snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -34,6 +34,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
34
34
  BatchInferenceKwargsTypedDict,
35
35
  ScoreKwargsTypedDict
36
36
  )
37
+ from snowflake.ml.model._signatures import utils as model_signature_utils
38
+ from snowflake.ml.model.model_signature import (
39
+ BaseFeatureSpec,
40
+ DataType,
41
+ FeatureSpec,
42
+ ModelSignature,
43
+ _infer_signature,
44
+ _rename_signature_with_snowflake_identifiers,
45
+ )
37
46
 
38
47
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
39
48
 
@@ -44,16 +53,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
44
53
  validate_sklearn_args,
45
54
  )
46
55
 
47
- from snowflake.ml.model.model_signature import (
48
- DataType,
49
- FeatureSpec,
50
- ModelSignature,
51
- _infer_signature,
52
- _rename_signature_with_snowflake_identifiers,
53
- BaseFeatureSpec,
54
- )
55
- from snowflake.ml.model._signatures import utils as model_signature_utils
56
-
57
56
  _PROJECT = "ModelDevelopment"
58
57
  # Derive subproject from module name by removing "sklearn"
59
58
  # and converting module name from underscore to CamelCase
@@ -205,12 +204,7 @@ class SelectPercentile(BaseTransformer):
205
204
  )
206
205
  return selected_cols
207
206
 
208
- @telemetry.send_api_usage_telemetry(
209
- project=_PROJECT,
210
- subproject=_SUBPROJECT,
211
- custom_tags=dict([("autogen", True)]),
212
- )
213
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SelectPercentile":
207
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SelectPercentile":
214
208
  """Run score function on (X, y) and get the appropriate features
215
209
  For more details on this function, see [sklearn.feature_selection.SelectPercentile.fit]
216
210
  (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html#sklearn.feature_selection.SelectPercentile.fit)
@@ -237,12 +231,14 @@ class SelectPercentile(BaseTransformer):
237
231
 
238
232
  self._snowpark_cols = dataset.select(self.input_cols).columns
239
233
 
240
- # If we are already in a stored procedure, no need to kick off another one.
234
+ # If we are already in a stored procedure, no need to kick off another one.
241
235
  if SNOWML_SPROC_ENV in os.environ:
242
236
  statement_params = telemetry.get_function_usage_statement_params(
243
237
  project=_PROJECT,
244
238
  subproject=_SUBPROJECT,
245
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SelectPercentile.__class__.__name__),
239
+ function_name=telemetry.get_statement_params_full_func_name(
240
+ inspect.currentframe(), SelectPercentile.__class__.__name__
241
+ ),
246
242
  api_calls=[Session.call],
247
243
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
248
244
  )
@@ -263,7 +259,7 @@ class SelectPercentile(BaseTransformer):
263
259
  )
264
260
  self._sklearn_object = model_trainer.train()
265
261
  self._is_fitted = True
266
- self._get_model_signatures(dataset)
262
+ self._generate_model_signatures(dataset)
267
263
  return self
268
264
 
269
265
  def _batch_inference_validate_snowpark(
@@ -337,7 +333,9 @@ class SelectPercentile(BaseTransformer):
337
333
  # when it is classifier, infer the datatype from label columns
338
334
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
339
335
  # Batch inference takes a single expected output column type. Use the first columns type for now.
340
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
336
+ label_cols_signatures = [
337
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
338
+ ]
341
339
  if len(label_cols_signatures) == 0:
342
340
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
343
341
  raise exceptions.SnowflakeMLException(
@@ -345,25 +343,22 @@ class SelectPercentile(BaseTransformer):
345
343
  original_exception=ValueError(error_str),
346
344
  )
347
345
 
348
- expected_type_inferred = convert_sp_to_sf_type(
349
- label_cols_signatures[0].as_snowpark_type()
350
- )
346
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
351
347
 
352
348
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
353
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
349
+ assert isinstance(
350
+ dataset._session, Session
351
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
354
352
 
355
353
  transform_kwargs = dict(
356
- session = dataset._session,
357
- dependencies = self._deps,
358
- drop_input_cols = self._drop_input_cols,
359
- expected_output_cols_type = expected_type_inferred,
354
+ session=dataset._session,
355
+ dependencies=self._deps,
356
+ drop_input_cols=self._drop_input_cols,
357
+ expected_output_cols_type=expected_type_inferred,
360
358
  )
361
359
 
362
360
  elif isinstance(dataset, pd.DataFrame):
363
- transform_kwargs = dict(
364
- snowpark_input_cols = self._snowpark_cols,
365
- drop_input_cols = self._drop_input_cols
366
- )
361
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
367
362
 
368
363
  transform_handlers = ModelTransformerBuilder.build(
369
364
  dataset=dataset,
@@ -405,7 +400,7 @@ class SelectPercentile(BaseTransformer):
405
400
  Transformed dataset.
406
401
  """
407
402
  super()._check_dataset_type(dataset)
408
- inference_method="transform"
403
+ inference_method = "transform"
409
404
 
410
405
  # This dictionary contains optional kwargs for batch inference. These kwargs
411
406
  # are specific to the type of dataset used.
@@ -442,17 +437,14 @@ class SelectPercentile(BaseTransformer):
442
437
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
443
438
 
444
439
  transform_kwargs = dict(
445
- session = dataset._session,
446
- dependencies = self._deps,
447
- drop_input_cols = self._drop_input_cols,
448
- expected_output_cols_type = expected_dtype,
440
+ session=dataset._session,
441
+ dependencies=self._deps,
442
+ drop_input_cols=self._drop_input_cols,
443
+ expected_output_cols_type=expected_dtype,
449
444
  )
450
445
 
451
446
  elif isinstance(dataset, pd.DataFrame):
452
- transform_kwargs = dict(
453
- snowpark_input_cols = self._snowpark_cols,
454
- drop_input_cols = self._drop_input_cols
455
- )
447
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
456
448
 
457
449
  transform_handlers = ModelTransformerBuilder.build(
458
450
  dataset=dataset,
@@ -471,7 +463,11 @@ class SelectPercentile(BaseTransformer):
471
463
  return output_df
472
464
 
473
465
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
474
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
466
+ def fit_predict(
467
+ self,
468
+ dataset: Union[DataFrame, pd.DataFrame],
469
+ output_cols_prefix: str = "fit_predict_",
470
+ ) -> Union[DataFrame, pd.DataFrame]:
475
471
  """ Method not supported for this class.
476
472
 
477
473
 
@@ -496,7 +492,9 @@ class SelectPercentile(BaseTransformer):
496
492
  )
497
493
  output_result, fitted_estimator = model_trainer.train_fit_predict(
498
494
  drop_input_cols=self._drop_input_cols,
499
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
495
+ expected_output_cols_list=(
496
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
497
+ ),
500
498
  )
501
499
  self._sklearn_object = fitted_estimator
502
500
  self._is_fitted = True
@@ -513,6 +511,62 @@ class SelectPercentile(BaseTransformer):
513
511
  assert self._sklearn_object is not None
514
512
  return self._sklearn_object.embedding_
515
513
 
514
+
515
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
516
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
517
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
518
+ """
519
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
520
+ # The following condition is introduced for kneighbors methods, and not used in other methods
521
+ if output_cols:
522
+ output_cols = [
523
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
524
+ for c in output_cols
525
+ ]
526
+ elif getattr(self._sklearn_object, "classes_", None) is None:
527
+ output_cols = [output_cols_prefix]
528
+ elif self._sklearn_object is not None:
529
+ classes = self._sklearn_object.classes_
530
+ if isinstance(classes, numpy.ndarray):
531
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
532
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
533
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
534
+ output_cols = []
535
+ for i, cl in enumerate(classes):
536
+ # For binary classification, there is only one output column for each class
537
+ # ndarray as the two classes are complementary.
538
+ if len(cl) == 2:
539
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
540
+ else:
541
+ output_cols.extend([
542
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
543
+ ])
544
+ else:
545
+ output_cols = []
546
+
547
+ # Make sure column names are valid snowflake identifiers.
548
+ assert output_cols is not None # Make MyPy happy
549
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
550
+
551
+ return rv
552
+
553
+ def _align_expected_output_names(
554
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
555
+ ) -> List[str]:
556
+ # in case the inferred output column names dimension is different
557
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
558
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
559
+ output_df_columns = list(output_df_pd.columns)
560
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
561
+ if self.sample_weight_col:
562
+ output_df_columns_set -= set(self.sample_weight_col)
563
+ # if the dimension of inferred output column names is correct; use it
564
+ if len(expected_output_cols_list) == len(output_df_columns_set):
565
+ return expected_output_cols_list
566
+ # otherwise, use the sklearn estimator's output
567
+ else:
568
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
569
+
516
570
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
517
571
  @telemetry.send_api_usage_telemetry(
518
572
  project=_PROJECT,
@@ -543,24 +597,28 @@ class SelectPercentile(BaseTransformer):
543
597
  # are specific to the type of dataset used.
544
598
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
545
599
 
600
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
601
+
546
602
  if isinstance(dataset, DataFrame):
547
603
  self._deps = self._batch_inference_validate_snowpark(
548
604
  dataset=dataset,
549
605
  inference_method=inference_method,
550
606
  )
551
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
607
+ assert isinstance(
608
+ dataset._session, Session
609
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
552
610
  transform_kwargs = dict(
553
611
  session=dataset._session,
554
612
  dependencies=self._deps,
555
- drop_input_cols = self._drop_input_cols,
613
+ drop_input_cols=self._drop_input_cols,
556
614
  expected_output_cols_type="float",
557
615
  )
616
+ expected_output_cols = self._align_expected_output_names(
617
+ inference_method, dataset, expected_output_cols, output_cols_prefix
618
+ )
558
619
 
559
620
  elif isinstance(dataset, pd.DataFrame):
560
- transform_kwargs = dict(
561
- snowpark_input_cols = self._snowpark_cols,
562
- drop_input_cols = self._drop_input_cols
563
- )
621
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
564
622
 
565
623
  transform_handlers = ModelTransformerBuilder.build(
566
624
  dataset=dataset,
@@ -572,7 +630,7 @@ class SelectPercentile(BaseTransformer):
572
630
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
573
631
  inference_method=inference_method,
574
632
  input_cols=self.input_cols,
575
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
633
+ expected_output_cols=expected_output_cols,
576
634
  **transform_kwargs
577
635
  )
578
636
  return output_df
@@ -602,7 +660,8 @@ class SelectPercentile(BaseTransformer):
602
660
  Output dataset with log probability of the sample for each class in the model.
603
661
  """
604
662
  super()._check_dataset_type(dataset)
605
- inference_method="predict_log_proba"
663
+ inference_method = "predict_log_proba"
664
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
606
665
 
607
666
  # This dictionary contains optional kwargs for batch inference. These kwargs
608
667
  # are specific to the type of dataset used.
@@ -613,18 +672,20 @@ class SelectPercentile(BaseTransformer):
613
672
  dataset=dataset,
614
673
  inference_method=inference_method,
615
674
  )
616
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
675
+ assert isinstance(
676
+ dataset._session, Session
677
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
617
678
  transform_kwargs = dict(
618
679
  session=dataset._session,
619
680
  dependencies=self._deps,
620
- drop_input_cols = self._drop_input_cols,
681
+ drop_input_cols=self._drop_input_cols,
621
682
  expected_output_cols_type="float",
622
683
  )
684
+ expected_output_cols = self._align_expected_output_names(
685
+ inference_method, dataset, expected_output_cols, output_cols_prefix
686
+ )
623
687
  elif isinstance(dataset, pd.DataFrame):
624
- transform_kwargs = dict(
625
- snowpark_input_cols = self._snowpark_cols,
626
- drop_input_cols = self._drop_input_cols
627
- )
688
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
628
689
 
629
690
  transform_handlers = ModelTransformerBuilder.build(
630
691
  dataset=dataset,
@@ -637,7 +698,7 @@ class SelectPercentile(BaseTransformer):
637
698
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
638
699
  inference_method=inference_method,
639
700
  input_cols=self.input_cols,
640
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
701
+ expected_output_cols=expected_output_cols,
641
702
  **transform_kwargs
642
703
  )
643
704
  return output_df
@@ -663,30 +724,34 @@ class SelectPercentile(BaseTransformer):
663
724
  Output dataset with results of the decision function for the samples in input dataset.
664
725
  """
665
726
  super()._check_dataset_type(dataset)
666
- inference_method="decision_function"
727
+ inference_method = "decision_function"
667
728
 
668
729
  # This dictionary contains optional kwargs for batch inference. These kwargs
669
730
  # are specific to the type of dataset used.
670
731
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
671
732
 
733
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
734
+
672
735
  if isinstance(dataset, DataFrame):
673
736
  self._deps = self._batch_inference_validate_snowpark(
674
737
  dataset=dataset,
675
738
  inference_method=inference_method,
676
739
  )
677
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
740
+ assert isinstance(
741
+ dataset._session, Session
742
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
678
743
  transform_kwargs = dict(
679
744
  session=dataset._session,
680
745
  dependencies=self._deps,
681
- drop_input_cols = self._drop_input_cols,
746
+ drop_input_cols=self._drop_input_cols,
682
747
  expected_output_cols_type="float",
683
748
  )
749
+ expected_output_cols = self._align_expected_output_names(
750
+ inference_method, dataset, expected_output_cols, output_cols_prefix
751
+ )
684
752
 
685
753
  elif isinstance(dataset, pd.DataFrame):
686
- transform_kwargs = dict(
687
- snowpark_input_cols = self._snowpark_cols,
688
- drop_input_cols = self._drop_input_cols
689
- )
754
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
690
755
 
691
756
  transform_handlers = ModelTransformerBuilder.build(
692
757
  dataset=dataset,
@@ -699,7 +764,7 @@ class SelectPercentile(BaseTransformer):
699
764
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
700
765
  inference_method=inference_method,
701
766
  input_cols=self.input_cols,
702
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
767
+ expected_output_cols=expected_output_cols,
703
768
  **transform_kwargs
704
769
  )
705
770
  return output_df
@@ -728,12 +793,14 @@ class SelectPercentile(BaseTransformer):
728
793
  Output dataset with probability of the sample for each class in the model.
729
794
  """
730
795
  super()._check_dataset_type(dataset)
731
- inference_method="score_samples"
796
+ inference_method = "score_samples"
732
797
 
733
798
  # This dictionary contains optional kwargs for batch inference. These kwargs
734
799
  # are specific to the type of dataset used.
735
800
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
736
801
 
802
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
803
+
737
804
  if isinstance(dataset, DataFrame):
738
805
  self._deps = self._batch_inference_validate_snowpark(
739
806
  dataset=dataset,
@@ -746,6 +813,9 @@ class SelectPercentile(BaseTransformer):
746
813
  drop_input_cols = self._drop_input_cols,
747
814
  expected_output_cols_type="float",
748
815
  )
816
+ expected_output_cols = self._align_expected_output_names(
817
+ inference_method, dataset, expected_output_cols, output_cols_prefix
818
+ )
749
819
 
750
820
  elif isinstance(dataset, pd.DataFrame):
751
821
  transform_kwargs = dict(
@@ -764,7 +834,7 @@ class SelectPercentile(BaseTransformer):
764
834
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
765
835
  inference_method=inference_method,
766
836
  input_cols=self.input_cols,
767
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
837
+ expected_output_cols=expected_output_cols,
768
838
  **transform_kwargs
769
839
  )
770
840
  return output_df
@@ -909,50 +979,84 @@ class SelectPercentile(BaseTransformer):
909
979
  )
910
980
  return output_df
911
981
 
982
+
983
+
984
+ def to_sklearn(self) -> Any:
985
+ """Get sklearn.feature_selection.SelectPercentile object.
986
+ """
987
+ if self._sklearn_object is None:
988
+ self._sklearn_object = self._create_sklearn_object()
989
+ return self._sklearn_object
990
+
991
+ def to_xgboost(self) -> Any:
992
+ raise exceptions.SnowflakeMLException(
993
+ error_code=error_codes.METHOD_NOT_ALLOWED,
994
+ original_exception=AttributeError(
995
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
996
+ "to_xgboost()",
997
+ "to_sklearn()"
998
+ )
999
+ ),
1000
+ )
1001
+
1002
+ def to_lightgbm(self) -> Any:
1003
+ raise exceptions.SnowflakeMLException(
1004
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1005
+ original_exception=AttributeError(
1006
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1007
+ "to_lightgbm()",
1008
+ "to_sklearn()"
1009
+ )
1010
+ ),
1011
+ )
912
1012
 
913
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1013
+ def _get_dependencies(self) -> List[str]:
1014
+ return self._deps
1015
+
1016
+
1017
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
914
1018
  self._model_signature_dict = dict()
915
1019
 
916
1020
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
917
1021
 
918
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1022
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
919
1023
  outputs: List[BaseFeatureSpec] = []
920
1024
  if hasattr(self, "predict"):
921
1025
  # keep mypy happy
922
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1026
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
923
1027
  # For classifier, the type of predict is the same as the type of label
924
- if self._sklearn_object._estimator_type == 'classifier':
925
- # label columns is the desired type for output
1028
+ if self._sklearn_object._estimator_type == "classifier":
1029
+ # label columns is the desired type for output
926
1030
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
927
1031
  # rename the output columns
928
1032
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
929
- self._model_signature_dict["predict"] = ModelSignature(inputs,
930
- ([] if self._drop_input_cols else inputs)
931
- + outputs)
1033
+ self._model_signature_dict["predict"] = ModelSignature(
1034
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1035
+ )
932
1036
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
933
1037
  # For outlier models, returns -1 for outliers and 1 for inliers.
934
- # Clusterer returns int64 cluster labels.
1038
+ # Clusterer returns int64 cluster labels.
935
1039
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
936
1040
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
937
- self._model_signature_dict["predict"] = ModelSignature(inputs,
938
- ([] if self._drop_input_cols else inputs)
939
- + outputs)
940
-
1041
+ self._model_signature_dict["predict"] = ModelSignature(
1042
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1043
+ )
1044
+
941
1045
  # For regressor, the type of predict is float64
942
- elif self._sklearn_object._estimator_type == 'regressor':
1046
+ elif self._sklearn_object._estimator_type == "regressor":
943
1047
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
944
- self._model_signature_dict["predict"] = ModelSignature(inputs,
945
- ([] if self._drop_input_cols else inputs)
946
- + outputs)
947
-
1048
+ self._model_signature_dict["predict"] = ModelSignature(
1049
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1050
+ )
1051
+
948
1052
  for prob_func in PROB_FUNCTIONS:
949
1053
  if hasattr(self, prob_func):
950
1054
  output_cols_prefix: str = f"{prob_func}_"
951
1055
  output_column_names = self._get_output_column_names(output_cols_prefix)
952
1056
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
953
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
954
- ([] if self._drop_input_cols else inputs)
955
- + outputs)
1057
+ self._model_signature_dict[prob_func] = ModelSignature(
1058
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1059
+ )
956
1060
 
957
1061
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
958
1062
  items = list(self._model_signature_dict.items())
@@ -965,10 +1069,10 @@ class SelectPercentile(BaseTransformer):
965
1069
  """Returns model signature of current class.
966
1070
 
967
1071
  Raises:
968
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1072
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
969
1073
 
970
1074
  Returns:
971
- Dict[str, ModelSignature]: each method and its input output signature
1075
+ Dict with each method and its input output signature
972
1076
  """
973
1077
  if self._model_signature_dict is None:
974
1078
  raise exceptions.SnowflakeMLException(
@@ -976,35 +1080,3 @@ class SelectPercentile(BaseTransformer):
976
1080
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
977
1081
  )
978
1082
  return self._model_signature_dict
979
-
980
- def to_sklearn(self) -> Any:
981
- """Get sklearn.feature_selection.SelectPercentile object.
982
- """
983
- if self._sklearn_object is None:
984
- self._sklearn_object = self._create_sklearn_object()
985
- return self._sklearn_object
986
-
987
- def to_xgboost(self) -> Any:
988
- raise exceptions.SnowflakeMLException(
989
- error_code=error_codes.METHOD_NOT_ALLOWED,
990
- original_exception=AttributeError(
991
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
992
- "to_xgboost()",
993
- "to_sklearn()"
994
- )
995
- ),
996
- )
997
-
998
- def to_lightgbm(self) -> Any:
999
- raise exceptions.SnowflakeMLException(
1000
- error_code=error_codes.METHOD_NOT_ALLOWED,
1001
- original_exception=AttributeError(
1002
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1003
- "to_lightgbm()",
1004
- "to_sklearn()"
1005
- )
1006
- ),
1007
- )
1008
-
1009
- def _get_dependencies(self) -> List[str]:
1010
- return self._deps