snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -208,12 +207,7 @@ class SkewedChi2Sampler(BaseTransformer):
208
207
  )
209
208
  return selected_cols
210
209
 
211
- @telemetry.send_api_usage_telemetry(
212
- project=_PROJECT,
213
- subproject=_SUBPROJECT,
214
- custom_tags=dict([("autogen", True)]),
215
- )
216
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SkewedChi2Sampler":
210
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SkewedChi2Sampler":
217
211
  """Fit the model with X
218
212
  For more details on this function, see [sklearn.kernel_approximation.SkewedChi2Sampler.fit]
219
213
  (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html#sklearn.kernel_approximation.SkewedChi2Sampler.fit)
@@ -240,12 +234,14 @@ class SkewedChi2Sampler(BaseTransformer):
240
234
 
241
235
  self._snowpark_cols = dataset.select(self.input_cols).columns
242
236
 
243
- # If we are already in a stored procedure, no need to kick off another one.
237
+ # If we are already in a stored procedure, no need to kick off another one.
244
238
  if SNOWML_SPROC_ENV in os.environ:
245
239
  statement_params = telemetry.get_function_usage_statement_params(
246
240
  project=_PROJECT,
247
241
  subproject=_SUBPROJECT,
248
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SkewedChi2Sampler.__class__.__name__),
242
+ function_name=telemetry.get_statement_params_full_func_name(
243
+ inspect.currentframe(), SkewedChi2Sampler.__class__.__name__
244
+ ),
249
245
  api_calls=[Session.call],
250
246
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
251
247
  )
@@ -266,7 +262,7 @@ class SkewedChi2Sampler(BaseTransformer):
266
262
  )
267
263
  self._sklearn_object = model_trainer.train()
268
264
  self._is_fitted = True
269
- self._get_model_signatures(dataset)
265
+ self._generate_model_signatures(dataset)
270
266
  return self
271
267
 
272
268
  def _batch_inference_validate_snowpark(
@@ -340,7 +336,9 @@ class SkewedChi2Sampler(BaseTransformer):
340
336
  # when it is classifier, infer the datatype from label columns
341
337
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
342
338
  # Batch inference takes a single expected output column type. Use the first columns type for now.
343
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
339
+ label_cols_signatures = [
340
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
341
+ ]
344
342
  if len(label_cols_signatures) == 0:
345
343
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
346
344
  raise exceptions.SnowflakeMLException(
@@ -348,25 +346,22 @@ class SkewedChi2Sampler(BaseTransformer):
348
346
  original_exception=ValueError(error_str),
349
347
  )
350
348
 
351
- expected_type_inferred = convert_sp_to_sf_type(
352
- label_cols_signatures[0].as_snowpark_type()
353
- )
349
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
354
350
 
355
351
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
356
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
352
+ assert isinstance(
353
+ dataset._session, Session
354
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
357
355
 
358
356
  transform_kwargs = dict(
359
- session = dataset._session,
360
- dependencies = self._deps,
361
- drop_input_cols = self._drop_input_cols,
362
- expected_output_cols_type = expected_type_inferred,
357
+ session=dataset._session,
358
+ dependencies=self._deps,
359
+ drop_input_cols=self._drop_input_cols,
360
+ expected_output_cols_type=expected_type_inferred,
363
361
  )
364
362
 
365
363
  elif isinstance(dataset, pd.DataFrame):
366
- transform_kwargs = dict(
367
- snowpark_input_cols = self._snowpark_cols,
368
- drop_input_cols = self._drop_input_cols
369
- )
364
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
370
365
 
371
366
  transform_handlers = ModelTransformerBuilder.build(
372
367
  dataset=dataset,
@@ -408,7 +403,7 @@ class SkewedChi2Sampler(BaseTransformer):
408
403
  Transformed dataset.
409
404
  """
410
405
  super()._check_dataset_type(dataset)
411
- inference_method="transform"
406
+ inference_method = "transform"
412
407
 
413
408
  # This dictionary contains optional kwargs for batch inference. These kwargs
414
409
  # are specific to the type of dataset used.
@@ -445,17 +440,14 @@ class SkewedChi2Sampler(BaseTransformer):
445
440
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
446
441
 
447
442
  transform_kwargs = dict(
448
- session = dataset._session,
449
- dependencies = self._deps,
450
- drop_input_cols = self._drop_input_cols,
451
- expected_output_cols_type = expected_dtype,
443
+ session=dataset._session,
444
+ dependencies=self._deps,
445
+ drop_input_cols=self._drop_input_cols,
446
+ expected_output_cols_type=expected_dtype,
452
447
  )
453
448
 
454
449
  elif isinstance(dataset, pd.DataFrame):
455
- transform_kwargs = dict(
456
- snowpark_input_cols = self._snowpark_cols,
457
- drop_input_cols = self._drop_input_cols
458
- )
450
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
459
451
 
460
452
  transform_handlers = ModelTransformerBuilder.build(
461
453
  dataset=dataset,
@@ -474,7 +466,11 @@ class SkewedChi2Sampler(BaseTransformer):
474
466
  return output_df
475
467
 
476
468
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
477
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
469
+ def fit_predict(
470
+ self,
471
+ dataset: Union[DataFrame, pd.DataFrame],
472
+ output_cols_prefix: str = "fit_predict_",
473
+ ) -> Union[DataFrame, pd.DataFrame]:
478
474
  """ Method not supported for this class.
479
475
 
480
476
 
@@ -499,7 +495,9 @@ class SkewedChi2Sampler(BaseTransformer):
499
495
  )
500
496
  output_result, fitted_estimator = model_trainer.train_fit_predict(
501
497
  drop_input_cols=self._drop_input_cols,
502
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
498
+ expected_output_cols_list=(
499
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
500
+ ),
503
501
  )
504
502
  self._sklearn_object = fitted_estimator
505
503
  self._is_fitted = True
@@ -516,6 +514,62 @@ class SkewedChi2Sampler(BaseTransformer):
516
514
  assert self._sklearn_object is not None
517
515
  return self._sklearn_object.embedding_
518
516
 
517
+
518
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
519
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
520
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
521
+ """
522
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
523
+ # The following condition is introduced for kneighbors methods, and not used in other methods
524
+ if output_cols:
525
+ output_cols = [
526
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
527
+ for c in output_cols
528
+ ]
529
+ elif getattr(self._sklearn_object, "classes_", None) is None:
530
+ output_cols = [output_cols_prefix]
531
+ elif self._sklearn_object is not None:
532
+ classes = self._sklearn_object.classes_
533
+ if isinstance(classes, numpy.ndarray):
534
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
535
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
536
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
537
+ output_cols = []
538
+ for i, cl in enumerate(classes):
539
+ # For binary classification, there is only one output column for each class
540
+ # ndarray as the two classes are complementary.
541
+ if len(cl) == 2:
542
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
543
+ else:
544
+ output_cols.extend([
545
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
546
+ ])
547
+ else:
548
+ output_cols = []
549
+
550
+ # Make sure column names are valid snowflake identifiers.
551
+ assert output_cols is not None # Make MyPy happy
552
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
553
+
554
+ return rv
555
+
556
+ def _align_expected_output_names(
557
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
558
+ ) -> List[str]:
559
+ # in case the inferred output column names dimension is different
560
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
561
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
562
+ output_df_columns = list(output_df_pd.columns)
563
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
564
+ if self.sample_weight_col:
565
+ output_df_columns_set -= set(self.sample_weight_col)
566
+ # if the dimension of inferred output column names is correct; use it
567
+ if len(expected_output_cols_list) == len(output_df_columns_set):
568
+ return expected_output_cols_list
569
+ # otherwise, use the sklearn estimator's output
570
+ else:
571
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
572
+
519
573
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
520
574
  @telemetry.send_api_usage_telemetry(
521
575
  project=_PROJECT,
@@ -546,24 +600,28 @@ class SkewedChi2Sampler(BaseTransformer):
546
600
  # are specific to the type of dataset used.
547
601
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
548
602
 
603
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
604
+
549
605
  if isinstance(dataset, DataFrame):
550
606
  self._deps = self._batch_inference_validate_snowpark(
551
607
  dataset=dataset,
552
608
  inference_method=inference_method,
553
609
  )
554
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
610
+ assert isinstance(
611
+ dataset._session, Session
612
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
555
613
  transform_kwargs = dict(
556
614
  session=dataset._session,
557
615
  dependencies=self._deps,
558
- drop_input_cols = self._drop_input_cols,
616
+ drop_input_cols=self._drop_input_cols,
559
617
  expected_output_cols_type="float",
560
618
  )
619
+ expected_output_cols = self._align_expected_output_names(
620
+ inference_method, dataset, expected_output_cols, output_cols_prefix
621
+ )
561
622
 
562
623
  elif isinstance(dataset, pd.DataFrame):
563
- transform_kwargs = dict(
564
- snowpark_input_cols = self._snowpark_cols,
565
- drop_input_cols = self._drop_input_cols
566
- )
624
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
567
625
 
568
626
  transform_handlers = ModelTransformerBuilder.build(
569
627
  dataset=dataset,
@@ -575,7 +633,7 @@ class SkewedChi2Sampler(BaseTransformer):
575
633
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
576
634
  inference_method=inference_method,
577
635
  input_cols=self.input_cols,
578
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
636
+ expected_output_cols=expected_output_cols,
579
637
  **transform_kwargs
580
638
  )
581
639
  return output_df
@@ -605,7 +663,8 @@ class SkewedChi2Sampler(BaseTransformer):
605
663
  Output dataset with log probability of the sample for each class in the model.
606
664
  """
607
665
  super()._check_dataset_type(dataset)
608
- inference_method="predict_log_proba"
666
+ inference_method = "predict_log_proba"
667
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
609
668
 
610
669
  # This dictionary contains optional kwargs for batch inference. These kwargs
611
670
  # are specific to the type of dataset used.
@@ -616,18 +675,20 @@ class SkewedChi2Sampler(BaseTransformer):
616
675
  dataset=dataset,
617
676
  inference_method=inference_method,
618
677
  )
619
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
678
+ assert isinstance(
679
+ dataset._session, Session
680
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
620
681
  transform_kwargs = dict(
621
682
  session=dataset._session,
622
683
  dependencies=self._deps,
623
- drop_input_cols = self._drop_input_cols,
684
+ drop_input_cols=self._drop_input_cols,
624
685
  expected_output_cols_type="float",
625
686
  )
687
+ expected_output_cols = self._align_expected_output_names(
688
+ inference_method, dataset, expected_output_cols, output_cols_prefix
689
+ )
626
690
  elif isinstance(dataset, pd.DataFrame):
627
- transform_kwargs = dict(
628
- snowpark_input_cols = self._snowpark_cols,
629
- drop_input_cols = self._drop_input_cols
630
- )
691
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
631
692
 
632
693
  transform_handlers = ModelTransformerBuilder.build(
633
694
  dataset=dataset,
@@ -640,7 +701,7 @@ class SkewedChi2Sampler(BaseTransformer):
640
701
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
641
702
  inference_method=inference_method,
642
703
  input_cols=self.input_cols,
643
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
704
+ expected_output_cols=expected_output_cols,
644
705
  **transform_kwargs
645
706
  )
646
707
  return output_df
@@ -666,30 +727,34 @@ class SkewedChi2Sampler(BaseTransformer):
666
727
  Output dataset with results of the decision function for the samples in input dataset.
667
728
  """
668
729
  super()._check_dataset_type(dataset)
669
- inference_method="decision_function"
730
+ inference_method = "decision_function"
670
731
 
671
732
  # This dictionary contains optional kwargs for batch inference. These kwargs
672
733
  # are specific to the type of dataset used.
673
734
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
674
735
 
736
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
737
+
675
738
  if isinstance(dataset, DataFrame):
676
739
  self._deps = self._batch_inference_validate_snowpark(
677
740
  dataset=dataset,
678
741
  inference_method=inference_method,
679
742
  )
680
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
743
+ assert isinstance(
744
+ dataset._session, Session
745
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
681
746
  transform_kwargs = dict(
682
747
  session=dataset._session,
683
748
  dependencies=self._deps,
684
- drop_input_cols = self._drop_input_cols,
749
+ drop_input_cols=self._drop_input_cols,
685
750
  expected_output_cols_type="float",
686
751
  )
752
+ expected_output_cols = self._align_expected_output_names(
753
+ inference_method, dataset, expected_output_cols, output_cols_prefix
754
+ )
687
755
 
688
756
  elif isinstance(dataset, pd.DataFrame):
689
- transform_kwargs = dict(
690
- snowpark_input_cols = self._snowpark_cols,
691
- drop_input_cols = self._drop_input_cols
692
- )
757
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
693
758
 
694
759
  transform_handlers = ModelTransformerBuilder.build(
695
760
  dataset=dataset,
@@ -702,7 +767,7 @@ class SkewedChi2Sampler(BaseTransformer):
702
767
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
703
768
  inference_method=inference_method,
704
769
  input_cols=self.input_cols,
705
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
770
+ expected_output_cols=expected_output_cols,
706
771
  **transform_kwargs
707
772
  )
708
773
  return output_df
@@ -731,12 +796,14 @@ class SkewedChi2Sampler(BaseTransformer):
731
796
  Output dataset with probability of the sample for each class in the model.
732
797
  """
733
798
  super()._check_dataset_type(dataset)
734
- inference_method="score_samples"
799
+ inference_method = "score_samples"
735
800
 
736
801
  # This dictionary contains optional kwargs for batch inference. These kwargs
737
802
  # are specific to the type of dataset used.
738
803
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
739
804
 
805
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
806
+
740
807
  if isinstance(dataset, DataFrame):
741
808
  self._deps = self._batch_inference_validate_snowpark(
742
809
  dataset=dataset,
@@ -749,6 +816,9 @@ class SkewedChi2Sampler(BaseTransformer):
749
816
  drop_input_cols = self._drop_input_cols,
750
817
  expected_output_cols_type="float",
751
818
  )
819
+ expected_output_cols = self._align_expected_output_names(
820
+ inference_method, dataset, expected_output_cols, output_cols_prefix
821
+ )
752
822
 
753
823
  elif isinstance(dataset, pd.DataFrame):
754
824
  transform_kwargs = dict(
@@ -767,7 +837,7 @@ class SkewedChi2Sampler(BaseTransformer):
767
837
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
768
838
  inference_method=inference_method,
769
839
  input_cols=self.input_cols,
770
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
840
+ expected_output_cols=expected_output_cols,
771
841
  **transform_kwargs
772
842
  )
773
843
  return output_df
@@ -912,50 +982,84 @@ class SkewedChi2Sampler(BaseTransformer):
912
982
  )
913
983
  return output_df
914
984
 
985
+
986
+
987
+ def to_sklearn(self) -> Any:
988
+ """Get sklearn.kernel_approximation.SkewedChi2Sampler object.
989
+ """
990
+ if self._sklearn_object is None:
991
+ self._sklearn_object = self._create_sklearn_object()
992
+ return self._sklearn_object
993
+
994
+ def to_xgboost(self) -> Any:
995
+ raise exceptions.SnowflakeMLException(
996
+ error_code=error_codes.METHOD_NOT_ALLOWED,
997
+ original_exception=AttributeError(
998
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
999
+ "to_xgboost()",
1000
+ "to_sklearn()"
1001
+ )
1002
+ ),
1003
+ )
1004
+
1005
+ def to_lightgbm(self) -> Any:
1006
+ raise exceptions.SnowflakeMLException(
1007
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1008
+ original_exception=AttributeError(
1009
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1010
+ "to_lightgbm()",
1011
+ "to_sklearn()"
1012
+ )
1013
+ ),
1014
+ )
915
1015
 
916
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1016
+ def _get_dependencies(self) -> List[str]:
1017
+ return self._deps
1018
+
1019
+
1020
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
917
1021
  self._model_signature_dict = dict()
918
1022
 
919
1023
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
920
1024
 
921
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1025
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
922
1026
  outputs: List[BaseFeatureSpec] = []
923
1027
  if hasattr(self, "predict"):
924
1028
  # keep mypy happy
925
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1029
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
926
1030
  # For classifier, the type of predict is the same as the type of label
927
- if self._sklearn_object._estimator_type == 'classifier':
928
- # label columns is the desired type for output
1031
+ if self._sklearn_object._estimator_type == "classifier":
1032
+ # label columns is the desired type for output
929
1033
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
930
1034
  # rename the output columns
931
1035
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
932
- self._model_signature_dict["predict"] = ModelSignature(inputs,
933
- ([] if self._drop_input_cols else inputs)
934
- + outputs)
1036
+ self._model_signature_dict["predict"] = ModelSignature(
1037
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1038
+ )
935
1039
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
936
1040
  # For outlier models, returns -1 for outliers and 1 for inliers.
937
- # Clusterer returns int64 cluster labels.
1041
+ # Clusterer returns int64 cluster labels.
938
1042
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
939
1043
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
940
- self._model_signature_dict["predict"] = ModelSignature(inputs,
941
- ([] if self._drop_input_cols else inputs)
942
- + outputs)
943
-
1044
+ self._model_signature_dict["predict"] = ModelSignature(
1045
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1046
+ )
1047
+
944
1048
  # For regressor, the type of predict is float64
945
- elif self._sklearn_object._estimator_type == 'regressor':
1049
+ elif self._sklearn_object._estimator_type == "regressor":
946
1050
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
947
- self._model_signature_dict["predict"] = ModelSignature(inputs,
948
- ([] if self._drop_input_cols else inputs)
949
- + outputs)
950
-
1051
+ self._model_signature_dict["predict"] = ModelSignature(
1052
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1053
+ )
1054
+
951
1055
  for prob_func in PROB_FUNCTIONS:
952
1056
  if hasattr(self, prob_func):
953
1057
  output_cols_prefix: str = f"{prob_func}_"
954
1058
  output_column_names = self._get_output_column_names(output_cols_prefix)
955
1059
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
956
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
957
- ([] if self._drop_input_cols else inputs)
958
- + outputs)
1060
+ self._model_signature_dict[prob_func] = ModelSignature(
1061
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1062
+ )
959
1063
 
960
1064
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
961
1065
  items = list(self._model_signature_dict.items())
@@ -968,10 +1072,10 @@ class SkewedChi2Sampler(BaseTransformer):
968
1072
  """Returns model signature of current class.
969
1073
 
970
1074
  Raises:
971
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1075
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
972
1076
 
973
1077
  Returns:
974
- Dict[str, ModelSignature]: each method and its input output signature
1078
+ Dict with each method and its input output signature
975
1079
  """
976
1080
  if self._model_signature_dict is None:
977
1081
  raise exceptions.SnowflakeMLException(
@@ -979,35 +1083,3 @@ class SkewedChi2Sampler(BaseTransformer):
979
1083
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
980
1084
  )
981
1085
  return self._model_signature_dict
982
-
983
- def to_sklearn(self) -> Any:
984
- """Get sklearn.kernel_approximation.SkewedChi2Sampler object.
985
- """
986
- if self._sklearn_object is None:
987
- self._sklearn_object = self._create_sklearn_object()
988
- return self._sklearn_object
989
-
990
- def to_xgboost(self) -> Any:
991
- raise exceptions.SnowflakeMLException(
992
- error_code=error_codes.METHOD_NOT_ALLOWED,
993
- original_exception=AttributeError(
994
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
995
- "to_xgboost()",
996
- "to_sklearn()"
997
- )
998
- ),
999
- )
1000
-
1001
- def to_lightgbm(self) -> Any:
1002
- raise exceptions.SnowflakeMLException(
1003
- error_code=error_codes.METHOD_NOT_ALLOWED,
1004
- original_exception=AttributeError(
1005
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1006
- "to_lightgbm()",
1007
- "to_sklearn()"
1008
- )
1009
- ),
1010
- )
1011
-
1012
- def _get_dependencies(self) -> List[str]:
1013
- return self._deps