snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -209,12 +208,7 @@ class LedoitWolf(BaseTransformer):
209
208
  )
210
209
  return selected_cols
211
210
 
212
- @telemetry.send_api_usage_telemetry(
213
- project=_PROJECT,
214
- subproject=_SUBPROJECT,
215
- custom_tags=dict([("autogen", True)]),
216
- )
217
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LedoitWolf":
211
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LedoitWolf":
218
212
  """Fit the Ledoit-Wolf shrunk covariance model to X
219
213
  For more details on this function, see [sklearn.covariance.LedoitWolf.fit]
220
214
  (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html#sklearn.covariance.LedoitWolf.fit)
@@ -241,12 +235,14 @@ class LedoitWolf(BaseTransformer):
241
235
 
242
236
  self._snowpark_cols = dataset.select(self.input_cols).columns
243
237
 
244
- # If we are already in a stored procedure, no need to kick off another one.
238
+ # If we are already in a stored procedure, no need to kick off another one.
245
239
  if SNOWML_SPROC_ENV in os.environ:
246
240
  statement_params = telemetry.get_function_usage_statement_params(
247
241
  project=_PROJECT,
248
242
  subproject=_SUBPROJECT,
249
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LedoitWolf.__class__.__name__),
243
+ function_name=telemetry.get_statement_params_full_func_name(
244
+ inspect.currentframe(), LedoitWolf.__class__.__name__
245
+ ),
250
246
  api_calls=[Session.call],
251
247
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
252
248
  )
@@ -267,7 +263,7 @@ class LedoitWolf(BaseTransformer):
267
263
  )
268
264
  self._sklearn_object = model_trainer.train()
269
265
  self._is_fitted = True
270
- self._get_model_signatures(dataset)
266
+ self._generate_model_signatures(dataset)
271
267
  return self
272
268
 
273
269
  def _batch_inference_validate_snowpark(
@@ -341,7 +337,9 @@ class LedoitWolf(BaseTransformer):
341
337
  # when it is classifier, infer the datatype from label columns
342
338
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
343
339
  # Batch inference takes a single expected output column type. Use the first columns type for now.
344
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
340
+ label_cols_signatures = [
341
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
342
+ ]
345
343
  if len(label_cols_signatures) == 0:
346
344
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
347
345
  raise exceptions.SnowflakeMLException(
@@ -349,25 +347,22 @@ class LedoitWolf(BaseTransformer):
349
347
  original_exception=ValueError(error_str),
350
348
  )
351
349
 
352
- expected_type_inferred = convert_sp_to_sf_type(
353
- label_cols_signatures[0].as_snowpark_type()
354
- )
350
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
355
351
 
356
352
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
357
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
353
+ assert isinstance(
354
+ dataset._session, Session
355
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
358
356
 
359
357
  transform_kwargs = dict(
360
- session = dataset._session,
361
- dependencies = self._deps,
362
- drop_input_cols = self._drop_input_cols,
363
- expected_output_cols_type = expected_type_inferred,
358
+ session=dataset._session,
359
+ dependencies=self._deps,
360
+ drop_input_cols=self._drop_input_cols,
361
+ expected_output_cols_type=expected_type_inferred,
364
362
  )
365
363
 
366
364
  elif isinstance(dataset, pd.DataFrame):
367
- transform_kwargs = dict(
368
- snowpark_input_cols = self._snowpark_cols,
369
- drop_input_cols = self._drop_input_cols
370
- )
365
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
371
366
 
372
367
  transform_handlers = ModelTransformerBuilder.build(
373
368
  dataset=dataset,
@@ -407,7 +402,7 @@ class LedoitWolf(BaseTransformer):
407
402
  Transformed dataset.
408
403
  """
409
404
  super()._check_dataset_type(dataset)
410
- inference_method="transform"
405
+ inference_method = "transform"
411
406
 
412
407
  # This dictionary contains optional kwargs for batch inference. These kwargs
413
408
  # are specific to the type of dataset used.
@@ -444,17 +439,14 @@ class LedoitWolf(BaseTransformer):
444
439
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
445
440
 
446
441
  transform_kwargs = dict(
447
- session = dataset._session,
448
- dependencies = self._deps,
449
- drop_input_cols = self._drop_input_cols,
450
- expected_output_cols_type = expected_dtype,
442
+ session=dataset._session,
443
+ dependencies=self._deps,
444
+ drop_input_cols=self._drop_input_cols,
445
+ expected_output_cols_type=expected_dtype,
451
446
  )
452
447
 
453
448
  elif isinstance(dataset, pd.DataFrame):
454
- transform_kwargs = dict(
455
- snowpark_input_cols = self._snowpark_cols,
456
- drop_input_cols = self._drop_input_cols
457
- )
449
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
458
450
 
459
451
  transform_handlers = ModelTransformerBuilder.build(
460
452
  dataset=dataset,
@@ -473,7 +465,11 @@ class LedoitWolf(BaseTransformer):
473
465
  return output_df
474
466
 
475
467
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
476
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
468
+ def fit_predict(
469
+ self,
470
+ dataset: Union[DataFrame, pd.DataFrame],
471
+ output_cols_prefix: str = "fit_predict_",
472
+ ) -> Union[DataFrame, pd.DataFrame]:
477
473
  """ Method not supported for this class.
478
474
 
479
475
 
@@ -498,7 +494,9 @@ class LedoitWolf(BaseTransformer):
498
494
  )
499
495
  output_result, fitted_estimator = model_trainer.train_fit_predict(
500
496
  drop_input_cols=self._drop_input_cols,
501
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
497
+ expected_output_cols_list=(
498
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
499
+ ),
502
500
  )
503
501
  self._sklearn_object = fitted_estimator
504
502
  self._is_fitted = True
@@ -515,6 +513,62 @@ class LedoitWolf(BaseTransformer):
515
513
  assert self._sklearn_object is not None
516
514
  return self._sklearn_object.embedding_
517
515
 
516
+
517
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
518
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
519
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
520
+ """
521
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
522
+ # The following condition is introduced for kneighbors methods, and not used in other methods
523
+ if output_cols:
524
+ output_cols = [
525
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
526
+ for c in output_cols
527
+ ]
528
+ elif getattr(self._sklearn_object, "classes_", None) is None:
529
+ output_cols = [output_cols_prefix]
530
+ elif self._sklearn_object is not None:
531
+ classes = self._sklearn_object.classes_
532
+ if isinstance(classes, numpy.ndarray):
533
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
534
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
535
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
536
+ output_cols = []
537
+ for i, cl in enumerate(classes):
538
+ # For binary classification, there is only one output column for each class
539
+ # ndarray as the two classes are complementary.
540
+ if len(cl) == 2:
541
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
542
+ else:
543
+ output_cols.extend([
544
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
545
+ ])
546
+ else:
547
+ output_cols = []
548
+
549
+ # Make sure column names are valid snowflake identifiers.
550
+ assert output_cols is not None # Make MyPy happy
551
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
552
+
553
+ return rv
554
+
555
+ def _align_expected_output_names(
556
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
557
+ ) -> List[str]:
558
+ # in case the inferred output column names dimension is different
559
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
560
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
561
+ output_df_columns = list(output_df_pd.columns)
562
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
563
+ if self.sample_weight_col:
564
+ output_df_columns_set -= set(self.sample_weight_col)
565
+ # if the dimension of inferred output column names is correct; use it
566
+ if len(expected_output_cols_list) == len(output_df_columns_set):
567
+ return expected_output_cols_list
568
+ # otherwise, use the sklearn estimator's output
569
+ else:
570
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
571
+
518
572
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
519
573
  @telemetry.send_api_usage_telemetry(
520
574
  project=_PROJECT,
@@ -545,24 +599,28 @@ class LedoitWolf(BaseTransformer):
545
599
  # are specific to the type of dataset used.
546
600
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
547
601
 
602
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
603
+
548
604
  if isinstance(dataset, DataFrame):
549
605
  self._deps = self._batch_inference_validate_snowpark(
550
606
  dataset=dataset,
551
607
  inference_method=inference_method,
552
608
  )
553
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
609
+ assert isinstance(
610
+ dataset._session, Session
611
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
554
612
  transform_kwargs = dict(
555
613
  session=dataset._session,
556
614
  dependencies=self._deps,
557
- drop_input_cols = self._drop_input_cols,
615
+ drop_input_cols=self._drop_input_cols,
558
616
  expected_output_cols_type="float",
559
617
  )
618
+ expected_output_cols = self._align_expected_output_names(
619
+ inference_method, dataset, expected_output_cols, output_cols_prefix
620
+ )
560
621
 
561
622
  elif isinstance(dataset, pd.DataFrame):
562
- transform_kwargs = dict(
563
- snowpark_input_cols = self._snowpark_cols,
564
- drop_input_cols = self._drop_input_cols
565
- )
623
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
566
624
 
567
625
  transform_handlers = ModelTransformerBuilder.build(
568
626
  dataset=dataset,
@@ -574,7 +632,7 @@ class LedoitWolf(BaseTransformer):
574
632
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
575
633
  inference_method=inference_method,
576
634
  input_cols=self.input_cols,
577
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
635
+ expected_output_cols=expected_output_cols,
578
636
  **transform_kwargs
579
637
  )
580
638
  return output_df
@@ -604,7 +662,8 @@ class LedoitWolf(BaseTransformer):
604
662
  Output dataset with log probability of the sample for each class in the model.
605
663
  """
606
664
  super()._check_dataset_type(dataset)
607
- inference_method="predict_log_proba"
665
+ inference_method = "predict_log_proba"
666
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
608
667
 
609
668
  # This dictionary contains optional kwargs for batch inference. These kwargs
610
669
  # are specific to the type of dataset used.
@@ -615,18 +674,20 @@ class LedoitWolf(BaseTransformer):
615
674
  dataset=dataset,
616
675
  inference_method=inference_method,
617
676
  )
618
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
677
+ assert isinstance(
678
+ dataset._session, Session
679
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
619
680
  transform_kwargs = dict(
620
681
  session=dataset._session,
621
682
  dependencies=self._deps,
622
- drop_input_cols = self._drop_input_cols,
683
+ drop_input_cols=self._drop_input_cols,
623
684
  expected_output_cols_type="float",
624
685
  )
686
+ expected_output_cols = self._align_expected_output_names(
687
+ inference_method, dataset, expected_output_cols, output_cols_prefix
688
+ )
625
689
  elif isinstance(dataset, pd.DataFrame):
626
- transform_kwargs = dict(
627
- snowpark_input_cols = self._snowpark_cols,
628
- drop_input_cols = self._drop_input_cols
629
- )
690
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
630
691
 
631
692
  transform_handlers = ModelTransformerBuilder.build(
632
693
  dataset=dataset,
@@ -639,7 +700,7 @@ class LedoitWolf(BaseTransformer):
639
700
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
640
701
  inference_method=inference_method,
641
702
  input_cols=self.input_cols,
642
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
703
+ expected_output_cols=expected_output_cols,
643
704
  **transform_kwargs
644
705
  )
645
706
  return output_df
@@ -665,30 +726,34 @@ class LedoitWolf(BaseTransformer):
665
726
  Output dataset with results of the decision function for the samples in input dataset.
666
727
  """
667
728
  super()._check_dataset_type(dataset)
668
- inference_method="decision_function"
729
+ inference_method = "decision_function"
669
730
 
670
731
  # This dictionary contains optional kwargs for batch inference. These kwargs
671
732
  # are specific to the type of dataset used.
672
733
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
673
734
 
735
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
736
+
674
737
  if isinstance(dataset, DataFrame):
675
738
  self._deps = self._batch_inference_validate_snowpark(
676
739
  dataset=dataset,
677
740
  inference_method=inference_method,
678
741
  )
679
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
742
+ assert isinstance(
743
+ dataset._session, Session
744
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
680
745
  transform_kwargs = dict(
681
746
  session=dataset._session,
682
747
  dependencies=self._deps,
683
- drop_input_cols = self._drop_input_cols,
748
+ drop_input_cols=self._drop_input_cols,
684
749
  expected_output_cols_type="float",
685
750
  )
751
+ expected_output_cols = self._align_expected_output_names(
752
+ inference_method, dataset, expected_output_cols, output_cols_prefix
753
+ )
686
754
 
687
755
  elif isinstance(dataset, pd.DataFrame):
688
- transform_kwargs = dict(
689
- snowpark_input_cols = self._snowpark_cols,
690
- drop_input_cols = self._drop_input_cols
691
- )
756
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
692
757
 
693
758
  transform_handlers = ModelTransformerBuilder.build(
694
759
  dataset=dataset,
@@ -701,7 +766,7 @@ class LedoitWolf(BaseTransformer):
701
766
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
702
767
  inference_method=inference_method,
703
768
  input_cols=self.input_cols,
704
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
769
+ expected_output_cols=expected_output_cols,
705
770
  **transform_kwargs
706
771
  )
707
772
  return output_df
@@ -730,12 +795,14 @@ class LedoitWolf(BaseTransformer):
730
795
  Output dataset with probability of the sample for each class in the model.
731
796
  """
732
797
  super()._check_dataset_type(dataset)
733
- inference_method="score_samples"
798
+ inference_method = "score_samples"
734
799
 
735
800
  # This dictionary contains optional kwargs for batch inference. These kwargs
736
801
  # are specific to the type of dataset used.
737
802
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
738
803
 
804
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
805
+
739
806
  if isinstance(dataset, DataFrame):
740
807
  self._deps = self._batch_inference_validate_snowpark(
741
808
  dataset=dataset,
@@ -748,6 +815,9 @@ class LedoitWolf(BaseTransformer):
748
815
  drop_input_cols = self._drop_input_cols,
749
816
  expected_output_cols_type="float",
750
817
  )
818
+ expected_output_cols = self._align_expected_output_names(
819
+ inference_method, dataset, expected_output_cols, output_cols_prefix
820
+ )
751
821
 
752
822
  elif isinstance(dataset, pd.DataFrame):
753
823
  transform_kwargs = dict(
@@ -766,7 +836,7 @@ class LedoitWolf(BaseTransformer):
766
836
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
767
837
  inference_method=inference_method,
768
838
  input_cols=self.input_cols,
769
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
839
+ expected_output_cols=expected_output_cols,
770
840
  **transform_kwargs
771
841
  )
772
842
  return output_df
@@ -913,50 +983,84 @@ class LedoitWolf(BaseTransformer):
913
983
  )
914
984
  return output_df
915
985
 
986
+
987
+
988
+ def to_sklearn(self) -> Any:
989
+ """Get sklearn.covariance.LedoitWolf object.
990
+ """
991
+ if self._sklearn_object is None:
992
+ self._sklearn_object = self._create_sklearn_object()
993
+ return self._sklearn_object
994
+
995
+ def to_xgboost(self) -> Any:
996
+ raise exceptions.SnowflakeMLException(
997
+ error_code=error_codes.METHOD_NOT_ALLOWED,
998
+ original_exception=AttributeError(
999
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1000
+ "to_xgboost()",
1001
+ "to_sklearn()"
1002
+ )
1003
+ ),
1004
+ )
1005
+
1006
+ def to_lightgbm(self) -> Any:
1007
+ raise exceptions.SnowflakeMLException(
1008
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1009
+ original_exception=AttributeError(
1010
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1011
+ "to_lightgbm()",
1012
+ "to_sklearn()"
1013
+ )
1014
+ ),
1015
+ )
916
1016
 
917
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1017
+ def _get_dependencies(self) -> List[str]:
1018
+ return self._deps
1019
+
1020
+
1021
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
918
1022
  self._model_signature_dict = dict()
919
1023
 
920
1024
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
921
1025
 
922
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1026
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
923
1027
  outputs: List[BaseFeatureSpec] = []
924
1028
  if hasattr(self, "predict"):
925
1029
  # keep mypy happy
926
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1030
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
927
1031
  # For classifier, the type of predict is the same as the type of label
928
- if self._sklearn_object._estimator_type == 'classifier':
929
- # label columns is the desired type for output
1032
+ if self._sklearn_object._estimator_type == "classifier":
1033
+ # label columns is the desired type for output
930
1034
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
931
1035
  # rename the output columns
932
1036
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
933
- self._model_signature_dict["predict"] = ModelSignature(inputs,
934
- ([] if self._drop_input_cols else inputs)
935
- + outputs)
1037
+ self._model_signature_dict["predict"] = ModelSignature(
1038
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1039
+ )
936
1040
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
937
1041
  # For outlier models, returns -1 for outliers and 1 for inliers.
938
- # Clusterer returns int64 cluster labels.
1042
+ # Clusterer returns int64 cluster labels.
939
1043
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
940
1044
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
941
- self._model_signature_dict["predict"] = ModelSignature(inputs,
942
- ([] if self._drop_input_cols else inputs)
943
- + outputs)
944
-
1045
+ self._model_signature_dict["predict"] = ModelSignature(
1046
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1047
+ )
1048
+
945
1049
  # For regressor, the type of predict is float64
946
- elif self._sklearn_object._estimator_type == 'regressor':
1050
+ elif self._sklearn_object._estimator_type == "regressor":
947
1051
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
948
- self._model_signature_dict["predict"] = ModelSignature(inputs,
949
- ([] if self._drop_input_cols else inputs)
950
- + outputs)
951
-
1052
+ self._model_signature_dict["predict"] = ModelSignature(
1053
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1054
+ )
1055
+
952
1056
  for prob_func in PROB_FUNCTIONS:
953
1057
  if hasattr(self, prob_func):
954
1058
  output_cols_prefix: str = f"{prob_func}_"
955
1059
  output_column_names = self._get_output_column_names(output_cols_prefix)
956
1060
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
957
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
958
- ([] if self._drop_input_cols else inputs)
959
- + outputs)
1061
+ self._model_signature_dict[prob_func] = ModelSignature(
1062
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1063
+ )
960
1064
 
961
1065
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
962
1066
  items = list(self._model_signature_dict.items())
@@ -969,10 +1073,10 @@ class LedoitWolf(BaseTransformer):
969
1073
  """Returns model signature of current class.
970
1074
 
971
1075
  Raises:
972
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1076
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
973
1077
 
974
1078
  Returns:
975
- Dict[str, ModelSignature]: each method and its input output signature
1079
+ Dict with each method and its input output signature
976
1080
  """
977
1081
  if self._model_signature_dict is None:
978
1082
  raise exceptions.SnowflakeMLException(
@@ -980,35 +1084,3 @@ class LedoitWolf(BaseTransformer):
980
1084
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
981
1085
  )
982
1086
  return self._model_signature_dict
983
-
984
- def to_sklearn(self) -> Any:
985
- """Get sklearn.covariance.LedoitWolf object.
986
- """
987
- if self._sklearn_object is None:
988
- self._sklearn_object = self._create_sklearn_object()
989
- return self._sklearn_object
990
-
991
- def to_xgboost(self) -> Any:
992
- raise exceptions.SnowflakeMLException(
993
- error_code=error_codes.METHOD_NOT_ALLOWED,
994
- original_exception=AttributeError(
995
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
996
- "to_xgboost()",
997
- "to_sklearn()"
998
- )
999
- ),
1000
- )
1001
-
1002
- def to_lightgbm(self) -> Any:
1003
- raise exceptions.SnowflakeMLException(
1004
- error_code=error_codes.METHOD_NOT_ALLOWED,
1005
- original_exception=AttributeError(
1006
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1007
- "to_lightgbm()",
1008
- "to_sklearn()"
1009
- )
1010
- ),
1011
- )
1012
-
1013
- def _get_dependencies(self) -> List[str]:
1014
- return self._deps