowflakeMLException(
@@ -994,35 +1098,3 @@ class PolynomialCountSketch(BaseTransformer):
994
1098
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
995
1099
  )
996
1100
  return self._model_signature_dict
997
-
998
- def to_sklearn(self) -> Any:
999
- """Get sklearn.kernel_approximation.PolynomialCountSketch object.
1000
- """
1001
- if self._sklearn_object is None:
1002
- self._sklearn_object = self._create_sklearn_object()
1003
- return self._sklearn_object
1004
-
1005
- def to_xgboost(self) -> Any:
1006
- raise exceptions.SnowflakeMLException(
1007
- error_code=error_codes.METHOD_NOT_ALLOWED,
1008
- original_exception=AttributeError(
1009
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1010
- "to_xgboost()",
1011
- "to_sklearn()"
1012
- )
1013
- ),
1014
- )
1015
-
1016
- def to_lightgbm(self) -> Any:
1017
- raise exceptions.SnowflakeMLException(
1018
- error_code=error_codes.METHOD_NOT_ALLOWED,
1019
- original_exception=AttributeError(
1020
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1021
- "to_lightgbm()",
1022
- "to_sklearn()"
1023
- )
1024
- ),
1025
- )
1026
-
1027
- def _get_dependencies(self) -> List[str]:
1028
- return self._deps