snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -317,12 +316,7 @@ class KernelPCA(BaseTransformer):
317
316
  )
318
317
  return selected_cols
319
318
 
320
- @telemetry.send_api_usage_telemetry(
321
- project=_PROJECT,
322
- subproject=_SUBPROJECT,
323
- custom_tags=dict([("autogen", True)]),
324
- )
325
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelPCA":
319
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelPCA":
326
320
  """Fit the model from data in X
327
321
  For more details on this function, see [sklearn.decomposition.KernelPCA.fit]
328
322
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html#sklearn.decomposition.KernelPCA.fit)
@@ -349,12 +343,14 @@ class KernelPCA(BaseTransformer):
349
343
 
350
344
  self._snowpark_cols = dataset.select(self.input_cols).columns
351
345
 
352
- # If we are already in a stored procedure, no need to kick off another one.
346
+ # If we are already in a stored procedure, no need to kick off another one.
353
347
  if SNOWML_SPROC_ENV in os.environ:
354
348
  statement_params = telemetry.get_function_usage_statement_params(
355
349
  project=_PROJECT,
356
350
  subproject=_SUBPROJECT,
357
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelPCA.__class__.__name__),
351
+ function_name=telemetry.get_statement_params_full_func_name(
352
+ inspect.currentframe(), KernelPCA.__class__.__name__
353
+ ),
358
354
  api_calls=[Session.call],
359
355
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
360
356
  )
@@ -375,7 +371,7 @@ class KernelPCA(BaseTransformer):
375
371
  )
376
372
  self._sklearn_object = model_trainer.train()
377
373
  self._is_fitted = True
378
- self._get_model_signatures(dataset)
374
+ self._generate_model_signatures(dataset)
379
375
  return self
380
376
 
381
377
  def _batch_inference_validate_snowpark(
@@ -449,7 +445,9 @@ class KernelPCA(BaseTransformer):
449
445
  # when it is classifier, infer the datatype from label columns
450
446
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
451
447
  # Batch inference takes a single expected output column type. Use the first columns type for now.
452
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
448
+ label_cols_signatures = [
449
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
450
+ ]
453
451
  if len(label_cols_signatures) == 0:
454
452
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
455
453
  raise exceptions.SnowflakeMLException(
@@ -457,25 +455,22 @@ class KernelPCA(BaseTransformer):
457
455
  original_exception=ValueError(error_str),
458
456
  )
459
457
 
460
- expected_type_inferred = convert_sp_to_sf_type(
461
- label_cols_signatures[0].as_snowpark_type()
462
- )
458
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
463
459
 
464
460
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
465
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
461
+ assert isinstance(
462
+ dataset._session, Session
463
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
466
464
 
467
465
  transform_kwargs = dict(
468
- session = dataset._session,
469
- dependencies = self._deps,
470
- drop_input_cols = self._drop_input_cols,
471
- expected_output_cols_type = expected_type_inferred,
466
+ session=dataset._session,
467
+ dependencies=self._deps,
468
+ drop_input_cols=self._drop_input_cols,
469
+ expected_output_cols_type=expected_type_inferred,
472
470
  )
473
471
 
474
472
  elif isinstance(dataset, pd.DataFrame):
475
- transform_kwargs = dict(
476
- snowpark_input_cols = self._snowpark_cols,
477
- drop_input_cols = self._drop_input_cols
478
- )
473
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
479
474
 
480
475
  transform_handlers = ModelTransformerBuilder.build(
481
476
  dataset=dataset,
@@ -517,7 +512,7 @@ class KernelPCA(BaseTransformer):
517
512
  Transformed dataset.
518
513
  """
519
514
  super()._check_dataset_type(dataset)
520
- inference_method="transform"
515
+ inference_method = "transform"
521
516
 
522
517
  # This dictionary contains optional kwargs for batch inference. These kwargs
523
518
  # are specific to the type of dataset used.
@@ -554,17 +549,14 @@ class KernelPCA(BaseTransformer):
554
549
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
555
550
 
556
551
  transform_kwargs = dict(
557
- session = dataset._session,
558
- dependencies = self._deps,
559
- drop_input_cols = self._drop_input_cols,
560
- expected_output_cols_type = expected_dtype,
552
+ session=dataset._session,
553
+ dependencies=self._deps,
554
+ drop_input_cols=self._drop_input_cols,
555
+ expected_output_cols_type=expected_dtype,
561
556
  )
562
557
 
563
558
  elif isinstance(dataset, pd.DataFrame):
564
- transform_kwargs = dict(
565
- snowpark_input_cols = self._snowpark_cols,
566
- drop_input_cols = self._drop_input_cols
567
- )
559
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
568
560
 
569
561
  transform_handlers = ModelTransformerBuilder.build(
570
562
  dataset=dataset,
@@ -583,7 +575,11 @@ class KernelPCA(BaseTransformer):
583
575
  return output_df
584
576
 
585
577
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
586
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
578
+ def fit_predict(
579
+ self,
580
+ dataset: Union[DataFrame, pd.DataFrame],
581
+ output_cols_prefix: str = "fit_predict_",
582
+ ) -> Union[DataFrame, pd.DataFrame]:
587
583
  """ Method not supported for this class.
588
584
 
589
585
 
@@ -608,7 +604,9 @@ class KernelPCA(BaseTransformer):
608
604
  )
609
605
  output_result, fitted_estimator = model_trainer.train_fit_predict(
610
606
  drop_input_cols=self._drop_input_cols,
611
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
607
+ expected_output_cols_list=(
608
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
609
+ ),
612
610
  )
613
611
  self._sklearn_object = fitted_estimator
614
612
  self._is_fitted = True
@@ -625,6 +623,62 @@ class KernelPCA(BaseTransformer):
625
623
  assert self._sklearn_object is not None
626
624
  return self._sklearn_object.embedding_
627
625
 
626
+
627
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
628
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
629
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
630
+ """
631
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
632
+ # The following condition is introduced for kneighbors methods, and not used in other methods
633
+ if output_cols:
634
+ output_cols = [
635
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
636
+ for c in output_cols
637
+ ]
638
+ elif getattr(self._sklearn_object, "classes_", None) is None:
639
+ output_cols = [output_cols_prefix]
640
+ elif self._sklearn_object is not None:
641
+ classes = self._sklearn_object.classes_
642
+ if isinstance(classes, numpy.ndarray):
643
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
644
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
645
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
646
+ output_cols = []
647
+ for i, cl in enumerate(classes):
648
+ # For binary classification, there is only one output column for each class
649
+ # ndarray as the two classes are complementary.
650
+ if len(cl) == 2:
651
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
652
+ else:
653
+ output_cols.extend([
654
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
655
+ ])
656
+ else:
657
+ output_cols = []
658
+
659
+ # Make sure column names are valid snowflake identifiers.
660
+ assert output_cols is not None # Make MyPy happy
661
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
662
+
663
+ return rv
664
+
665
+ def _align_expected_output_names(
666
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
667
+ ) -> List[str]:
668
+ # in case the inferred output column names dimension is different
669
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
670
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
671
+ output_df_columns = list(output_df_pd.columns)
672
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
673
+ if self.sample_weight_col:
674
+ output_df_columns_set -= set(self.sample_weight_col)
675
+ # if the dimension of inferred output column names is correct; use it
676
+ if len(expected_output_cols_list) == len(output_df_columns_set):
677
+ return expected_output_cols_list
678
+ # otherwise, use the sklearn estimator's output
679
+ else:
680
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
681
+
628
682
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
629
683
  @telemetry.send_api_usage_telemetry(
630
684
  project=_PROJECT,
@@ -655,24 +709,28 @@ class KernelPCA(BaseTransformer):
655
709
  # are specific to the type of dataset used.
656
710
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
657
711
 
712
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
713
+
658
714
  if isinstance(dataset, DataFrame):
659
715
  self._deps = self._batch_inference_validate_snowpark(
660
716
  dataset=dataset,
661
717
  inference_method=inference_method,
662
718
  )
663
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
719
+ assert isinstance(
720
+ dataset._session, Session
721
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
664
722
  transform_kwargs = dict(
665
723
  session=dataset._session,
666
724
  dependencies=self._deps,
667
- drop_input_cols = self._drop_input_cols,
725
+ drop_input_cols=self._drop_input_cols,
668
726
  expected_output_cols_type="float",
669
727
  )
728
+ expected_output_cols = self._align_expected_output_names(
729
+ inference_method, dataset, expected_output_cols, output_cols_prefix
730
+ )
670
731
 
671
732
  elif isinstance(dataset, pd.DataFrame):
672
- transform_kwargs = dict(
673
- snowpark_input_cols = self._snowpark_cols,
674
- drop_input_cols = self._drop_input_cols
675
- )
733
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
676
734
 
677
735
  transform_handlers = ModelTransformerBuilder.build(
678
736
  dataset=dataset,
@@ -684,7 +742,7 @@ class KernelPCA(BaseTransformer):
684
742
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
685
743
  inference_method=inference_method,
686
744
  input_cols=self.input_cols,
687
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
745
+ expected_output_cols=expected_output_cols,
688
746
  **transform_kwargs
689
747
  )
690
748
  return output_df
@@ -714,7 +772,8 @@ class KernelPCA(BaseTransformer):
714
772
  Output dataset with log probability of the sample for each class in the model.
715
773
  """
716
774
  super()._check_dataset_type(dataset)
717
- inference_method="predict_log_proba"
775
+ inference_method = "predict_log_proba"
776
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
718
777
 
719
778
  # This dictionary contains optional kwargs for batch inference. These kwargs
720
779
  # are specific to the type of dataset used.
@@ -725,18 +784,20 @@ class KernelPCA(BaseTransformer):
725
784
  dataset=dataset,
726
785
  inference_method=inference_method,
727
786
  )
728
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
787
+ assert isinstance(
788
+ dataset._session, Session
789
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
729
790
  transform_kwargs = dict(
730
791
  session=dataset._session,
731
792
  dependencies=self._deps,
732
- drop_input_cols = self._drop_input_cols,
793
+ drop_input_cols=self._drop_input_cols,
733
794
  expected_output_cols_type="float",
734
795
  )
796
+ expected_output_cols = self._align_expected_output_names(
797
+ inference_method, dataset, expected_output_cols, output_cols_prefix
798
+ )
735
799
  elif isinstance(dataset, pd.DataFrame):
736
- transform_kwargs = dict(
737
- snowpark_input_cols = self._snowpark_cols,
738
- drop_input_cols = self._drop_input_cols
739
- )
800
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
740
801
 
741
802
  transform_handlers = ModelTransformerBuilder.build(
742
803
  dataset=dataset,
@@ -749,7 +810,7 @@ class KernelPCA(BaseTransformer):
749
810
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
750
811
  inference_method=inference_method,
751
812
  input_cols=self.input_cols,
752
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
813
+ expected_output_cols=expected_output_cols,
753
814
  **transform_kwargs
754
815
  )
755
816
  return output_df
@@ -775,30 +836,34 @@ class KernelPCA(BaseTransformer):
775
836
  Output dataset with results of the decision function for the samples in input dataset.
776
837
  """
777
838
  super()._check_dataset_type(dataset)
778
- inference_method="decision_function"
839
+ inference_method = "decision_function"
779
840
 
780
841
  # This dictionary contains optional kwargs for batch inference. These kwargs
781
842
  # are specific to the type of dataset used.
782
843
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
783
844
 
845
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
846
+
784
847
  if isinstance(dataset, DataFrame):
785
848
  self._deps = self._batch_inference_validate_snowpark(
786
849
  dataset=dataset,
787
850
  inference_method=inference_method,
788
851
  )
789
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
852
+ assert isinstance(
853
+ dataset._session, Session
854
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
790
855
  transform_kwargs = dict(
791
856
  session=dataset._session,
792
857
  dependencies=self._deps,
793
- drop_input_cols = self._drop_input_cols,
858
+ drop_input_cols=self._drop_input_cols,
794
859
  expected_output_cols_type="float",
795
860
  )
861
+ expected_output_cols = self._align_expected_output_names(
862
+ inference_method, dataset, expected_output_cols, output_cols_prefix
863
+ )
796
864
 
797
865
  elif isinstance(dataset, pd.DataFrame):
798
- transform_kwargs = dict(
799
- snowpark_input_cols = self._snowpark_cols,
800
- drop_input_cols = self._drop_input_cols
801
- )
866
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
802
867
 
803
868
  transform_handlers = ModelTransformerBuilder.build(
804
869
  dataset=dataset,
@@ -811,7 +876,7 @@ class KernelPCA(BaseTransformer):
811
876
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
812
877
  inference_method=inference_method,
813
878
  input_cols=self.input_cols,
814
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
879
+ expected_output_cols=expected_output_cols,
815
880
  **transform_kwargs
816
881
  )
817
882
  return output_df
@@ -840,12 +905,14 @@ class KernelPCA(BaseTransformer):
840
905
  Output dataset with probability of the sample for each class in the model.
841
906
  """
842
907
  super()._check_dataset_type(dataset)
843
- inference_method="score_samples"
908
+ inference_method = "score_samples"
844
909
 
845
910
  # This dictionary contains optional kwargs for batch inference. These kwargs
846
911
  # are specific to the type of dataset used.
847
912
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
848
913
 
914
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
915
+
849
916
  if isinstance(dataset, DataFrame):
850
917
  self._deps = self._batch_inference_validate_snowpark(
851
918
  dataset=dataset,
@@ -858,6 +925,9 @@ class KernelPCA(BaseTransformer):
858
925
  drop_input_cols = self._drop_input_cols,
859
926
  expected_output_cols_type="float",
860
927
  )
928
+ expected_output_cols = self._align_expected_output_names(
929
+ inference_method, dataset, expected_output_cols, output_cols_prefix
930
+ )
861
931
 
862
932
  elif isinstance(dataset, pd.DataFrame):
863
933
  transform_kwargs = dict(
@@ -876,7 +946,7 @@ class KernelPCA(BaseTransformer):
876
946
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
877
947
  inference_method=inference_method,
878
948
  input_cols=self.input_cols,
879
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
949
+ expected_output_cols=expected_output_cols,
880
950
  **transform_kwargs
881
951
  )
882
952
  return output_df
@@ -1021,50 +1091,84 @@ class KernelPCA(BaseTransformer):
1021
1091
  )
1022
1092
  return output_df
1023
1093
 
1094
+
1095
+
1096
+ def to_sklearn(self) -> Any:
1097
+ """Get sklearn.decomposition.KernelPCA object.
1098
+ """
1099
+ if self._sklearn_object is None:
1100
+ self._sklearn_object = self._create_sklearn_object()
1101
+ return self._sklearn_object
1102
+
1103
+ def to_xgboost(self) -> Any:
1104
+ raise exceptions.SnowflakeMLException(
1105
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1106
+ original_exception=AttributeError(
1107
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1108
+ "to_xgboost()",
1109
+ "to_sklearn()"
1110
+ )
1111
+ ),
1112
+ )
1113
+
1114
+ def to_lightgbm(self) -> Any:
1115
+ raise exceptions.SnowflakeMLException(
1116
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1117
+ original_exception=AttributeError(
1118
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1119
+ "to_lightgbm()",
1120
+ "to_sklearn()"
1121
+ )
1122
+ ),
1123
+ )
1024
1124
 
1025
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1125
+ def _get_dependencies(self) -> List[str]:
1126
+ return self._deps
1127
+
1128
+
1129
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1026
1130
  self._model_signature_dict = dict()
1027
1131
 
1028
1132
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1029
1133
 
1030
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1134
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1031
1135
  outputs: List[BaseFeatureSpec] = []
1032
1136
  if hasattr(self, "predict"):
1033
1137
  # keep mypy happy
1034
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1138
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1035
1139
  # For classifier, the type of predict is the same as the type of label
1036
- if self._sklearn_object._estimator_type == 'classifier':
1037
- # label columns is the desired type for output
1140
+ if self._sklearn_object._estimator_type == "classifier":
1141
+ # label columns is the desired type for output
1038
1142
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1039
1143
  # rename the output columns
1040
1144
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1041
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1042
- ([] if self._drop_input_cols else inputs)
1043
- + outputs)
1145
+ self._model_signature_dict["predict"] = ModelSignature(
1146
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1147
+ )
1044
1148
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1045
1149
  # For outlier models, returns -1 for outliers and 1 for inliers.
1046
- # Clusterer returns int64 cluster labels.
1150
+ # Clusterer returns int64 cluster labels.
1047
1151
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1048
1152
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1049
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1050
- ([] if self._drop_input_cols else inputs)
1051
- + outputs)
1052
-
1153
+ self._model_signature_dict["predict"] = ModelSignature(
1154
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1155
+ )
1156
+
1053
1157
  # For regressor, the type of predict is float64
1054
- elif self._sklearn_object._estimator_type == 'regressor':
1158
+ elif self._sklearn_object._estimator_type == "regressor":
1055
1159
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1056
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1057
- ([] if self._drop_input_cols else inputs)
1058
- + outputs)
1059
-
1160
+ self._model_signature_dict["predict"] = ModelSignature(
1161
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1162
+ )
1163
+
1060
1164
  for prob_func in PROB_FUNCTIONS:
1061
1165
  if hasattr(self, prob_func):
1062
1166
  output_cols_prefix: str = f"{prob_func}_"
1063
1167
  output_column_names = self._get_output_column_names(output_cols_prefix)
1064
1168
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1065
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1066
- ([] if self._drop_input_cols else inputs)
1067
- + outputs)
1169
+ self._model_signature_dict[prob_func] = ModelSignature(
1170
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1171
+ )
1068
1172
 
1069
1173
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1070
1174
  items = list(self._model_signature_dict.items())
@@ -1077,10 +1181,10 @@ class KernelPCA(BaseTransformer):
1077
1181
  """Returns model signature of current class.
1078
1182
 
1079
1183
  Raises:
1080
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1184
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1081
1185
 
1082
1186
  Returns:
1083
- Dict[str, ModelSignature]: each method and its input output signature
1187
+ Dict with each method and its input output signature
1084
1188
  """
1085
1189
  if self._model_signature_dict is None:
1086
1190
  raise exceptions.SnowflakeMLException(
@@ -1088,35 +1192,3 @@ class KernelPCA(BaseTransformer):
1088
1192
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1089
1193
  )
1090
1194
  return self._model_signature_dict
1091
-
1092
- def to_sklearn(self) -> Any:
1093
- """Get sklearn.decomposition.KernelPCA object.
1094
- """
1095
- if self._sklearn_object is None:
1096
- self._sklearn_object = self._create_sklearn_object()
1097
- return self._sklearn_object
1098
-
1099
- def to_xgboost(self) -> Any:
1100
- raise exceptions.SnowflakeMLException(
1101
- error_code=error_codes.METHOD_NOT_ALLOWED,
1102
- original_exception=AttributeError(
1103
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1104
- "to_xgboost()",
1105
- "to_sklearn()"
1106
- )
1107
- ),
1108
- )
1109
-
1110
- def to_lightgbm(self) -> Any:
1111
- raise exceptions.SnowflakeMLException(
1112
- error_code=error_codes.METHOD_NOT_ALLOWED,
1113
- original_exception=AttributeError(
1114
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1115
- "to_lightgbm()",
1116
- "to_sklearn()"
1117
- )
1118
- ),
1119
- )
1120
-
1121
- def _get_dependencies(self) -> List[str]:
1122
- return self._deps