snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -252,12 +251,7 @@ class KernelDensity(BaseTransformer):
252
251
  )
253
252
  return selected_cols
254
253
 
255
- @telemetry.send_api_usage_telemetry(
256
- project=_PROJECT,
257
- subproject=_SUBPROJECT,
258
- custom_tags=dict([("autogen", True)]),
259
- )
260
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelDensity":
254
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelDensity":
261
255
  """Fit the Kernel Density model on the data
262
256
  For more details on this function, see [sklearn.neighbors.KernelDensity.fit]
263
257
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity.fit)
@@ -284,12 +278,14 @@ class KernelDensity(BaseTransformer):
284
278
 
285
279
  self._snowpark_cols = dataset.select(self.input_cols).columns
286
280
 
287
- # If we are already in a stored procedure, no need to kick off another one.
281
+ # If we are already in a stored procedure, no need to kick off another one.
288
282
  if SNOWML_SPROC_ENV in os.environ:
289
283
  statement_params = telemetry.get_function_usage_statement_params(
290
284
  project=_PROJECT,
291
285
  subproject=_SUBPROJECT,
292
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelDensity.__class__.__name__),
286
+ function_name=telemetry.get_statement_params_full_func_name(
287
+ inspect.currentframe(), KernelDensity.__class__.__name__
288
+ ),
293
289
  api_calls=[Session.call],
294
290
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
295
291
  )
@@ -310,7 +306,7 @@ class KernelDensity(BaseTransformer):
310
306
  )
311
307
  self._sklearn_object = model_trainer.train()
312
308
  self._is_fitted = True
313
- self._get_model_signatures(dataset)
309
+ self._generate_model_signatures(dataset)
314
310
  return self
315
311
 
316
312
  def _batch_inference_validate_snowpark(
@@ -384,7 +380,9 @@ class KernelDensity(BaseTransformer):
384
380
  # when it is classifier, infer the datatype from label columns
385
381
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
386
382
  # Batch inference takes a single expected output column type. Use the first columns type for now.
387
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
383
+ label_cols_signatures = [
384
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
385
+ ]
388
386
  if len(label_cols_signatures) == 0:
389
387
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
390
388
  raise exceptions.SnowflakeMLException(
@@ -392,25 +390,22 @@ class KernelDensity(BaseTransformer):
392
390
  original_exception=ValueError(error_str),
393
391
  )
394
392
 
395
- expected_type_inferred = convert_sp_to_sf_type(
396
- label_cols_signatures[0].as_snowpark_type()
397
- )
393
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
398
394
 
399
395
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
400
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
396
+ assert isinstance(
397
+ dataset._session, Session
398
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
401
399
 
402
400
  transform_kwargs = dict(
403
- session = dataset._session,
404
- dependencies = self._deps,
405
- drop_input_cols = self._drop_input_cols,
406
- expected_output_cols_type = expected_type_inferred,
401
+ session=dataset._session,
402
+ dependencies=self._deps,
403
+ drop_input_cols=self._drop_input_cols,
404
+ expected_output_cols_type=expected_type_inferred,
407
405
  )
408
406
 
409
407
  elif isinstance(dataset, pd.DataFrame):
410
- transform_kwargs = dict(
411
- snowpark_input_cols = self._snowpark_cols,
412
- drop_input_cols = self._drop_input_cols
413
- )
408
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
414
409
 
415
410
  transform_handlers = ModelTransformerBuilder.build(
416
411
  dataset=dataset,
@@ -450,7 +445,7 @@ class KernelDensity(BaseTransformer):
450
445
  Transformed dataset.
451
446
  """
452
447
  super()._check_dataset_type(dataset)
453
- inference_method="transform"
448
+ inference_method = "transform"
454
449
 
455
450
  # This dictionary contains optional kwargs for batch inference. These kwargs
456
451
  # are specific to the type of dataset used.
@@ -487,17 +482,14 @@ class KernelDensity(BaseTransformer):
487
482
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
488
483
 
489
484
  transform_kwargs = dict(
490
- session = dataset._session,
491
- dependencies = self._deps,
492
- drop_input_cols = self._drop_input_cols,
493
- expected_output_cols_type = expected_dtype,
485
+ session=dataset._session,
486
+ dependencies=self._deps,
487
+ drop_input_cols=self._drop_input_cols,
488
+ expected_output_cols_type=expected_dtype,
494
489
  )
495
490
 
496
491
  elif isinstance(dataset, pd.DataFrame):
497
- transform_kwargs = dict(
498
- snowpark_input_cols = self._snowpark_cols,
499
- drop_input_cols = self._drop_input_cols
500
- )
492
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
501
493
 
502
494
  transform_handlers = ModelTransformerBuilder.build(
503
495
  dataset=dataset,
@@ -516,7 +508,11 @@ class KernelDensity(BaseTransformer):
516
508
  return output_df
517
509
 
518
510
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
519
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
511
+ def fit_predict(
512
+ self,
513
+ dataset: Union[DataFrame, pd.DataFrame],
514
+ output_cols_prefix: str = "fit_predict_",
515
+ ) -> Union[DataFrame, pd.DataFrame]:
520
516
  """ Method not supported for this class.
521
517
 
522
518
 
@@ -541,7 +537,9 @@ class KernelDensity(BaseTransformer):
541
537
  )
542
538
  output_result, fitted_estimator = model_trainer.train_fit_predict(
543
539
  drop_input_cols=self._drop_input_cols,
544
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
540
+ expected_output_cols_list=(
541
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
542
+ ),
545
543
  )
546
544
  self._sklearn_object = fitted_estimator
547
545
  self._is_fitted = True
@@ -558,6 +556,62 @@ class KernelDensity(BaseTransformer):
558
556
  assert self._sklearn_object is not None
559
557
  return self._sklearn_object.embedding_
560
558
 
559
+
560
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
561
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
562
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
563
+ """
564
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
565
+ # The following condition is introduced for kneighbors methods, and not used in other methods
566
+ if output_cols:
567
+ output_cols = [
568
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
569
+ for c in output_cols
570
+ ]
571
+ elif getattr(self._sklearn_object, "classes_", None) is None:
572
+ output_cols = [output_cols_prefix]
573
+ elif self._sklearn_object is not None:
574
+ classes = self._sklearn_object.classes_
575
+ if isinstance(classes, numpy.ndarray):
576
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
577
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
578
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
579
+ output_cols = []
580
+ for i, cl in enumerate(classes):
581
+ # For binary classification, there is only one output column for each class
582
+ # ndarray as the two classes are complementary.
583
+ if len(cl) == 2:
584
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
585
+ else:
586
+ output_cols.extend([
587
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
588
+ ])
589
+ else:
590
+ output_cols = []
591
+
592
+ # Make sure column names are valid snowflake identifiers.
593
+ assert output_cols is not None # Make MyPy happy
594
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
595
+
596
+ return rv
597
+
598
+ def _align_expected_output_names(
599
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
600
+ ) -> List[str]:
601
+ # in case the inferred output column names dimension is different
602
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
603
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
604
+ output_df_columns = list(output_df_pd.columns)
605
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
606
+ if self.sample_weight_col:
607
+ output_df_columns_set -= set(self.sample_weight_col)
608
+ # if the dimension of inferred output column names is correct; use it
609
+ if len(expected_output_cols_list) == len(output_df_columns_set):
610
+ return expected_output_cols_list
611
+ # otherwise, use the sklearn estimator's output
612
+ else:
613
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
614
+
561
615
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
562
616
  @telemetry.send_api_usage_telemetry(
563
617
  project=_PROJECT,
@@ -588,24 +642,28 @@ class KernelDensity(BaseTransformer):
588
642
  # are specific to the type of dataset used.
589
643
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
590
644
 
645
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
646
+
591
647
  if isinstance(dataset, DataFrame):
592
648
  self._deps = self._batch_inference_validate_snowpark(
593
649
  dataset=dataset,
594
650
  inference_method=inference_method,
595
651
  )
596
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
652
+ assert isinstance(
653
+ dataset._session, Session
654
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
597
655
  transform_kwargs = dict(
598
656
  session=dataset._session,
599
657
  dependencies=self._deps,
600
- drop_input_cols = self._drop_input_cols,
658
+ drop_input_cols=self._drop_input_cols,
601
659
  expected_output_cols_type="float",
602
660
  )
661
+ expected_output_cols = self._align_expected_output_names(
662
+ inference_method, dataset, expected_output_cols, output_cols_prefix
663
+ )
603
664
 
604
665
  elif isinstance(dataset, pd.DataFrame):
605
- transform_kwargs = dict(
606
- snowpark_input_cols = self._snowpark_cols,
607
- drop_input_cols = self._drop_input_cols
608
- )
666
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
609
667
 
610
668
  transform_handlers = ModelTransformerBuilder.build(
611
669
  dataset=dataset,
@@ -617,7 +675,7 @@ class KernelDensity(BaseTransformer):
617
675
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
618
676
  inference_method=inference_method,
619
677
  input_cols=self.input_cols,
620
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
678
+ expected_output_cols=expected_output_cols,
621
679
  **transform_kwargs
622
680
  )
623
681
  return output_df
@@ -647,7 +705,8 @@ class KernelDensity(BaseTransformer):
647
705
  Output dataset with log probability of the sample for each class in the model.
648
706
  """
649
707
  super()._check_dataset_type(dataset)
650
- inference_method="predict_log_proba"
708
+ inference_method = "predict_log_proba"
709
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
651
710
 
652
711
  # This dictionary contains optional kwargs for batch inference. These kwargs
653
712
  # are specific to the type of dataset used.
@@ -658,18 +717,20 @@ class KernelDensity(BaseTransformer):
658
717
  dataset=dataset,
659
718
  inference_method=inference_method,
660
719
  )
661
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
720
+ assert isinstance(
721
+ dataset._session, Session
722
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
662
723
  transform_kwargs = dict(
663
724
  session=dataset._session,
664
725
  dependencies=self._deps,
665
- drop_input_cols = self._drop_input_cols,
726
+ drop_input_cols=self._drop_input_cols,
666
727
  expected_output_cols_type="float",
667
728
  )
729
+ expected_output_cols = self._align_expected_output_names(
730
+ inference_method, dataset, expected_output_cols, output_cols_prefix
731
+ )
668
732
  elif isinstance(dataset, pd.DataFrame):
669
- transform_kwargs = dict(
670
- snowpark_input_cols = self._snowpark_cols,
671
- drop_input_cols = self._drop_input_cols
672
- )
733
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
673
734
 
674
735
  transform_handlers = ModelTransformerBuilder.build(
675
736
  dataset=dataset,
@@ -682,7 +743,7 @@ class KernelDensity(BaseTransformer):
682
743
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
683
744
  inference_method=inference_method,
684
745
  input_cols=self.input_cols,
685
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
746
+ expected_output_cols=expected_output_cols,
686
747
  **transform_kwargs
687
748
  )
688
749
  return output_df
@@ -708,30 +769,34 @@ class KernelDensity(BaseTransformer):
708
769
  Output dataset with results of the decision function for the samples in input dataset.
709
770
  """
710
771
  super()._check_dataset_type(dataset)
711
- inference_method="decision_function"
772
+ inference_method = "decision_function"
712
773
 
713
774
  # This dictionary contains optional kwargs for batch inference. These kwargs
714
775
  # are specific to the type of dataset used.
715
776
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
716
777
 
778
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
779
+
717
780
  if isinstance(dataset, DataFrame):
718
781
  self._deps = self._batch_inference_validate_snowpark(
719
782
  dataset=dataset,
720
783
  inference_method=inference_method,
721
784
  )
722
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
785
+ assert isinstance(
786
+ dataset._session, Session
787
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
723
788
  transform_kwargs = dict(
724
789
  session=dataset._session,
725
790
  dependencies=self._deps,
726
- drop_input_cols = self._drop_input_cols,
791
+ drop_input_cols=self._drop_input_cols,
727
792
  expected_output_cols_type="float",
728
793
  )
794
+ expected_output_cols = self._align_expected_output_names(
795
+ inference_method, dataset, expected_output_cols, output_cols_prefix
796
+ )
729
797
 
730
798
  elif isinstance(dataset, pd.DataFrame):
731
- transform_kwargs = dict(
732
- snowpark_input_cols = self._snowpark_cols,
733
- drop_input_cols = self._drop_input_cols
734
- )
799
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
735
800
 
736
801
  transform_handlers = ModelTransformerBuilder.build(
737
802
  dataset=dataset,
@@ -744,7 +809,7 @@ class KernelDensity(BaseTransformer):
744
809
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
745
810
  inference_method=inference_method,
746
811
  input_cols=self.input_cols,
747
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
812
+ expected_output_cols=expected_output_cols,
748
813
  **transform_kwargs
749
814
  )
750
815
  return output_df
@@ -775,12 +840,14 @@ class KernelDensity(BaseTransformer):
775
840
  Output dataset with probability of the sample for each class in the model.
776
841
  """
777
842
  super()._check_dataset_type(dataset)
778
- inference_method="score_samples"
843
+ inference_method = "score_samples"
779
844
 
780
845
  # This dictionary contains optional kwargs for batch inference. These kwargs
781
846
  # are specific to the type of dataset used.
782
847
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
783
848
 
849
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
850
+
784
851
  if isinstance(dataset, DataFrame):
785
852
  self._deps = self._batch_inference_validate_snowpark(
786
853
  dataset=dataset,
@@ -793,6 +860,9 @@ class KernelDensity(BaseTransformer):
793
860
  drop_input_cols = self._drop_input_cols,
794
861
  expected_output_cols_type="float",
795
862
  )
863
+ expected_output_cols = self._align_expected_output_names(
864
+ inference_method, dataset, expected_output_cols, output_cols_prefix
865
+ )
796
866
 
797
867
  elif isinstance(dataset, pd.DataFrame):
798
868
  transform_kwargs = dict(
@@ -811,7 +881,7 @@ class KernelDensity(BaseTransformer):
811
881
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
812
882
  inference_method=inference_method,
813
883
  input_cols=self.input_cols,
814
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
884
+ expected_output_cols=expected_output_cols,
815
885
  **transform_kwargs
816
886
  )
817
887
  return output_df
@@ -958,50 +1028,84 @@ class KernelDensity(BaseTransformer):
958
1028
  )
959
1029
  return output_df
960
1030
 
1031
+
1032
+
1033
+ def to_sklearn(self) -> Any:
1034
+ """Get sklearn.neighbors.KernelDensity object.
1035
+ """
1036
+ if self._sklearn_object is None:
1037
+ self._sklearn_object = self._create_sklearn_object()
1038
+ return self._sklearn_object
1039
+
1040
+ def to_xgboost(self) -> Any:
1041
+ raise exceptions.SnowflakeMLException(
1042
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1043
+ original_exception=AttributeError(
1044
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1045
+ "to_xgboost()",
1046
+ "to_sklearn()"
1047
+ )
1048
+ ),
1049
+ )
1050
+
1051
+ def to_lightgbm(self) -> Any:
1052
+ raise exceptions.SnowflakeMLException(
1053
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1054
+ original_exception=AttributeError(
1055
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1056
+ "to_lightgbm()",
1057
+ "to_sklearn()"
1058
+ )
1059
+ ),
1060
+ )
961
1061
 
962
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1062
+ def _get_dependencies(self) -> List[str]:
1063
+ return self._deps
1064
+
1065
+
1066
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
963
1067
  self._model_signature_dict = dict()
964
1068
 
965
1069
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
966
1070
 
967
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1071
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
968
1072
  outputs: List[BaseFeatureSpec] = []
969
1073
  if hasattr(self, "predict"):
970
1074
  # keep mypy happy
971
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1075
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
972
1076
  # For classifier, the type of predict is the same as the type of label
973
- if self._sklearn_object._estimator_type == 'classifier':
974
- # label columns is the desired type for output
1077
+ if self._sklearn_object._estimator_type == "classifier":
1078
+ # label columns is the desired type for output
975
1079
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
976
1080
  # rename the output columns
977
1081
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
978
- self._model_signature_dict["predict"] = ModelSignature(inputs,
979
- ([] if self._drop_input_cols else inputs)
980
- + outputs)
1082
+ self._model_signature_dict["predict"] = ModelSignature(
1083
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1084
+ )
981
1085
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
982
1086
  # For outlier models, returns -1 for outliers and 1 for inliers.
983
- # Clusterer returns int64 cluster labels.
1087
+ # Clusterer returns int64 cluster labels.
984
1088
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
985
1089
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
986
- self._model_signature_dict["predict"] = ModelSignature(inputs,
987
- ([] if self._drop_input_cols else inputs)
988
- + outputs)
989
-
1090
+ self._model_signature_dict["predict"] = ModelSignature(
1091
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1092
+ )
1093
+
990
1094
  # For regressor, the type of predict is float64
991
- elif self._sklearn_object._estimator_type == 'regressor':
1095
+ elif self._sklearn_object._estimator_type == "regressor":
992
1096
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
993
- self._model_signature_dict["predict"] = ModelSignature(inputs,
994
- ([] if self._drop_input_cols else inputs)
995
- + outputs)
996
-
1097
+ self._model_signature_dict["predict"] = ModelSignature(
1098
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1099
+ )
1100
+
997
1101
  for prob_func in PROB_FUNCTIONS:
998
1102
  if hasattr(self, prob_func):
999
1103
  output_cols_prefix: str = f"{prob_func}_"
1000
1104
  output_column_names = self._get_output_column_names(output_cols_prefix)
1001
1105
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1002
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1106
+ self._model_signature_dict[prob_func] = ModelSignature(
1107
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1108
+ )
1005
1109
 
1006
1110
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1007
1111
  items = list(self._model_signature_dict.items())
@@ -1014,10 +1118,10 @@ class KernelDensity(BaseTransformer):
1014
1118
  """Returns model signature of current class.
1015
1119
 
1016
1120
  Raises:
1017
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1121
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1018
1122
 
1019
1123
  Returns:
1020
- Dict[str, ModelSignature]: each method and its input output signature
1124
+ Dict with each method and its input output signature
1021
1125
  """
1022
1126
  if self._model_signature_dict is None:
1023
1127
  raise exceptions.SnowflakeMLException(
@@ -1025,35 +1129,3 @@ class KernelDensity(BaseTransformer):
1025
1129
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1026
1130
  )
1027
1131
  return self._model_signature_dict
1028
-
1029
- def to_sklearn(self) -> Any:
1030
- """Get sklearn.neighbors.KernelDensity object.
1031
- """
1032
- if self._sklearn_object is None:
1033
- self._sklearn_object = self._create_sklearn_object()
1034
- return self._sklearn_object
1035
-
1036
- def to_xgboost(self) -> Any:
1037
- raise exceptions.SnowflakeMLException(
1038
- error_code=error_codes.METHOD_NOT_ALLOWED,
1039
- original_exception=AttributeError(
1040
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1041
- "to_xgboost()",
1042
- "to_sklearn()"
1043
- )
1044
- ),
1045
- )
1046
-
1047
- def to_lightgbm(self) -> Any:
1048
- raise exceptions.SnowflakeMLException(
1049
- error_code=error_codes.METHOD_NOT_ALLOWED,
1050
- original_exception=AttributeError(
1051
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1052
- "to_lightgbm()",
1053
- "to_sklearn()"
1054
- )
1055
- ),
1056
- )
1057
-
1058
- def _get_dependencies(self) -> List[str]:
1059
- return self._deps