snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -268,12 +267,7 @@ class ElasticNet(BaseTransformer):
268
267
  )
269
268
  return selected_cols
270
269
 
271
- @telemetry.send_api_usage_telemetry(
272
- project=_PROJECT,
273
- subproject=_SUBPROJECT,
274
- custom_tags=dict([("autogen", True)]),
275
- )
276
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ElasticNet":
270
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ElasticNet":
277
271
  """Fit model with coordinate descent
278
272
  For more details on this function, see [sklearn.linear_model.ElasticNet.fit]
279
273
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.ElasticNet.fit)
@@ -300,12 +294,14 @@ class ElasticNet(BaseTransformer):
300
294
 
301
295
  self._snowpark_cols = dataset.select(self.input_cols).columns
302
296
 
303
- # If we are already in a stored procedure, no need to kick off another one.
297
+ # If we are already in a stored procedure, no need to kick off another one.
304
298
  if SNOWML_SPROC_ENV in os.environ:
305
299
  statement_params = telemetry.get_function_usage_statement_params(
306
300
  project=_PROJECT,
307
301
  subproject=_SUBPROJECT,
308
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ElasticNet.__class__.__name__),
302
+ function_name=telemetry.get_statement_params_full_func_name(
303
+ inspect.currentframe(), ElasticNet.__class__.__name__
304
+ ),
309
305
  api_calls=[Session.call],
310
306
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
311
307
  )
@@ -326,7 +322,7 @@ class ElasticNet(BaseTransformer):
326
322
  )
327
323
  self._sklearn_object = model_trainer.train()
328
324
  self._is_fitted = True
329
- self._get_model_signatures(dataset)
325
+ self._generate_model_signatures(dataset)
330
326
  return self
331
327
 
332
328
  def _batch_inference_validate_snowpark(
@@ -402,7 +398,9 @@ class ElasticNet(BaseTransformer):
402
398
  # when it is classifier, infer the datatype from label columns
403
399
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
404
400
  # Batch inference takes a single expected output column type. Use the first columns type for now.
405
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
401
+ label_cols_signatures = [
402
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
403
+ ]
406
404
  if len(label_cols_signatures) == 0:
407
405
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
408
406
  raise exceptions.SnowflakeMLException(
@@ -410,25 +408,22 @@ class ElasticNet(BaseTransformer):
410
408
  original_exception=ValueError(error_str),
411
409
  )
412
410
 
413
- expected_type_inferred = convert_sp_to_sf_type(
414
- label_cols_signatures[0].as_snowpark_type()
415
- )
411
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
416
412
 
417
413
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
418
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
414
+ assert isinstance(
415
+ dataset._session, Session
416
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
419
417
 
420
418
  transform_kwargs = dict(
421
- session = dataset._session,
422
- dependencies = self._deps,
423
- drop_input_cols = self._drop_input_cols,
424
- expected_output_cols_type = expected_type_inferred,
419
+ session=dataset._session,
420
+ dependencies=self._deps,
421
+ drop_input_cols=self._drop_input_cols,
422
+ expected_output_cols_type=expected_type_inferred,
425
423
  )
426
424
 
427
425
  elif isinstance(dataset, pd.DataFrame):
428
- transform_kwargs = dict(
429
- snowpark_input_cols = self._snowpark_cols,
430
- drop_input_cols = self._drop_input_cols
431
- )
426
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
432
427
 
433
428
  transform_handlers = ModelTransformerBuilder.build(
434
429
  dataset=dataset,
@@ -468,7 +463,7 @@ class ElasticNet(BaseTransformer):
468
463
  Transformed dataset.
469
464
  """
470
465
  super()._check_dataset_type(dataset)
471
- inference_method="transform"
466
+ inference_method = "transform"
472
467
 
473
468
  # This dictionary contains optional kwargs for batch inference. These kwargs
474
469
  # are specific to the type of dataset used.
@@ -505,17 +500,14 @@ class ElasticNet(BaseTransformer):
505
500
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
506
501
 
507
502
  transform_kwargs = dict(
508
- session = dataset._session,
509
- dependencies = self._deps,
510
- drop_input_cols = self._drop_input_cols,
511
- expected_output_cols_type = expected_dtype,
503
+ session=dataset._session,
504
+ dependencies=self._deps,
505
+ drop_input_cols=self._drop_input_cols,
506
+ expected_output_cols_type=expected_dtype,
512
507
  )
513
508
 
514
509
  elif isinstance(dataset, pd.DataFrame):
515
- transform_kwargs = dict(
516
- snowpark_input_cols = self._snowpark_cols,
517
- drop_input_cols = self._drop_input_cols
518
- )
510
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
519
511
 
520
512
  transform_handlers = ModelTransformerBuilder.build(
521
513
  dataset=dataset,
@@ -534,7 +526,11 @@ class ElasticNet(BaseTransformer):
534
526
  return output_df
535
527
 
536
528
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
537
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
529
+ def fit_predict(
530
+ self,
531
+ dataset: Union[DataFrame, pd.DataFrame],
532
+ output_cols_prefix: str = "fit_predict_",
533
+ ) -> Union[DataFrame, pd.DataFrame]:
538
534
  """ Method not supported for this class.
539
535
 
540
536
 
@@ -559,7 +555,9 @@ class ElasticNet(BaseTransformer):
559
555
  )
560
556
  output_result, fitted_estimator = model_trainer.train_fit_predict(
561
557
  drop_input_cols=self._drop_input_cols,
562
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
558
+ expected_output_cols_list=(
559
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
560
+ ),
563
561
  )
564
562
  self._sklearn_object = fitted_estimator
565
563
  self._is_fitted = True
@@ -576,6 +574,62 @@ class ElasticNet(BaseTransformer):
576
574
  assert self._sklearn_object is not None
577
575
  return self._sklearn_object.embedding_
578
576
 
577
+
578
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
579
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
580
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
581
+ """
582
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
583
+ # The following condition is introduced for kneighbors methods, and not used in other methods
584
+ if output_cols:
585
+ output_cols = [
586
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
587
+ for c in output_cols
588
+ ]
589
+ elif getattr(self._sklearn_object, "classes_", None) is None:
590
+ output_cols = [output_cols_prefix]
591
+ elif self._sklearn_object is not None:
592
+ classes = self._sklearn_object.classes_
593
+ if isinstance(classes, numpy.ndarray):
594
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
595
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
596
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
597
+ output_cols = []
598
+ for i, cl in enumerate(classes):
599
+ # For binary classification, there is only one output column for each class
600
+ # ndarray as the two classes are complementary.
601
+ if len(cl) == 2:
602
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
603
+ else:
604
+ output_cols.extend([
605
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
606
+ ])
607
+ else:
608
+ output_cols = []
609
+
610
+ # Make sure column names are valid snowflake identifiers.
611
+ assert output_cols is not None # Make MyPy happy
612
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
613
+
614
+ return rv
615
+
616
+ def _align_expected_output_names(
617
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
618
+ ) -> List[str]:
619
+ # in case the inferred output column names dimension is different
620
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
621
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
622
+ output_df_columns = list(output_df_pd.columns)
623
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
624
+ if self.sample_weight_col:
625
+ output_df_columns_set -= set(self.sample_weight_col)
626
+ # if the dimension of inferred output column names is correct; use it
627
+ if len(expected_output_cols_list) == len(output_df_columns_set):
628
+ return expected_output_cols_list
629
+ # otherwise, use the sklearn estimator's output
630
+ else:
631
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
632
+
579
633
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
580
634
  @telemetry.send_api_usage_telemetry(
581
635
  project=_PROJECT,
@@ -606,24 +660,28 @@ class ElasticNet(BaseTransformer):
606
660
  # are specific to the type of dataset used.
607
661
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
608
662
 
663
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
664
+
609
665
  if isinstance(dataset, DataFrame):
610
666
  self._deps = self._batch_inference_validate_snowpark(
611
667
  dataset=dataset,
612
668
  inference_method=inference_method,
613
669
  )
614
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
670
+ assert isinstance(
671
+ dataset._session, Session
672
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
615
673
  transform_kwargs = dict(
616
674
  session=dataset._session,
617
675
  dependencies=self._deps,
618
- drop_input_cols = self._drop_input_cols,
676
+ drop_input_cols=self._drop_input_cols,
619
677
  expected_output_cols_type="float",
620
678
  )
679
+ expected_output_cols = self._align_expected_output_names(
680
+ inference_method, dataset, expected_output_cols, output_cols_prefix
681
+ )
621
682
 
622
683
  elif isinstance(dataset, pd.DataFrame):
623
- transform_kwargs = dict(
624
- snowpark_input_cols = self._snowpark_cols,
625
- drop_input_cols = self._drop_input_cols
626
- )
684
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
627
685
 
628
686
  transform_handlers = ModelTransformerBuilder.build(
629
687
  dataset=dataset,
@@ -635,7 +693,7 @@ class ElasticNet(BaseTransformer):
635
693
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
636
694
  inference_method=inference_method,
637
695
  input_cols=self.input_cols,
638
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
696
+ expected_output_cols=expected_output_cols,
639
697
  **transform_kwargs
640
698
  )
641
699
  return output_df
@@ -665,7 +723,8 @@ class ElasticNet(BaseTransformer):
665
723
  Output dataset with log probability of the sample for each class in the model.
666
724
  """
667
725
  super()._check_dataset_type(dataset)
668
- inference_method="predict_log_proba"
726
+ inference_method = "predict_log_proba"
727
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
669
728
 
670
729
  # This dictionary contains optional kwargs for batch inference. These kwargs
671
730
  # are specific to the type of dataset used.
@@ -676,18 +735,20 @@ class ElasticNet(BaseTransformer):
676
735
  dataset=dataset,
677
736
  inference_method=inference_method,
678
737
  )
679
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
738
+ assert isinstance(
739
+ dataset._session, Session
740
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
680
741
  transform_kwargs = dict(
681
742
  session=dataset._session,
682
743
  dependencies=self._deps,
683
- drop_input_cols = self._drop_input_cols,
744
+ drop_input_cols=self._drop_input_cols,
684
745
  expected_output_cols_type="float",
685
746
  )
747
+ expected_output_cols = self._align_expected_output_names(
748
+ inference_method, dataset, expected_output_cols, output_cols_prefix
749
+ )
686
750
  elif isinstance(dataset, pd.DataFrame):
687
- transform_kwargs = dict(
688
- snowpark_input_cols = self._snowpark_cols,
689
- drop_input_cols = self._drop_input_cols
690
- )
751
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
691
752
 
692
753
  transform_handlers = ModelTransformerBuilder.build(
693
754
  dataset=dataset,
@@ -700,7 +761,7 @@ class ElasticNet(BaseTransformer):
700
761
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
701
762
  inference_method=inference_method,
702
763
  input_cols=self.input_cols,
703
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
764
+ expected_output_cols=expected_output_cols,
704
765
  **transform_kwargs
705
766
  )
706
767
  return output_df
@@ -726,30 +787,34 @@ class ElasticNet(BaseTransformer):
726
787
  Output dataset with results of the decision function for the samples in input dataset.
727
788
  """
728
789
  super()._check_dataset_type(dataset)
729
- inference_method="decision_function"
790
+ inference_method = "decision_function"
730
791
 
731
792
  # This dictionary contains optional kwargs for batch inference. These kwargs
732
793
  # are specific to the type of dataset used.
733
794
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
734
795
 
796
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
797
+
735
798
  if isinstance(dataset, DataFrame):
736
799
  self._deps = self._batch_inference_validate_snowpark(
737
800
  dataset=dataset,
738
801
  inference_method=inference_method,
739
802
  )
740
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
803
+ assert isinstance(
804
+ dataset._session, Session
805
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
741
806
  transform_kwargs = dict(
742
807
  session=dataset._session,
743
808
  dependencies=self._deps,
744
- drop_input_cols = self._drop_input_cols,
809
+ drop_input_cols=self._drop_input_cols,
745
810
  expected_output_cols_type="float",
746
811
  )
812
+ expected_output_cols = self._align_expected_output_names(
813
+ inference_method, dataset, expected_output_cols, output_cols_prefix
814
+ )
747
815
 
748
816
  elif isinstance(dataset, pd.DataFrame):
749
- transform_kwargs = dict(
750
- snowpark_input_cols = self._snowpark_cols,
751
- drop_input_cols = self._drop_input_cols
752
- )
817
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
753
818
 
754
819
  transform_handlers = ModelTransformerBuilder.build(
755
820
  dataset=dataset,
@@ -762,7 +827,7 @@ class ElasticNet(BaseTransformer):
762
827
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
763
828
  inference_method=inference_method,
764
829
  input_cols=self.input_cols,
765
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
830
+ expected_output_cols=expected_output_cols,
766
831
  **transform_kwargs
767
832
  )
768
833
  return output_df
@@ -791,12 +856,14 @@ class ElasticNet(BaseTransformer):
791
856
  Output dataset with probability of the sample for each class in the model.
792
857
  """
793
858
  super()._check_dataset_type(dataset)
794
- inference_method="score_samples"
859
+ inference_method = "score_samples"
795
860
 
796
861
  # This dictionary contains optional kwargs for batch inference. These kwargs
797
862
  # are specific to the type of dataset used.
798
863
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
799
864
 
865
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
866
+
800
867
  if isinstance(dataset, DataFrame):
801
868
  self._deps = self._batch_inference_validate_snowpark(
802
869
  dataset=dataset,
@@ -809,6 +876,9 @@ class ElasticNet(BaseTransformer):
809
876
  drop_input_cols = self._drop_input_cols,
810
877
  expected_output_cols_type="float",
811
878
  )
879
+ expected_output_cols = self._align_expected_output_names(
880
+ inference_method, dataset, expected_output_cols, output_cols_prefix
881
+ )
812
882
 
813
883
  elif isinstance(dataset, pd.DataFrame):
814
884
  transform_kwargs = dict(
@@ -827,7 +897,7 @@ class ElasticNet(BaseTransformer):
827
897
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
828
898
  inference_method=inference_method,
829
899
  input_cols=self.input_cols,
830
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
900
+ expected_output_cols=expected_output_cols,
831
901
  **transform_kwargs
832
902
  )
833
903
  return output_df
@@ -974,50 +1044,84 @@ class ElasticNet(BaseTransformer):
974
1044
  )
975
1045
  return output_df
976
1046
 
1047
+
1048
+
1049
+ def to_sklearn(self) -> Any:
1050
+ """Get sklearn.linear_model.ElasticNet object.
1051
+ """
1052
+ if self._sklearn_object is None:
1053
+ self._sklearn_object = self._create_sklearn_object()
1054
+ return self._sklearn_object
1055
+
1056
+ def to_xgboost(self) -> Any:
1057
+ raise exceptions.SnowflakeMLException(
1058
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1059
+ original_exception=AttributeError(
1060
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1061
+ "to_xgboost()",
1062
+ "to_sklearn()"
1063
+ )
1064
+ ),
1065
+ )
1066
+
1067
+ def to_lightgbm(self) -> Any:
1068
+ raise exceptions.SnowflakeMLException(
1069
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1070
+ original_exception=AttributeError(
1071
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1072
+ "to_lightgbm()",
1073
+ "to_sklearn()"
1074
+ )
1075
+ ),
1076
+ )
977
1077
 
978
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1078
+ def _get_dependencies(self) -> List[str]:
1079
+ return self._deps
1080
+
1081
+
1082
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
979
1083
  self._model_signature_dict = dict()
980
1084
 
981
1085
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
982
1086
 
983
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1087
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
984
1088
  outputs: List[BaseFeatureSpec] = []
985
1089
  if hasattr(self, "predict"):
986
1090
  # keep mypy happy
987
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1091
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
988
1092
  # For classifier, the type of predict is the same as the type of label
989
- if self._sklearn_object._estimator_type == 'classifier':
990
- # label columns is the desired type for output
1093
+ if self._sklearn_object._estimator_type == "classifier":
1094
+ # label columns is the desired type for output
991
1095
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
992
1096
  # rename the output columns
993
1097
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
994
- self._model_signature_dict["predict"] = ModelSignature(inputs,
995
- ([] if self._drop_input_cols else inputs)
996
- + outputs)
1098
+ self._model_signature_dict["predict"] = ModelSignature(
1099
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1100
+ )
997
1101
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
998
1102
  # For outlier models, returns -1 for outliers and 1 for inliers.
999
- # Clusterer returns int64 cluster labels.
1103
+ # Clusterer returns int64 cluster labels.
1000
1104
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1001
1105
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1002
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1005
-
1106
+ self._model_signature_dict["predict"] = ModelSignature(
1107
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1108
+ )
1109
+
1006
1110
  # For regressor, the type of predict is float64
1007
- elif self._sklearn_object._estimator_type == 'regressor':
1111
+ elif self._sklearn_object._estimator_type == "regressor":
1008
1112
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1009
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1010
- ([] if self._drop_input_cols else inputs)
1011
- + outputs)
1012
-
1113
+ self._model_signature_dict["predict"] = ModelSignature(
1114
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1115
+ )
1116
+
1013
1117
  for prob_func in PROB_FUNCTIONS:
1014
1118
  if hasattr(self, prob_func):
1015
1119
  output_cols_prefix: str = f"{prob_func}_"
1016
1120
  output_column_names = self._get_output_column_names(output_cols_prefix)
1017
1121
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1018
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1019
- ([] if self._drop_input_cols else inputs)
1020
- + outputs)
1122
+ self._model_signature_dict[prob_func] = ModelSignature(
1123
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1124
+ )
1021
1125
 
1022
1126
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1023
1127
  items = list(self._model_signature_dict.items())
@@ -1030,10 +1134,10 @@ class ElasticNet(BaseTransformer):
1030
1134
  """Returns model signature of current class.
1031
1135
 
1032
1136
  Raises:
1033
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1137
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1034
1138
 
1035
1139
  Returns:
1036
- Dict[str, ModelSignature]: each method and its input output signature
1140
+ Dict with each method and its input output signature
1037
1141
  """
1038
1142
  if self._model_signature_dict is None:
1039
1143
  raise exceptions.SnowflakeMLException(
@@ -1041,35 +1145,3 @@ class ElasticNet(BaseTransformer):
1041
1145
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1042
1146
  )
1043
1147
  return self._model_signature_dict
1044
-
1045
- def to_sklearn(self) -> Any:
1046
- """Get sklearn.linear_model.ElasticNet object.
1047
- """
1048
- if self._sklearn_object is None:
1049
- self._sklearn_object = self._create_sklearn_object()
1050
- return self._sklearn_object
1051
-
1052
- def to_xgboost(self) -> Any:
1053
- raise exceptions.SnowflakeMLException(
1054
- error_code=error_codes.METHOD_NOT_ALLOWED,
1055
- original_exception=AttributeError(
1056
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1057
- "to_xgboost()",
1058
- "to_sklearn()"
1059
- )
1060
- ),
1061
- )
1062
-
1063
- def to_lightgbm(self) -> Any:
1064
- raise exceptions.SnowflakeMLException(
1065
- error_code=error_codes.METHOD_NOT_ALLOWED,
1066
- original_exception=AttributeError(
1067
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1068
- "to_lightgbm()",
1069
- "to_sklearn()"
1070
- )
1071
- ),
1072
- )
1073
-
1074
- def _get_dependencies(self) -> List[str]:
1075
- return self._deps