snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -219,12 +218,7 @@ class VotingRegressor(BaseTransformer):
219
218
  )
220
219
  return selected_cols
221
220
 
222
- @telemetry.send_api_usage_telemetry(
223
- project=_PROJECT,
224
- subproject=_SUBPROJECT,
225
- custom_tags=dict([("autogen", True)]),
226
- )
227
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "VotingRegressor":
221
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "VotingRegressor":
228
222
  """Fit the estimators
229
223
  For more details on this function, see [sklearn.ensemble.VotingRegressor.fit]
230
224
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingRegressor.html#sklearn.ensemble.VotingRegressor.fit)
@@ -251,12 +245,14 @@ class VotingRegressor(BaseTransformer):
251
245
 
252
246
  self._snowpark_cols = dataset.select(self.input_cols).columns
253
247
 
254
- # If we are already in a stored procedure, no need to kick off another one.
248
+ # If we are already in a stored procedure, no need to kick off another one.
255
249
  if SNOWML_SPROC_ENV in os.environ:
256
250
  statement_params = telemetry.get_function_usage_statement_params(
257
251
  project=_PROJECT,
258
252
  subproject=_SUBPROJECT,
259
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), VotingRegressor.__class__.__name__),
253
+ function_name=telemetry.get_statement_params_full_func_name(
254
+ inspect.currentframe(), VotingRegressor.__class__.__name__
255
+ ),
260
256
  api_calls=[Session.call],
261
257
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
262
258
  )
@@ -277,7 +273,7 @@ class VotingRegressor(BaseTransformer):
277
273
  )
278
274
  self._sklearn_object = model_trainer.train()
279
275
  self._is_fitted = True
280
- self._get_model_signatures(dataset)
276
+ self._generate_model_signatures(dataset)
281
277
  return self
282
278
 
283
279
  def _batch_inference_validate_snowpark(
@@ -353,7 +349,9 @@ class VotingRegressor(BaseTransformer):
353
349
  # when it is classifier, infer the datatype from label columns
354
350
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
355
351
  # Batch inference takes a single expected output column type. Use the first columns type for now.
356
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
352
+ label_cols_signatures = [
353
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
354
+ ]
357
355
  if len(label_cols_signatures) == 0:
358
356
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
359
357
  raise exceptions.SnowflakeMLException(
@@ -361,25 +359,22 @@ class VotingRegressor(BaseTransformer):
361
359
  original_exception=ValueError(error_str),
362
360
  )
363
361
 
364
- expected_type_inferred = convert_sp_to_sf_type(
365
- label_cols_signatures[0].as_snowpark_type()
366
- )
362
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
367
363
 
368
364
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
369
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
365
+ assert isinstance(
366
+ dataset._session, Session
367
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
370
368
 
371
369
  transform_kwargs = dict(
372
- session = dataset._session,
373
- dependencies = self._deps,
374
- drop_input_cols = self._drop_input_cols,
375
- expected_output_cols_type = expected_type_inferred,
370
+ session=dataset._session,
371
+ dependencies=self._deps,
372
+ drop_input_cols=self._drop_input_cols,
373
+ expected_output_cols_type=expected_type_inferred,
376
374
  )
377
375
 
378
376
  elif isinstance(dataset, pd.DataFrame):
379
- transform_kwargs = dict(
380
- snowpark_input_cols = self._snowpark_cols,
381
- drop_input_cols = self._drop_input_cols
382
- )
377
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
383
378
 
384
379
  transform_handlers = ModelTransformerBuilder.build(
385
380
  dataset=dataset,
@@ -421,7 +416,7 @@ class VotingRegressor(BaseTransformer):
421
416
  Transformed dataset.
422
417
  """
423
418
  super()._check_dataset_type(dataset)
424
- inference_method="transform"
419
+ inference_method = "transform"
425
420
 
426
421
  # This dictionary contains optional kwargs for batch inference. These kwargs
427
422
  # are specific to the type of dataset used.
@@ -458,17 +453,14 @@ class VotingRegressor(BaseTransformer):
458
453
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
459
454
 
460
455
  transform_kwargs = dict(
461
- session = dataset._session,
462
- dependencies = self._deps,
463
- drop_input_cols = self._drop_input_cols,
464
- expected_output_cols_type = expected_dtype,
456
+ session=dataset._session,
457
+ dependencies=self._deps,
458
+ drop_input_cols=self._drop_input_cols,
459
+ expected_output_cols_type=expected_dtype,
465
460
  )
466
461
 
467
462
  elif isinstance(dataset, pd.DataFrame):
468
- transform_kwargs = dict(
469
- snowpark_input_cols = self._snowpark_cols,
470
- drop_input_cols = self._drop_input_cols
471
- )
463
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
472
464
 
473
465
  transform_handlers = ModelTransformerBuilder.build(
474
466
  dataset=dataset,
@@ -487,7 +479,11 @@ class VotingRegressor(BaseTransformer):
487
479
  return output_df
488
480
 
489
481
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
490
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
482
+ def fit_predict(
483
+ self,
484
+ dataset: Union[DataFrame, pd.DataFrame],
485
+ output_cols_prefix: str = "fit_predict_",
486
+ ) -> Union[DataFrame, pd.DataFrame]:
491
487
  """ Method not supported for this class.
492
488
 
493
489
 
@@ -512,7 +508,9 @@ class VotingRegressor(BaseTransformer):
512
508
  )
513
509
  output_result, fitted_estimator = model_trainer.train_fit_predict(
514
510
  drop_input_cols=self._drop_input_cols,
515
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
511
+ expected_output_cols_list=(
512
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
513
+ ),
516
514
  )
517
515
  self._sklearn_object = fitted_estimator
518
516
  self._is_fitted = True
@@ -529,6 +527,62 @@ class VotingRegressor(BaseTransformer):
529
527
  assert self._sklearn_object is not None
530
528
  return self._sklearn_object.embedding_
531
529
 
530
+
531
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
532
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
533
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
534
+ """
535
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
536
+ # The following condition is introduced for kneighbors methods, and not used in other methods
537
+ if output_cols:
538
+ output_cols = [
539
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
540
+ for c in output_cols
541
+ ]
542
+ elif getattr(self._sklearn_object, "classes_", None) is None:
543
+ output_cols = [output_cols_prefix]
544
+ elif self._sklearn_object is not None:
545
+ classes = self._sklearn_object.classes_
546
+ if isinstance(classes, numpy.ndarray):
547
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
548
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
549
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
550
+ output_cols = []
551
+ for i, cl in enumerate(classes):
552
+ # For binary classification, there is only one output column for each class
553
+ # ndarray as the two classes are complementary.
554
+ if len(cl) == 2:
555
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
556
+ else:
557
+ output_cols.extend([
558
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
559
+ ])
560
+ else:
561
+ output_cols = []
562
+
563
+ # Make sure column names are valid snowflake identifiers.
564
+ assert output_cols is not None # Make MyPy happy
565
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
566
+
567
+ return rv
568
+
569
+ def _align_expected_output_names(
570
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
571
+ ) -> List[str]:
572
+ # in case the inferred output column names dimension is different
573
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
574
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
575
+ output_df_columns = list(output_df_pd.columns)
576
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
577
+ if self.sample_weight_col:
578
+ output_df_columns_set -= set(self.sample_weight_col)
579
+ # if the dimension of inferred output column names is correct; use it
580
+ if len(expected_output_cols_list) == len(output_df_columns_set):
581
+ return expected_output_cols_list
582
+ # otherwise, use the sklearn estimator's output
583
+ else:
584
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
585
+
532
586
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
533
587
  @telemetry.send_api_usage_telemetry(
534
588
  project=_PROJECT,
@@ -559,24 +613,28 @@ class VotingRegressor(BaseTransformer):
559
613
  # are specific to the type of dataset used.
560
614
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
561
615
 
616
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
617
+
562
618
  if isinstance(dataset, DataFrame):
563
619
  self._deps = self._batch_inference_validate_snowpark(
564
620
  dataset=dataset,
565
621
  inference_method=inference_method,
566
622
  )
567
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
623
+ assert isinstance(
624
+ dataset._session, Session
625
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
568
626
  transform_kwargs = dict(
569
627
  session=dataset._session,
570
628
  dependencies=self._deps,
571
- drop_input_cols = self._drop_input_cols,
629
+ drop_input_cols=self._drop_input_cols,
572
630
  expected_output_cols_type="float",
573
631
  )
632
+ expected_output_cols = self._align_expected_output_names(
633
+ inference_method, dataset, expected_output_cols, output_cols_prefix
634
+ )
574
635
 
575
636
  elif isinstance(dataset, pd.DataFrame):
576
- transform_kwargs = dict(
577
- snowpark_input_cols = self._snowpark_cols,
578
- drop_input_cols = self._drop_input_cols
579
- )
637
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
580
638
 
581
639
  transform_handlers = ModelTransformerBuilder.build(
582
640
  dataset=dataset,
@@ -588,7 +646,7 @@ class VotingRegressor(BaseTransformer):
588
646
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
589
647
  inference_method=inference_method,
590
648
  input_cols=self.input_cols,
591
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
649
+ expected_output_cols=expected_output_cols,
592
650
  **transform_kwargs
593
651
  )
594
652
  return output_df
@@ -618,7 +676,8 @@ class VotingRegressor(BaseTransformer):
618
676
  Output dataset with log probability of the sample for each class in the model.
619
677
  """
620
678
  super()._check_dataset_type(dataset)
621
- inference_method="predict_log_proba"
679
+ inference_method = "predict_log_proba"
680
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
622
681
 
623
682
  # This dictionary contains optional kwargs for batch inference. These kwargs
624
683
  # are specific to the type of dataset used.
@@ -629,18 +688,20 @@ class VotingRegressor(BaseTransformer):
629
688
  dataset=dataset,
630
689
  inference_method=inference_method,
631
690
  )
632
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
691
+ assert isinstance(
692
+ dataset._session, Session
693
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
633
694
  transform_kwargs = dict(
634
695
  session=dataset._session,
635
696
  dependencies=self._deps,
636
- drop_input_cols = self._drop_input_cols,
697
+ drop_input_cols=self._drop_input_cols,
637
698
  expected_output_cols_type="float",
638
699
  )
700
+ expected_output_cols = self._align_expected_output_names(
701
+ inference_method, dataset, expected_output_cols, output_cols_prefix
702
+ )
639
703
  elif isinstance(dataset, pd.DataFrame):
640
- transform_kwargs = dict(
641
- snowpark_input_cols = self._snowpark_cols,
642
- drop_input_cols = self._drop_input_cols
643
- )
704
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
644
705
 
645
706
  transform_handlers = ModelTransformerBuilder.build(
646
707
  dataset=dataset,
@@ -653,7 +714,7 @@ class VotingRegressor(BaseTransformer):
653
714
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
654
715
  inference_method=inference_method,
655
716
  input_cols=self.input_cols,
656
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
717
+ expected_output_cols=expected_output_cols,
657
718
  **transform_kwargs
658
719
  )
659
720
  return output_df
@@ -679,30 +740,34 @@ class VotingRegressor(BaseTransformer):
679
740
  Output dataset with results of the decision function for the samples in input dataset.
680
741
  """
681
742
  super()._check_dataset_type(dataset)
682
- inference_method="decision_function"
743
+ inference_method = "decision_function"
683
744
 
684
745
  # This dictionary contains optional kwargs for batch inference. These kwargs
685
746
  # are specific to the type of dataset used.
686
747
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
687
748
 
749
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
750
+
688
751
  if isinstance(dataset, DataFrame):
689
752
  self._deps = self._batch_inference_validate_snowpark(
690
753
  dataset=dataset,
691
754
  inference_method=inference_method,
692
755
  )
693
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
756
+ assert isinstance(
757
+ dataset._session, Session
758
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
694
759
  transform_kwargs = dict(
695
760
  session=dataset._session,
696
761
  dependencies=self._deps,
697
- drop_input_cols = self._drop_input_cols,
762
+ drop_input_cols=self._drop_input_cols,
698
763
  expected_output_cols_type="float",
699
764
  )
765
+ expected_output_cols = self._align_expected_output_names(
766
+ inference_method, dataset, expected_output_cols, output_cols_prefix
767
+ )
700
768
 
701
769
  elif isinstance(dataset, pd.DataFrame):
702
- transform_kwargs = dict(
703
- snowpark_input_cols = self._snowpark_cols,
704
- drop_input_cols = self._drop_input_cols
705
- )
770
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
706
771
 
707
772
  transform_handlers = ModelTransformerBuilder.build(
708
773
  dataset=dataset,
@@ -715,7 +780,7 @@ class VotingRegressor(BaseTransformer):
715
780
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
716
781
  inference_method=inference_method,
717
782
  input_cols=self.input_cols,
718
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
783
+ expected_output_cols=expected_output_cols,
719
784
  **transform_kwargs
720
785
  )
721
786
  return output_df
@@ -744,12 +809,14 @@ class VotingRegressor(BaseTransformer):
744
809
  Output dataset with probability of the sample for each class in the model.
745
810
  """
746
811
  super()._check_dataset_type(dataset)
747
- inference_method="score_samples"
812
+ inference_method = "score_samples"
748
813
 
749
814
  # This dictionary contains optional kwargs for batch inference. These kwargs
750
815
  # are specific to the type of dataset used.
751
816
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
752
817
 
818
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
819
+
753
820
  if isinstance(dataset, DataFrame):
754
821
  self._deps = self._batch_inference_validate_snowpark(
755
822
  dataset=dataset,
@@ -762,6 +829,9 @@ class VotingRegressor(BaseTransformer):
762
829
  drop_input_cols = self._drop_input_cols,
763
830
  expected_output_cols_type="float",
764
831
  )
832
+ expected_output_cols = self._align_expected_output_names(
833
+ inference_method, dataset, expected_output_cols, output_cols_prefix
834
+ )
765
835
 
766
836
  elif isinstance(dataset, pd.DataFrame):
767
837
  transform_kwargs = dict(
@@ -780,7 +850,7 @@ class VotingRegressor(BaseTransformer):
780
850
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
781
851
  inference_method=inference_method,
782
852
  input_cols=self.input_cols,
783
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
853
+ expected_output_cols=expected_output_cols,
784
854
  **transform_kwargs
785
855
  )
786
856
  return output_df
@@ -927,50 +997,84 @@ class VotingRegressor(BaseTransformer):
927
997
  )
928
998
  return output_df
929
999
 
1000
+
1001
+
1002
+ def to_sklearn(self) -> Any:
1003
+ """Get sklearn.ensemble.VotingRegressor object.
1004
+ """
1005
+ if self._sklearn_object is None:
1006
+ self._sklearn_object = self._create_sklearn_object()
1007
+ return self._sklearn_object
1008
+
1009
+ def to_xgboost(self) -> Any:
1010
+ raise exceptions.SnowflakeMLException(
1011
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1012
+ original_exception=AttributeError(
1013
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1014
+ "to_xgboost()",
1015
+ "to_sklearn()"
1016
+ )
1017
+ ),
1018
+ )
1019
+
1020
+ def to_lightgbm(self) -> Any:
1021
+ raise exceptions.SnowflakeMLException(
1022
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1023
+ original_exception=AttributeError(
1024
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1025
+ "to_lightgbm()",
1026
+ "to_sklearn()"
1027
+ )
1028
+ ),
1029
+ )
930
1030
 
931
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1031
+ def _get_dependencies(self) -> List[str]:
1032
+ return self._deps
1033
+
1034
+
1035
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
932
1036
  self._model_signature_dict = dict()
933
1037
 
934
1038
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
935
1039
 
936
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1040
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
937
1041
  outputs: List[BaseFeatureSpec] = []
938
1042
  if hasattr(self, "predict"):
939
1043
  # keep mypy happy
940
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1044
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
941
1045
  # For classifier, the type of predict is the same as the type of label
942
- if self._sklearn_object._estimator_type == 'classifier':
943
- # label columns is the desired type for output
1046
+ if self._sklearn_object._estimator_type == "classifier":
1047
+ # label columns is the desired type for output
944
1048
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
945
1049
  # rename the output columns
946
1050
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
947
- self._model_signature_dict["predict"] = ModelSignature(inputs,
948
- ([] if self._drop_input_cols else inputs)
949
- + outputs)
1051
+ self._model_signature_dict["predict"] = ModelSignature(
1052
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1053
+ )
950
1054
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
951
1055
  # For outlier models, returns -1 for outliers and 1 for inliers.
952
- # Clusterer returns int64 cluster labels.
1056
+ # Clusterer returns int64 cluster labels.
953
1057
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
954
1058
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
955
- self._model_signature_dict["predict"] = ModelSignature(inputs,
956
- ([] if self._drop_input_cols else inputs)
957
- + outputs)
958
-
1059
+ self._model_signature_dict["predict"] = ModelSignature(
1060
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1061
+ )
1062
+
959
1063
  # For regressor, the type of predict is float64
960
- elif self._sklearn_object._estimator_type == 'regressor':
1064
+ elif self._sklearn_object._estimator_type == "regressor":
961
1065
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
962
- self._model_signature_dict["predict"] = ModelSignature(inputs,
963
- ([] if self._drop_input_cols else inputs)
964
- + outputs)
965
-
1066
+ self._model_signature_dict["predict"] = ModelSignature(
1067
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1068
+ )
1069
+
966
1070
  for prob_func in PROB_FUNCTIONS:
967
1071
  if hasattr(self, prob_func):
968
1072
  output_cols_prefix: str = f"{prob_func}_"
969
1073
  output_column_names = self._get_output_column_names(output_cols_prefix)
970
1074
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
971
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
972
- ([] if self._drop_input_cols else inputs)
973
- + outputs)
1075
+ self._model_signature_dict[prob_func] = ModelSignature(
1076
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1077
+ )
974
1078
 
975
1079
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
976
1080
  items = list(self._model_signature_dict.items())
@@ -983,10 +1087,10 @@ class VotingRegressor(BaseTransformer):
983
1087
  """Returns model signature of current class.
984
1088
 
985
1089
  Raises:
986
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1090
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
987
1091
 
988
1092
  Returns:
989
- Dict[str, ModelSignature]: each method and its input output signature
1093
+ Dict with each method and its input output signature
990
1094
  """
991
1095
  if self._model_signature_dict is None:
992
1096
  raise exceptions.SnowflakeMLException(
@@ -994,35 +1098,3 @@ class VotingRegressor(BaseTransformer):
994
1098
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
995
1099
  )
996
1100
  return self._model_signature_dict
997
-
998
- def to_sklearn(self) -> Any:
999
- """Get sklearn.ensemble.VotingRegressor object.
1000
- """
1001
- if self._sklearn_object is None:
1002
- self._sklearn_object = self._create_sklearn_object()
1003
- return self._sklearn_object
1004
-
1005
- def to_xgboost(self) -> Any:
1006
- raise exceptions.SnowflakeMLException(
1007
- error_code=error_codes.METHOD_NOT_ALLOWED,
1008
- original_exception=AttributeError(
1009
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1010
- "to_xgboost()",
1011
- "to_sklearn()"
1012
- )
1013
- ),
1014
- )
1015
-
1016
- def to_lightgbm(self) -> Any:
1017
- raise exceptions.SnowflakeMLException(
1018
- error_code=error_codes.METHOD_NOT_ALLOWED,
1019
- original_exception=AttributeError(
1020
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1021
- "to_lightgbm()",
1022
- "to_sklearn()"
1023
- )
1024
- ),
1025
- )
1026
-
1027
- def _get_dependencies(self) -> List[str]:
1028
- return self._deps