snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +151 -78
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +2 -50
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +9 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -252,12 +251,7 @@ class KernelDensity(BaseTransformer):
|
|
252
251
|
)
|
253
252
|
return selected_cols
|
254
253
|
|
255
|
-
|
256
|
-
project=_PROJECT,
|
257
|
-
subproject=_SUBPROJECT,
|
258
|
-
custom_tags=dict([("autogen", True)]),
|
259
|
-
)
|
260
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelDensity":
|
254
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelDensity":
|
261
255
|
"""Fit the Kernel Density model on the data
|
262
256
|
For more details on this function, see [sklearn.neighbors.KernelDensity.fit]
|
263
257
|
(https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity.fit)
|
@@ -284,12 +278,14 @@ class KernelDensity(BaseTransformer):
|
|
284
278
|
|
285
279
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
286
280
|
|
287
|
-
|
281
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
288
282
|
if SNOWML_SPROC_ENV in os.environ:
|
289
283
|
statement_params = telemetry.get_function_usage_statement_params(
|
290
284
|
project=_PROJECT,
|
291
285
|
subproject=_SUBPROJECT,
|
292
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
286
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
287
|
+
inspect.currentframe(), KernelDensity.__class__.__name__
|
288
|
+
),
|
293
289
|
api_calls=[Session.call],
|
294
290
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
295
291
|
)
|
@@ -310,7 +306,7 @@ class KernelDensity(BaseTransformer):
|
|
310
306
|
)
|
311
307
|
self._sklearn_object = model_trainer.train()
|
312
308
|
self._is_fitted = True
|
313
|
-
self.
|
309
|
+
self._generate_model_signatures(dataset)
|
314
310
|
return self
|
315
311
|
|
316
312
|
def _batch_inference_validate_snowpark(
|
@@ -384,7 +380,9 @@ class KernelDensity(BaseTransformer):
|
|
384
380
|
# when it is classifier, infer the datatype from label columns
|
385
381
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
386
382
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
387
|
-
label_cols_signatures = [
|
383
|
+
label_cols_signatures = [
|
384
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
385
|
+
]
|
388
386
|
if len(label_cols_signatures) == 0:
|
389
387
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
390
388
|
raise exceptions.SnowflakeMLException(
|
@@ -392,25 +390,22 @@ class KernelDensity(BaseTransformer):
|
|
392
390
|
original_exception=ValueError(error_str),
|
393
391
|
)
|
394
392
|
|
395
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
396
|
-
label_cols_signatures[0].as_snowpark_type()
|
397
|
-
)
|
393
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
398
394
|
|
399
395
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
400
|
-
assert isinstance(
|
396
|
+
assert isinstance(
|
397
|
+
dataset._session, Session
|
398
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
401
399
|
|
402
400
|
transform_kwargs = dict(
|
403
|
-
session
|
404
|
-
dependencies
|
405
|
-
drop_input_cols
|
406
|
-
expected_output_cols_type
|
401
|
+
session=dataset._session,
|
402
|
+
dependencies=self._deps,
|
403
|
+
drop_input_cols=self._drop_input_cols,
|
404
|
+
expected_output_cols_type=expected_type_inferred,
|
407
405
|
)
|
408
406
|
|
409
407
|
elif isinstance(dataset, pd.DataFrame):
|
410
|
-
transform_kwargs = dict(
|
411
|
-
snowpark_input_cols = self._snowpark_cols,
|
412
|
-
drop_input_cols = self._drop_input_cols
|
413
|
-
)
|
408
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
414
409
|
|
415
410
|
transform_handlers = ModelTransformerBuilder.build(
|
416
411
|
dataset=dataset,
|
@@ -450,7 +445,7 @@ class KernelDensity(BaseTransformer):
|
|
450
445
|
Transformed dataset.
|
451
446
|
"""
|
452
447
|
super()._check_dataset_type(dataset)
|
453
|
-
inference_method="transform"
|
448
|
+
inference_method = "transform"
|
454
449
|
|
455
450
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
456
451
|
# are specific to the type of dataset used.
|
@@ -487,17 +482,14 @@ class KernelDensity(BaseTransformer):
|
|
487
482
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
488
483
|
|
489
484
|
transform_kwargs = dict(
|
490
|
-
session
|
491
|
-
dependencies
|
492
|
-
drop_input_cols
|
493
|
-
expected_output_cols_type
|
485
|
+
session=dataset._session,
|
486
|
+
dependencies=self._deps,
|
487
|
+
drop_input_cols=self._drop_input_cols,
|
488
|
+
expected_output_cols_type=expected_dtype,
|
494
489
|
)
|
495
490
|
|
496
491
|
elif isinstance(dataset, pd.DataFrame):
|
497
|
-
transform_kwargs = dict(
|
498
|
-
snowpark_input_cols = self._snowpark_cols,
|
499
|
-
drop_input_cols = self._drop_input_cols
|
500
|
-
)
|
492
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
501
493
|
|
502
494
|
transform_handlers = ModelTransformerBuilder.build(
|
503
495
|
dataset=dataset,
|
@@ -516,7 +508,11 @@ class KernelDensity(BaseTransformer):
|
|
516
508
|
return output_df
|
517
509
|
|
518
510
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
519
|
-
def fit_predict(
|
511
|
+
def fit_predict(
|
512
|
+
self,
|
513
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
514
|
+
output_cols_prefix: str = "fit_predict_",
|
515
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
520
516
|
""" Method not supported for this class.
|
521
517
|
|
522
518
|
|
@@ -541,7 +537,9 @@ class KernelDensity(BaseTransformer):
|
|
541
537
|
)
|
542
538
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
543
539
|
drop_input_cols=self._drop_input_cols,
|
544
|
-
expected_output_cols_list=
|
540
|
+
expected_output_cols_list=(
|
541
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
542
|
+
),
|
545
543
|
)
|
546
544
|
self._sklearn_object = fitted_estimator
|
547
545
|
self._is_fitted = True
|
@@ -558,6 +556,62 @@ class KernelDensity(BaseTransformer):
|
|
558
556
|
assert self._sklearn_object is not None
|
559
557
|
return self._sklearn_object.embedding_
|
560
558
|
|
559
|
+
|
560
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
561
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
562
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
563
|
+
"""
|
564
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
565
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
566
|
+
if output_cols:
|
567
|
+
output_cols = [
|
568
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
569
|
+
for c in output_cols
|
570
|
+
]
|
571
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
572
|
+
output_cols = [output_cols_prefix]
|
573
|
+
elif self._sklearn_object is not None:
|
574
|
+
classes = self._sklearn_object.classes_
|
575
|
+
if isinstance(classes, numpy.ndarray):
|
576
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
577
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
578
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
579
|
+
output_cols = []
|
580
|
+
for i, cl in enumerate(classes):
|
581
|
+
# For binary classification, there is only one output column for each class
|
582
|
+
# ndarray as the two classes are complementary.
|
583
|
+
if len(cl) == 2:
|
584
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
585
|
+
else:
|
586
|
+
output_cols.extend([
|
587
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
588
|
+
])
|
589
|
+
else:
|
590
|
+
output_cols = []
|
591
|
+
|
592
|
+
# Make sure column names are valid snowflake identifiers.
|
593
|
+
assert output_cols is not None # Make MyPy happy
|
594
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
595
|
+
|
596
|
+
return rv
|
597
|
+
|
598
|
+
def _align_expected_output_names(
|
599
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
600
|
+
) -> List[str]:
|
601
|
+
# in case the inferred output column names dimension is different
|
602
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
603
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
604
|
+
output_df_columns = list(output_df_pd.columns)
|
605
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
606
|
+
if self.sample_weight_col:
|
607
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
608
|
+
# if the dimension of inferred output column names is correct; use it
|
609
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
610
|
+
return expected_output_cols_list
|
611
|
+
# otherwise, use the sklearn estimator's output
|
612
|
+
else:
|
613
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
614
|
+
|
561
615
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
562
616
|
@telemetry.send_api_usage_telemetry(
|
563
617
|
project=_PROJECT,
|
@@ -588,24 +642,28 @@ class KernelDensity(BaseTransformer):
|
|
588
642
|
# are specific to the type of dataset used.
|
589
643
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
590
644
|
|
645
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
646
|
+
|
591
647
|
if isinstance(dataset, DataFrame):
|
592
648
|
self._deps = self._batch_inference_validate_snowpark(
|
593
649
|
dataset=dataset,
|
594
650
|
inference_method=inference_method,
|
595
651
|
)
|
596
|
-
assert isinstance(
|
652
|
+
assert isinstance(
|
653
|
+
dataset._session, Session
|
654
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
597
655
|
transform_kwargs = dict(
|
598
656
|
session=dataset._session,
|
599
657
|
dependencies=self._deps,
|
600
|
-
drop_input_cols
|
658
|
+
drop_input_cols=self._drop_input_cols,
|
601
659
|
expected_output_cols_type="float",
|
602
660
|
)
|
661
|
+
expected_output_cols = self._align_expected_output_names(
|
662
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
663
|
+
)
|
603
664
|
|
604
665
|
elif isinstance(dataset, pd.DataFrame):
|
605
|
-
transform_kwargs = dict(
|
606
|
-
snowpark_input_cols = self._snowpark_cols,
|
607
|
-
drop_input_cols = self._drop_input_cols
|
608
|
-
)
|
666
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
609
667
|
|
610
668
|
transform_handlers = ModelTransformerBuilder.build(
|
611
669
|
dataset=dataset,
|
@@ -617,7 +675,7 @@ class KernelDensity(BaseTransformer):
|
|
617
675
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
618
676
|
inference_method=inference_method,
|
619
677
|
input_cols=self.input_cols,
|
620
|
-
expected_output_cols=
|
678
|
+
expected_output_cols=expected_output_cols,
|
621
679
|
**transform_kwargs
|
622
680
|
)
|
623
681
|
return output_df
|
@@ -647,7 +705,8 @@ class KernelDensity(BaseTransformer):
|
|
647
705
|
Output dataset with log probability of the sample for each class in the model.
|
648
706
|
"""
|
649
707
|
super()._check_dataset_type(dataset)
|
650
|
-
inference_method="predict_log_proba"
|
708
|
+
inference_method = "predict_log_proba"
|
709
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
651
710
|
|
652
711
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
653
712
|
# are specific to the type of dataset used.
|
@@ -658,18 +717,20 @@ class KernelDensity(BaseTransformer):
|
|
658
717
|
dataset=dataset,
|
659
718
|
inference_method=inference_method,
|
660
719
|
)
|
661
|
-
assert isinstance(
|
720
|
+
assert isinstance(
|
721
|
+
dataset._session, Session
|
722
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
662
723
|
transform_kwargs = dict(
|
663
724
|
session=dataset._session,
|
664
725
|
dependencies=self._deps,
|
665
|
-
drop_input_cols
|
726
|
+
drop_input_cols=self._drop_input_cols,
|
666
727
|
expected_output_cols_type="float",
|
667
728
|
)
|
729
|
+
expected_output_cols = self._align_expected_output_names(
|
730
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
731
|
+
)
|
668
732
|
elif isinstance(dataset, pd.DataFrame):
|
669
|
-
transform_kwargs = dict(
|
670
|
-
snowpark_input_cols = self._snowpark_cols,
|
671
|
-
drop_input_cols = self._drop_input_cols
|
672
|
-
)
|
733
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
673
734
|
|
674
735
|
transform_handlers = ModelTransformerBuilder.build(
|
675
736
|
dataset=dataset,
|
@@ -682,7 +743,7 @@ class KernelDensity(BaseTransformer):
|
|
682
743
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
683
744
|
inference_method=inference_method,
|
684
745
|
input_cols=self.input_cols,
|
685
|
-
expected_output_cols=
|
746
|
+
expected_output_cols=expected_output_cols,
|
686
747
|
**transform_kwargs
|
687
748
|
)
|
688
749
|
return output_df
|
@@ -708,30 +769,34 @@ class KernelDensity(BaseTransformer):
|
|
708
769
|
Output dataset with results of the decision function for the samples in input dataset.
|
709
770
|
"""
|
710
771
|
super()._check_dataset_type(dataset)
|
711
|
-
inference_method="decision_function"
|
772
|
+
inference_method = "decision_function"
|
712
773
|
|
713
774
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
714
775
|
# are specific to the type of dataset used.
|
715
776
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
716
777
|
|
778
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
779
|
+
|
717
780
|
if isinstance(dataset, DataFrame):
|
718
781
|
self._deps = self._batch_inference_validate_snowpark(
|
719
782
|
dataset=dataset,
|
720
783
|
inference_method=inference_method,
|
721
784
|
)
|
722
|
-
assert isinstance(
|
785
|
+
assert isinstance(
|
786
|
+
dataset._session, Session
|
787
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
723
788
|
transform_kwargs = dict(
|
724
789
|
session=dataset._session,
|
725
790
|
dependencies=self._deps,
|
726
|
-
drop_input_cols
|
791
|
+
drop_input_cols=self._drop_input_cols,
|
727
792
|
expected_output_cols_type="float",
|
728
793
|
)
|
794
|
+
expected_output_cols = self._align_expected_output_names(
|
795
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
796
|
+
)
|
729
797
|
|
730
798
|
elif isinstance(dataset, pd.DataFrame):
|
731
|
-
transform_kwargs = dict(
|
732
|
-
snowpark_input_cols = self._snowpark_cols,
|
733
|
-
drop_input_cols = self._drop_input_cols
|
734
|
-
)
|
799
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
735
800
|
|
736
801
|
transform_handlers = ModelTransformerBuilder.build(
|
737
802
|
dataset=dataset,
|
@@ -744,7 +809,7 @@ class KernelDensity(BaseTransformer):
|
|
744
809
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
745
810
|
inference_method=inference_method,
|
746
811
|
input_cols=self.input_cols,
|
747
|
-
expected_output_cols=
|
812
|
+
expected_output_cols=expected_output_cols,
|
748
813
|
**transform_kwargs
|
749
814
|
)
|
750
815
|
return output_df
|
@@ -775,12 +840,14 @@ class KernelDensity(BaseTransformer):
|
|
775
840
|
Output dataset with probability of the sample for each class in the model.
|
776
841
|
"""
|
777
842
|
super()._check_dataset_type(dataset)
|
778
|
-
inference_method="score_samples"
|
843
|
+
inference_method = "score_samples"
|
779
844
|
|
780
845
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
781
846
|
# are specific to the type of dataset used.
|
782
847
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
783
848
|
|
849
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
850
|
+
|
784
851
|
if isinstance(dataset, DataFrame):
|
785
852
|
self._deps = self._batch_inference_validate_snowpark(
|
786
853
|
dataset=dataset,
|
@@ -793,6 +860,9 @@ class KernelDensity(BaseTransformer):
|
|
793
860
|
drop_input_cols = self._drop_input_cols,
|
794
861
|
expected_output_cols_type="float",
|
795
862
|
)
|
863
|
+
expected_output_cols = self._align_expected_output_names(
|
864
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
865
|
+
)
|
796
866
|
|
797
867
|
elif isinstance(dataset, pd.DataFrame):
|
798
868
|
transform_kwargs = dict(
|
@@ -811,7 +881,7 @@ class KernelDensity(BaseTransformer):
|
|
811
881
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
812
882
|
inference_method=inference_method,
|
813
883
|
input_cols=self.input_cols,
|
814
|
-
expected_output_cols=
|
884
|
+
expected_output_cols=expected_output_cols,
|
815
885
|
**transform_kwargs
|
816
886
|
)
|
817
887
|
return output_df
|
@@ -958,50 +1028,84 @@ class KernelDensity(BaseTransformer):
|
|
958
1028
|
)
|
959
1029
|
return output_df
|
960
1030
|
|
1031
|
+
|
1032
|
+
|
1033
|
+
def to_sklearn(self) -> Any:
|
1034
|
+
"""Get sklearn.neighbors.KernelDensity object.
|
1035
|
+
"""
|
1036
|
+
if self._sklearn_object is None:
|
1037
|
+
self._sklearn_object = self._create_sklearn_object()
|
1038
|
+
return self._sklearn_object
|
1039
|
+
|
1040
|
+
def to_xgboost(self) -> Any:
|
1041
|
+
raise exceptions.SnowflakeMLException(
|
1042
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1043
|
+
original_exception=AttributeError(
|
1044
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1045
|
+
"to_xgboost()",
|
1046
|
+
"to_sklearn()"
|
1047
|
+
)
|
1048
|
+
),
|
1049
|
+
)
|
1050
|
+
|
1051
|
+
def to_lightgbm(self) -> Any:
|
1052
|
+
raise exceptions.SnowflakeMLException(
|
1053
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1054
|
+
original_exception=AttributeError(
|
1055
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1056
|
+
"to_lightgbm()",
|
1057
|
+
"to_sklearn()"
|
1058
|
+
)
|
1059
|
+
),
|
1060
|
+
)
|
961
1061
|
|
962
|
-
def
|
1062
|
+
def _get_dependencies(self) -> List[str]:
|
1063
|
+
return self._deps
|
1064
|
+
|
1065
|
+
|
1066
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
963
1067
|
self._model_signature_dict = dict()
|
964
1068
|
|
965
1069
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
966
1070
|
|
967
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1071
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
968
1072
|
outputs: List[BaseFeatureSpec] = []
|
969
1073
|
if hasattr(self, "predict"):
|
970
1074
|
# keep mypy happy
|
971
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1075
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
972
1076
|
# For classifier, the type of predict is the same as the type of label
|
973
|
-
if self._sklearn_object._estimator_type ==
|
974
|
-
|
1077
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1078
|
+
# label columns is the desired type for output
|
975
1079
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
976
1080
|
# rename the output columns
|
977
1081
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
978
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
979
|
-
|
980
|
-
|
1082
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1083
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1084
|
+
)
|
981
1085
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
982
1086
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
983
|
-
# Clusterer returns int64 cluster labels.
|
1087
|
+
# Clusterer returns int64 cluster labels.
|
984
1088
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
985
1089
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
986
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
987
|
-
|
988
|
-
|
989
|
-
|
1090
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1091
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1092
|
+
)
|
1093
|
+
|
990
1094
|
# For regressor, the type of predict is float64
|
991
|
-
elif self._sklearn_object._estimator_type ==
|
1095
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
992
1096
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
993
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
994
|
-
|
995
|
-
|
996
|
-
|
1097
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1098
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1099
|
+
)
|
1100
|
+
|
997
1101
|
for prob_func in PROB_FUNCTIONS:
|
998
1102
|
if hasattr(self, prob_func):
|
999
1103
|
output_cols_prefix: str = f"{prob_func}_"
|
1000
1104
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1001
1105
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1002
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1003
|
-
|
1004
|
-
|
1106
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1107
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1108
|
+
)
|
1005
1109
|
|
1006
1110
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1007
1111
|
items = list(self._model_signature_dict.items())
|
@@ -1014,10 +1118,10 @@ class KernelDensity(BaseTransformer):
|
|
1014
1118
|
"""Returns model signature of current class.
|
1015
1119
|
|
1016
1120
|
Raises:
|
1017
|
-
|
1121
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1018
1122
|
|
1019
1123
|
Returns:
|
1020
|
-
Dict
|
1124
|
+
Dict with each method and its input output signature
|
1021
1125
|
"""
|
1022
1126
|
if self._model_signature_dict is None:
|
1023
1127
|
raise exceptions.SnowflakeMLException(
|
@@ -1025,35 +1129,3 @@ class KernelDensity(BaseTransformer):
|
|
1025
1129
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1026
1130
|
)
|
1027
1131
|
return self._model_signature_dict
|
1028
|
-
|
1029
|
-
def to_sklearn(self) -> Any:
|
1030
|
-
"""Get sklearn.neighbors.KernelDensity object.
|
1031
|
-
"""
|
1032
|
-
if self._sklearn_object is None:
|
1033
|
-
self._sklearn_object = self._create_sklearn_object()
|
1034
|
-
return self._sklearn_object
|
1035
|
-
|
1036
|
-
def to_xgboost(self) -> Any:
|
1037
|
-
raise exceptions.SnowflakeMLException(
|
1038
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1039
|
-
original_exception=AttributeError(
|
1040
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1041
|
-
"to_xgboost()",
|
1042
|
-
"to_sklearn()"
|
1043
|
-
)
|
1044
|
-
),
|
1045
|
-
)
|
1046
|
-
|
1047
|
-
def to_lightgbm(self) -> Any:
|
1048
|
-
raise exceptions.SnowflakeMLException(
|
1049
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1050
|
-
original_exception=AttributeError(
|
1051
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1052
|
-
"to_lightgbm()",
|
1053
|
-
"to_sklearn()"
|
1054
|
-
)
|
1055
|
-
),
|
1056
|
-
)
|
1057
|
-
|
1058
|
-
def _get_dependencies(self) -> List[str]:
|
1059
|
-
return self._deps
|