snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +151 -78
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +2 -50
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +9 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -248,12 +247,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
248
247
|
)
|
249
248
|
return selected_cols
|
250
249
|
|
251
|
-
|
252
|
-
project=_PROJECT,
|
253
|
-
subproject=_SUBPROJECT,
|
254
|
-
custom_tags=dict([("autogen", True)]),
|
255
|
-
)
|
256
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifierCV":
|
250
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifierCV":
|
257
251
|
"""Fit Ridge classifier with cv
|
258
252
|
For more details on this function, see [sklearn.linear_model.RidgeClassifierCV.fit]
|
259
253
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifierCV.html#sklearn.linear_model.RidgeClassifierCV.fit)
|
@@ -280,12 +274,14 @@ class RidgeClassifierCV(BaseTransformer):
|
|
280
274
|
|
281
275
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
282
276
|
|
283
|
-
|
277
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
284
278
|
if SNOWML_SPROC_ENV in os.environ:
|
285
279
|
statement_params = telemetry.get_function_usage_statement_params(
|
286
280
|
project=_PROJECT,
|
287
281
|
subproject=_SUBPROJECT,
|
288
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
282
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
283
|
+
inspect.currentframe(), RidgeClassifierCV.__class__.__name__
|
284
|
+
),
|
289
285
|
api_calls=[Session.call],
|
290
286
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
291
287
|
)
|
@@ -306,7 +302,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
306
302
|
)
|
307
303
|
self._sklearn_object = model_trainer.train()
|
308
304
|
self._is_fitted = True
|
309
|
-
self.
|
305
|
+
self._generate_model_signatures(dataset)
|
310
306
|
return self
|
311
307
|
|
312
308
|
def _batch_inference_validate_snowpark(
|
@@ -382,7 +378,9 @@ class RidgeClassifierCV(BaseTransformer):
|
|
382
378
|
# when it is classifier, infer the datatype from label columns
|
383
379
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
384
380
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
385
|
-
label_cols_signatures = [
|
381
|
+
label_cols_signatures = [
|
382
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
383
|
+
]
|
386
384
|
if len(label_cols_signatures) == 0:
|
387
385
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
388
386
|
raise exceptions.SnowflakeMLException(
|
@@ -390,25 +388,22 @@ class RidgeClassifierCV(BaseTransformer):
|
|
390
388
|
original_exception=ValueError(error_str),
|
391
389
|
)
|
392
390
|
|
393
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
394
|
-
label_cols_signatures[0].as_snowpark_type()
|
395
|
-
)
|
391
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
396
392
|
|
397
393
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
398
|
-
assert isinstance(
|
394
|
+
assert isinstance(
|
395
|
+
dataset._session, Session
|
396
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
399
397
|
|
400
398
|
transform_kwargs = dict(
|
401
|
-
session
|
402
|
-
dependencies
|
403
|
-
drop_input_cols
|
404
|
-
expected_output_cols_type
|
399
|
+
session=dataset._session,
|
400
|
+
dependencies=self._deps,
|
401
|
+
drop_input_cols=self._drop_input_cols,
|
402
|
+
expected_output_cols_type=expected_type_inferred,
|
405
403
|
)
|
406
404
|
|
407
405
|
elif isinstance(dataset, pd.DataFrame):
|
408
|
-
transform_kwargs = dict(
|
409
|
-
snowpark_input_cols = self._snowpark_cols,
|
410
|
-
drop_input_cols = self._drop_input_cols
|
411
|
-
)
|
406
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
412
407
|
|
413
408
|
transform_handlers = ModelTransformerBuilder.build(
|
414
409
|
dataset=dataset,
|
@@ -448,7 +443,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
448
443
|
Transformed dataset.
|
449
444
|
"""
|
450
445
|
super()._check_dataset_type(dataset)
|
451
|
-
inference_method="transform"
|
446
|
+
inference_method = "transform"
|
452
447
|
|
453
448
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
454
449
|
# are specific to the type of dataset used.
|
@@ -485,17 +480,14 @@ class RidgeClassifierCV(BaseTransformer):
|
|
485
480
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
486
481
|
|
487
482
|
transform_kwargs = dict(
|
488
|
-
session
|
489
|
-
dependencies
|
490
|
-
drop_input_cols
|
491
|
-
expected_output_cols_type
|
483
|
+
session=dataset._session,
|
484
|
+
dependencies=self._deps,
|
485
|
+
drop_input_cols=self._drop_input_cols,
|
486
|
+
expected_output_cols_type=expected_dtype,
|
492
487
|
)
|
493
488
|
|
494
489
|
elif isinstance(dataset, pd.DataFrame):
|
495
|
-
transform_kwargs = dict(
|
496
|
-
snowpark_input_cols = self._snowpark_cols,
|
497
|
-
drop_input_cols = self._drop_input_cols
|
498
|
-
)
|
490
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
499
491
|
|
500
492
|
transform_handlers = ModelTransformerBuilder.build(
|
501
493
|
dataset=dataset,
|
@@ -514,7 +506,11 @@ class RidgeClassifierCV(BaseTransformer):
|
|
514
506
|
return output_df
|
515
507
|
|
516
508
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
517
|
-
def fit_predict(
|
509
|
+
def fit_predict(
|
510
|
+
self,
|
511
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
512
|
+
output_cols_prefix: str = "fit_predict_",
|
513
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
518
514
|
""" Method not supported for this class.
|
519
515
|
|
520
516
|
|
@@ -539,7 +535,9 @@ class RidgeClassifierCV(BaseTransformer):
|
|
539
535
|
)
|
540
536
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
541
537
|
drop_input_cols=self._drop_input_cols,
|
542
|
-
expected_output_cols_list=
|
538
|
+
expected_output_cols_list=(
|
539
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
540
|
+
),
|
543
541
|
)
|
544
542
|
self._sklearn_object = fitted_estimator
|
545
543
|
self._is_fitted = True
|
@@ -556,6 +554,62 @@ class RidgeClassifierCV(BaseTransformer):
|
|
556
554
|
assert self._sklearn_object is not None
|
557
555
|
return self._sklearn_object.embedding_
|
558
556
|
|
557
|
+
|
558
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
559
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
560
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
561
|
+
"""
|
562
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
563
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
564
|
+
if output_cols:
|
565
|
+
output_cols = [
|
566
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
567
|
+
for c in output_cols
|
568
|
+
]
|
569
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
570
|
+
output_cols = [output_cols_prefix]
|
571
|
+
elif self._sklearn_object is not None:
|
572
|
+
classes = self._sklearn_object.classes_
|
573
|
+
if isinstance(classes, numpy.ndarray):
|
574
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
575
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
576
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
577
|
+
output_cols = []
|
578
|
+
for i, cl in enumerate(classes):
|
579
|
+
# For binary classification, there is only one output column for each class
|
580
|
+
# ndarray as the two classes are complementary.
|
581
|
+
if len(cl) == 2:
|
582
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
583
|
+
else:
|
584
|
+
output_cols.extend([
|
585
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
586
|
+
])
|
587
|
+
else:
|
588
|
+
output_cols = []
|
589
|
+
|
590
|
+
# Make sure column names are valid snowflake identifiers.
|
591
|
+
assert output_cols is not None # Make MyPy happy
|
592
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
593
|
+
|
594
|
+
return rv
|
595
|
+
|
596
|
+
def _align_expected_output_names(
|
597
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
598
|
+
) -> List[str]:
|
599
|
+
# in case the inferred output column names dimension is different
|
600
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
601
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
602
|
+
output_df_columns = list(output_df_pd.columns)
|
603
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
604
|
+
if self.sample_weight_col:
|
605
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
606
|
+
# if the dimension of inferred output column names is correct; use it
|
607
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
608
|
+
return expected_output_cols_list
|
609
|
+
# otherwise, use the sklearn estimator's output
|
610
|
+
else:
|
611
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
612
|
+
|
559
613
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
560
614
|
@telemetry.send_api_usage_telemetry(
|
561
615
|
project=_PROJECT,
|
@@ -586,24 +640,28 @@ class RidgeClassifierCV(BaseTransformer):
|
|
586
640
|
# are specific to the type of dataset used.
|
587
641
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
588
642
|
|
643
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
644
|
+
|
589
645
|
if isinstance(dataset, DataFrame):
|
590
646
|
self._deps = self._batch_inference_validate_snowpark(
|
591
647
|
dataset=dataset,
|
592
648
|
inference_method=inference_method,
|
593
649
|
)
|
594
|
-
assert isinstance(
|
650
|
+
assert isinstance(
|
651
|
+
dataset._session, Session
|
652
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
595
653
|
transform_kwargs = dict(
|
596
654
|
session=dataset._session,
|
597
655
|
dependencies=self._deps,
|
598
|
-
drop_input_cols
|
656
|
+
drop_input_cols=self._drop_input_cols,
|
599
657
|
expected_output_cols_type="float",
|
600
658
|
)
|
659
|
+
expected_output_cols = self._align_expected_output_names(
|
660
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
661
|
+
)
|
601
662
|
|
602
663
|
elif isinstance(dataset, pd.DataFrame):
|
603
|
-
transform_kwargs = dict(
|
604
|
-
snowpark_input_cols = self._snowpark_cols,
|
605
|
-
drop_input_cols = self._drop_input_cols
|
606
|
-
)
|
664
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
607
665
|
|
608
666
|
transform_handlers = ModelTransformerBuilder.build(
|
609
667
|
dataset=dataset,
|
@@ -615,7 +673,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
615
673
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
616
674
|
inference_method=inference_method,
|
617
675
|
input_cols=self.input_cols,
|
618
|
-
expected_output_cols=
|
676
|
+
expected_output_cols=expected_output_cols,
|
619
677
|
**transform_kwargs
|
620
678
|
)
|
621
679
|
return output_df
|
@@ -645,7 +703,8 @@ class RidgeClassifierCV(BaseTransformer):
|
|
645
703
|
Output dataset with log probability of the sample for each class in the model.
|
646
704
|
"""
|
647
705
|
super()._check_dataset_type(dataset)
|
648
|
-
inference_method="predict_log_proba"
|
706
|
+
inference_method = "predict_log_proba"
|
707
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
649
708
|
|
650
709
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
651
710
|
# are specific to the type of dataset used.
|
@@ -656,18 +715,20 @@ class RidgeClassifierCV(BaseTransformer):
|
|
656
715
|
dataset=dataset,
|
657
716
|
inference_method=inference_method,
|
658
717
|
)
|
659
|
-
assert isinstance(
|
718
|
+
assert isinstance(
|
719
|
+
dataset._session, Session
|
720
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
660
721
|
transform_kwargs = dict(
|
661
722
|
session=dataset._session,
|
662
723
|
dependencies=self._deps,
|
663
|
-
drop_input_cols
|
724
|
+
drop_input_cols=self._drop_input_cols,
|
664
725
|
expected_output_cols_type="float",
|
665
726
|
)
|
727
|
+
expected_output_cols = self._align_expected_output_names(
|
728
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
729
|
+
)
|
666
730
|
elif isinstance(dataset, pd.DataFrame):
|
667
|
-
transform_kwargs = dict(
|
668
|
-
snowpark_input_cols = self._snowpark_cols,
|
669
|
-
drop_input_cols = self._drop_input_cols
|
670
|
-
)
|
731
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
671
732
|
|
672
733
|
transform_handlers = ModelTransformerBuilder.build(
|
673
734
|
dataset=dataset,
|
@@ -680,7 +741,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
680
741
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
681
742
|
inference_method=inference_method,
|
682
743
|
input_cols=self.input_cols,
|
683
|
-
expected_output_cols=
|
744
|
+
expected_output_cols=expected_output_cols,
|
684
745
|
**transform_kwargs
|
685
746
|
)
|
686
747
|
return output_df
|
@@ -708,30 +769,34 @@ class RidgeClassifierCV(BaseTransformer):
|
|
708
769
|
Output dataset with results of the decision function for the samples in input dataset.
|
709
770
|
"""
|
710
771
|
super()._check_dataset_type(dataset)
|
711
|
-
inference_method="decision_function"
|
772
|
+
inference_method = "decision_function"
|
712
773
|
|
713
774
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
714
775
|
# are specific to the type of dataset used.
|
715
776
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
716
777
|
|
778
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
779
|
+
|
717
780
|
if isinstance(dataset, DataFrame):
|
718
781
|
self._deps = self._batch_inference_validate_snowpark(
|
719
782
|
dataset=dataset,
|
720
783
|
inference_method=inference_method,
|
721
784
|
)
|
722
|
-
assert isinstance(
|
785
|
+
assert isinstance(
|
786
|
+
dataset._session, Session
|
787
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
723
788
|
transform_kwargs = dict(
|
724
789
|
session=dataset._session,
|
725
790
|
dependencies=self._deps,
|
726
|
-
drop_input_cols
|
791
|
+
drop_input_cols=self._drop_input_cols,
|
727
792
|
expected_output_cols_type="float",
|
728
793
|
)
|
794
|
+
expected_output_cols = self._align_expected_output_names(
|
795
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
796
|
+
)
|
729
797
|
|
730
798
|
elif isinstance(dataset, pd.DataFrame):
|
731
|
-
transform_kwargs = dict(
|
732
|
-
snowpark_input_cols = self._snowpark_cols,
|
733
|
-
drop_input_cols = self._drop_input_cols
|
734
|
-
)
|
799
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
735
800
|
|
736
801
|
transform_handlers = ModelTransformerBuilder.build(
|
737
802
|
dataset=dataset,
|
@@ -744,7 +809,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
744
809
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
745
810
|
inference_method=inference_method,
|
746
811
|
input_cols=self.input_cols,
|
747
|
-
expected_output_cols=
|
812
|
+
expected_output_cols=expected_output_cols,
|
748
813
|
**transform_kwargs
|
749
814
|
)
|
750
815
|
return output_df
|
@@ -773,12 +838,14 @@ class RidgeClassifierCV(BaseTransformer):
|
|
773
838
|
Output dataset with probability of the sample for each class in the model.
|
774
839
|
"""
|
775
840
|
super()._check_dataset_type(dataset)
|
776
|
-
inference_method="score_samples"
|
841
|
+
inference_method = "score_samples"
|
777
842
|
|
778
843
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
779
844
|
# are specific to the type of dataset used.
|
780
845
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
781
846
|
|
847
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
848
|
+
|
782
849
|
if isinstance(dataset, DataFrame):
|
783
850
|
self._deps = self._batch_inference_validate_snowpark(
|
784
851
|
dataset=dataset,
|
@@ -791,6 +858,9 @@ class RidgeClassifierCV(BaseTransformer):
|
|
791
858
|
drop_input_cols = self._drop_input_cols,
|
792
859
|
expected_output_cols_type="float",
|
793
860
|
)
|
861
|
+
expected_output_cols = self._align_expected_output_names(
|
862
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
863
|
+
)
|
794
864
|
|
795
865
|
elif isinstance(dataset, pd.DataFrame):
|
796
866
|
transform_kwargs = dict(
|
@@ -809,7 +879,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
809
879
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
810
880
|
inference_method=inference_method,
|
811
881
|
input_cols=self.input_cols,
|
812
|
-
expected_output_cols=
|
882
|
+
expected_output_cols=expected_output_cols,
|
813
883
|
**transform_kwargs
|
814
884
|
)
|
815
885
|
return output_df
|
@@ -956,50 +1026,84 @@ class RidgeClassifierCV(BaseTransformer):
|
|
956
1026
|
)
|
957
1027
|
return output_df
|
958
1028
|
|
1029
|
+
|
1030
|
+
|
1031
|
+
def to_sklearn(self) -> Any:
|
1032
|
+
"""Get sklearn.linear_model.RidgeClassifierCV object.
|
1033
|
+
"""
|
1034
|
+
if self._sklearn_object is None:
|
1035
|
+
self._sklearn_object = self._create_sklearn_object()
|
1036
|
+
return self._sklearn_object
|
1037
|
+
|
1038
|
+
def to_xgboost(self) -> Any:
|
1039
|
+
raise exceptions.SnowflakeMLException(
|
1040
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1041
|
+
original_exception=AttributeError(
|
1042
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1043
|
+
"to_xgboost()",
|
1044
|
+
"to_sklearn()"
|
1045
|
+
)
|
1046
|
+
),
|
1047
|
+
)
|
1048
|
+
|
1049
|
+
def to_lightgbm(self) -> Any:
|
1050
|
+
raise exceptions.SnowflakeMLException(
|
1051
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1052
|
+
original_exception=AttributeError(
|
1053
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1054
|
+
"to_lightgbm()",
|
1055
|
+
"to_sklearn()"
|
1056
|
+
)
|
1057
|
+
),
|
1058
|
+
)
|
959
1059
|
|
960
|
-
def
|
1060
|
+
def _get_dependencies(self) -> List[str]:
|
1061
|
+
return self._deps
|
1062
|
+
|
1063
|
+
|
1064
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
961
1065
|
self._model_signature_dict = dict()
|
962
1066
|
|
963
1067
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
964
1068
|
|
965
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1069
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
966
1070
|
outputs: List[BaseFeatureSpec] = []
|
967
1071
|
if hasattr(self, "predict"):
|
968
1072
|
# keep mypy happy
|
969
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1073
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
970
1074
|
# For classifier, the type of predict is the same as the type of label
|
971
|
-
if self._sklearn_object._estimator_type ==
|
972
|
-
|
1075
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1076
|
+
# label columns is the desired type for output
|
973
1077
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
974
1078
|
# rename the output columns
|
975
1079
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
976
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
977
|
-
|
978
|
-
|
1080
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1081
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1082
|
+
)
|
979
1083
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
980
1084
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
981
|
-
# Clusterer returns int64 cluster labels.
|
1085
|
+
# Clusterer returns int64 cluster labels.
|
982
1086
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
983
1087
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
984
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
985
|
-
|
986
|
-
|
987
|
-
|
1088
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1089
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1090
|
+
)
|
1091
|
+
|
988
1092
|
# For regressor, the type of predict is float64
|
989
|
-
elif self._sklearn_object._estimator_type ==
|
1093
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
990
1094
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
991
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
992
|
-
|
993
|
-
|
994
|
-
|
1095
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1096
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1097
|
+
)
|
1098
|
+
|
995
1099
|
for prob_func in PROB_FUNCTIONS:
|
996
1100
|
if hasattr(self, prob_func):
|
997
1101
|
output_cols_prefix: str = f"{prob_func}_"
|
998
1102
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
999
1103
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1000
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1001
|
-
|
1002
|
-
|
1104
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1105
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1106
|
+
)
|
1003
1107
|
|
1004
1108
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1005
1109
|
items = list(self._model_signature_dict.items())
|
@@ -1012,10 +1116,10 @@ class RidgeClassifierCV(BaseTransformer):
|
|
1012
1116
|
"""Returns model signature of current class.
|
1013
1117
|
|
1014
1118
|
Raises:
|
1015
|
-
|
1119
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1016
1120
|
|
1017
1121
|
Returns:
|
1018
|
-
Dict
|
1122
|
+
Dict with each method and its input output signature
|
1019
1123
|
"""
|
1020
1124
|
if self._model_signature_dict is None:
|
1021
1125
|
raise exceptions.SnowflakeMLException(
|
@@ -1023,35 +1127,3 @@ class RidgeClassifierCV(BaseTransformer):
|
|
1023
1127
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1024
1128
|
)
|
1025
1129
|
return self._model_signature_dict
|
1026
|
-
|
1027
|
-
def to_sklearn(self) -> Any:
|
1028
|
-
"""Get sklearn.linear_model.RidgeClassifierCV object.
|
1029
|
-
"""
|
1030
|
-
if self._sklearn_object is None:
|
1031
|
-
self._sklearn_object = self._create_sklearn_object()
|
1032
|
-
return self._sklearn_object
|
1033
|
-
|
1034
|
-
def to_xgboost(self) -> Any:
|
1035
|
-
raise exceptions.SnowflakeMLException(
|
1036
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1037
|
-
original_exception=AttributeError(
|
1038
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1039
|
-
"to_xgboost()",
|
1040
|
-
"to_sklearn()"
|
1041
|
-
)
|
1042
|
-
),
|
1043
|
-
)
|
1044
|
-
|
1045
|
-
def to_lightgbm(self) -> Any:
|
1046
|
-
raise exceptions.SnowflakeMLException(
|
1047
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1048
|
-
original_exception=AttributeError(
|
1049
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1050
|
-
"to_lightgbm()",
|
1051
|
-
"to_sklearn()"
|
1052
|
-
)
|
1053
|
-
),
|
1054
|
-
)
|
1055
|
-
|
1056
|
-
def _get_dependencies(self) -> List[str]:
|
1057
|
-
return self._deps
|