snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -284,12 +283,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
284
283
  )
285
284
  return selected_cols
286
285
 
287
- @telemetry.send_api_usage_telemetry(
288
- project=_PROJECT,
289
- subproject=_SUBPROJECT,
290
- custom_tags=dict([("autogen", True)]),
291
- )
292
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NeighborhoodComponentsAnalysis":
286
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NeighborhoodComponentsAnalysis":
293
287
  """Fit the model according to the given training data
294
288
  For more details on this function, see [sklearn.neighbors.NeighborhoodComponentsAnalysis.fit]
295
289
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NeighborhoodComponentsAnalysis.html#sklearn.neighbors.NeighborhoodComponentsAnalysis.fit)
@@ -316,12 +310,14 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
316
310
 
317
311
  self._snowpark_cols = dataset.select(self.input_cols).columns
318
312
 
319
- # If we are already in a stored procedure, no need to kick off another one.
313
+ # If we are already in a stored procedure, no need to kick off another one.
320
314
  if SNOWML_SPROC_ENV in os.environ:
321
315
  statement_params = telemetry.get_function_usage_statement_params(
322
316
  project=_PROJECT,
323
317
  subproject=_SUBPROJECT,
324
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NeighborhoodComponentsAnalysis.__class__.__name__),
318
+ function_name=telemetry.get_statement_params_full_func_name(
319
+ inspect.currentframe(), NeighborhoodComponentsAnalysis.__class__.__name__
320
+ ),
325
321
  api_calls=[Session.call],
326
322
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
327
323
  )
@@ -342,7 +338,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
342
338
  )
343
339
  self._sklearn_object = model_trainer.train()
344
340
  self._is_fitted = True
345
- self._get_model_signatures(dataset)
341
+ self._generate_model_signatures(dataset)
346
342
  return self
347
343
 
348
344
  def _batch_inference_validate_snowpark(
@@ -416,7 +412,9 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
416
412
  # when it is classifier, infer the datatype from label columns
417
413
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
418
414
  # Batch inference takes a single expected output column type. Use the first columns type for now.
419
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
415
+ label_cols_signatures = [
416
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
417
+ ]
420
418
  if len(label_cols_signatures) == 0:
421
419
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
422
420
  raise exceptions.SnowflakeMLException(
@@ -424,25 +422,22 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
424
422
  original_exception=ValueError(error_str),
425
423
  )
426
424
 
427
- expected_type_inferred = convert_sp_to_sf_type(
428
- label_cols_signatures[0].as_snowpark_type()
429
- )
425
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
430
426
 
431
427
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
432
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
428
+ assert isinstance(
429
+ dataset._session, Session
430
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
433
431
 
434
432
  transform_kwargs = dict(
435
- session = dataset._session,
436
- dependencies = self._deps,
437
- drop_input_cols = self._drop_input_cols,
438
- expected_output_cols_type = expected_type_inferred,
433
+ session=dataset._session,
434
+ dependencies=self._deps,
435
+ drop_input_cols=self._drop_input_cols,
436
+ expected_output_cols_type=expected_type_inferred,
439
437
  )
440
438
 
441
439
  elif isinstance(dataset, pd.DataFrame):
442
- transform_kwargs = dict(
443
- snowpark_input_cols = self._snowpark_cols,
444
- drop_input_cols = self._drop_input_cols
445
- )
440
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
446
441
 
447
442
  transform_handlers = ModelTransformerBuilder.build(
448
443
  dataset=dataset,
@@ -484,7 +479,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
484
479
  Transformed dataset.
485
480
  """
486
481
  super()._check_dataset_type(dataset)
487
- inference_method="transform"
482
+ inference_method = "transform"
488
483
 
489
484
  # This dictionary contains optional kwargs for batch inference. These kwargs
490
485
  # are specific to the type of dataset used.
@@ -521,17 +516,14 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
521
516
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
522
517
 
523
518
  transform_kwargs = dict(
524
- session = dataset._session,
525
- dependencies = self._deps,
526
- drop_input_cols = self._drop_input_cols,
527
- expected_output_cols_type = expected_dtype,
519
+ session=dataset._session,
520
+ dependencies=self._deps,
521
+ drop_input_cols=self._drop_input_cols,
522
+ expected_output_cols_type=expected_dtype,
528
523
  )
529
524
 
530
525
  elif isinstance(dataset, pd.DataFrame):
531
- transform_kwargs = dict(
532
- snowpark_input_cols = self._snowpark_cols,
533
- drop_input_cols = self._drop_input_cols
534
- )
526
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
535
527
 
536
528
  transform_handlers = ModelTransformerBuilder.build(
537
529
  dataset=dataset,
@@ -550,7 +542,11 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
550
542
  return output_df
551
543
 
552
544
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
553
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
545
+ def fit_predict(
546
+ self,
547
+ dataset: Union[DataFrame, pd.DataFrame],
548
+ output_cols_prefix: str = "fit_predict_",
549
+ ) -> Union[DataFrame, pd.DataFrame]:
554
550
  """ Method not supported for this class.
555
551
 
556
552
 
@@ -575,7 +571,9 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
575
571
  )
576
572
  output_result, fitted_estimator = model_trainer.train_fit_predict(
577
573
  drop_input_cols=self._drop_input_cols,
578
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
574
+ expected_output_cols_list=(
575
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
576
+ ),
579
577
  )
580
578
  self._sklearn_object = fitted_estimator
581
579
  self._is_fitted = True
@@ -592,6 +590,62 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
592
590
  assert self._sklearn_object is not None
593
591
  return self._sklearn_object.embedding_
594
592
 
593
+
594
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
595
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
596
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
597
+ """
598
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
599
+ # The following condition is introduced for kneighbors methods, and not used in other methods
600
+ if output_cols:
601
+ output_cols = [
602
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
603
+ for c in output_cols
604
+ ]
605
+ elif getattr(self._sklearn_object, "classes_", None) is None:
606
+ output_cols = [output_cols_prefix]
607
+ elif self._sklearn_object is not None:
608
+ classes = self._sklearn_object.classes_
609
+ if isinstance(classes, numpy.ndarray):
610
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
611
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
612
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
613
+ output_cols = []
614
+ for i, cl in enumerate(classes):
615
+ # For binary classification, there is only one output column for each class
616
+ # ndarray as the two classes are complementary.
617
+ if len(cl) == 2:
618
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
619
+ else:
620
+ output_cols.extend([
621
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
622
+ ])
623
+ else:
624
+ output_cols = []
625
+
626
+ # Make sure column names are valid snowflake identifiers.
627
+ assert output_cols is not None # Make MyPy happy
628
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
629
+
630
+ return rv
631
+
632
+ def _align_expected_output_names(
633
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
634
+ ) -> List[str]:
635
+ # in case the inferred output column names dimension is different
636
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
637
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
638
+ output_df_columns = list(output_df_pd.columns)
639
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
640
+ if self.sample_weight_col:
641
+ output_df_columns_set -= set(self.sample_weight_col)
642
+ # if the dimension of inferred output column names is correct; use it
643
+ if len(expected_output_cols_list) == len(output_df_columns_set):
644
+ return expected_output_cols_list
645
+ # otherwise, use the sklearn estimator's output
646
+ else:
647
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
648
+
595
649
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
596
650
  @telemetry.send_api_usage_telemetry(
597
651
  project=_PROJECT,
@@ -622,24 +676,28 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
622
676
  # are specific to the type of dataset used.
623
677
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
624
678
 
679
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
680
+
625
681
  if isinstance(dataset, DataFrame):
626
682
  self._deps = self._batch_inference_validate_snowpark(
627
683
  dataset=dataset,
628
684
  inference_method=inference_method,
629
685
  )
630
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
686
+ assert isinstance(
687
+ dataset._session, Session
688
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
631
689
  transform_kwargs = dict(
632
690
  session=dataset._session,
633
691
  dependencies=self._deps,
634
- drop_input_cols = self._drop_input_cols,
692
+ drop_input_cols=self._drop_input_cols,
635
693
  expected_output_cols_type="float",
636
694
  )
695
+ expected_output_cols = self._align_expected_output_names(
696
+ inference_method, dataset, expected_output_cols, output_cols_prefix
697
+ )
637
698
 
638
699
  elif isinstance(dataset, pd.DataFrame):
639
- transform_kwargs = dict(
640
- snowpark_input_cols = self._snowpark_cols,
641
- drop_input_cols = self._drop_input_cols
642
- )
700
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
643
701
 
644
702
  transform_handlers = ModelTransformerBuilder.build(
645
703
  dataset=dataset,
@@ -651,7 +709,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
651
709
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
652
710
  inference_method=inference_method,
653
711
  input_cols=self.input_cols,
654
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
712
+ expected_output_cols=expected_output_cols,
655
713
  **transform_kwargs
656
714
  )
657
715
  return output_df
@@ -681,7 +739,8 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
681
739
  Output dataset with log probability of the sample for each class in the model.
682
740
  """
683
741
  super()._check_dataset_type(dataset)
684
- inference_method="predict_log_proba"
742
+ inference_method = "predict_log_proba"
743
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
685
744
 
686
745
  # This dictionary contains optional kwargs for batch inference. These kwargs
687
746
  # are specific to the type of dataset used.
@@ -692,18 +751,20 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
692
751
  dataset=dataset,
693
752
  inference_method=inference_method,
694
753
  )
695
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
754
+ assert isinstance(
755
+ dataset._session, Session
756
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
696
757
  transform_kwargs = dict(
697
758
  session=dataset._session,
698
759
  dependencies=self._deps,
699
- drop_input_cols = self._drop_input_cols,
760
+ drop_input_cols=self._drop_input_cols,
700
761
  expected_output_cols_type="float",
701
762
  )
763
+ expected_output_cols = self._align_expected_output_names(
764
+ inference_method, dataset, expected_output_cols, output_cols_prefix
765
+ )
702
766
  elif isinstance(dataset, pd.DataFrame):
703
- transform_kwargs = dict(
704
- snowpark_input_cols = self._snowpark_cols,
705
- drop_input_cols = self._drop_input_cols
706
- )
767
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
707
768
 
708
769
  transform_handlers = ModelTransformerBuilder.build(
709
770
  dataset=dataset,
@@ -716,7 +777,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
716
777
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
717
778
  inference_method=inference_method,
718
779
  input_cols=self.input_cols,
719
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
780
+ expected_output_cols=expected_output_cols,
720
781
  **transform_kwargs
721
782
  )
722
783
  return output_df
@@ -742,30 +803,34 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
742
803
  Output dataset with results of the decision function for the samples in input dataset.
743
804
  """
744
805
  super()._check_dataset_type(dataset)
745
- inference_method="decision_function"
806
+ inference_method = "decision_function"
746
807
 
747
808
  # This dictionary contains optional kwargs for batch inference. These kwargs
748
809
  # are specific to the type of dataset used.
749
810
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
750
811
 
812
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
813
+
751
814
  if isinstance(dataset, DataFrame):
752
815
  self._deps = self._batch_inference_validate_snowpark(
753
816
  dataset=dataset,
754
817
  inference_method=inference_method,
755
818
  )
756
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
819
+ assert isinstance(
820
+ dataset._session, Session
821
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
757
822
  transform_kwargs = dict(
758
823
  session=dataset._session,
759
824
  dependencies=self._deps,
760
- drop_input_cols = self._drop_input_cols,
825
+ drop_input_cols=self._drop_input_cols,
761
826
  expected_output_cols_type="float",
762
827
  )
828
+ expected_output_cols = self._align_expected_output_names(
829
+ inference_method, dataset, expected_output_cols, output_cols_prefix
830
+ )
763
831
 
764
832
  elif isinstance(dataset, pd.DataFrame):
765
- transform_kwargs = dict(
766
- snowpark_input_cols = self._snowpark_cols,
767
- drop_input_cols = self._drop_input_cols
768
- )
833
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
769
834
 
770
835
  transform_handlers = ModelTransformerBuilder.build(
771
836
  dataset=dataset,
@@ -778,7 +843,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
778
843
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
779
844
  inference_method=inference_method,
780
845
  input_cols=self.input_cols,
781
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
846
+ expected_output_cols=expected_output_cols,
782
847
  **transform_kwargs
783
848
  )
784
849
  return output_df
@@ -807,12 +872,14 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
807
872
  Output dataset with probability of the sample for each class in the model.
808
873
  """
809
874
  super()._check_dataset_type(dataset)
810
- inference_method="score_samples"
875
+ inference_method = "score_samples"
811
876
 
812
877
  # This dictionary contains optional kwargs for batch inference. These kwargs
813
878
  # are specific to the type of dataset used.
814
879
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
815
880
 
881
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
882
+
816
883
  if isinstance(dataset, DataFrame):
817
884
  self._deps = self._batch_inference_validate_snowpark(
818
885
  dataset=dataset,
@@ -825,6 +892,9 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
825
892
  drop_input_cols = self._drop_input_cols,
826
893
  expected_output_cols_type="float",
827
894
  )
895
+ expected_output_cols = self._align_expected_output_names(
896
+ inference_method, dataset, expected_output_cols, output_cols_prefix
897
+ )
828
898
 
829
899
  elif isinstance(dataset, pd.DataFrame):
830
900
  transform_kwargs = dict(
@@ -843,7 +913,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
843
913
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
844
914
  inference_method=inference_method,
845
915
  input_cols=self.input_cols,
846
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
916
+ expected_output_cols=expected_output_cols,
847
917
  **transform_kwargs
848
918
  )
849
919
  return output_df
@@ -988,50 +1058,84 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
988
1058
  )
989
1059
  return output_df
990
1060
 
1061
+
1062
+
1063
+ def to_sklearn(self) -> Any:
1064
+ """Get sklearn.neighbors.NeighborhoodComponentsAnalysis object.
1065
+ """
1066
+ if self._sklearn_object is None:
1067
+ self._sklearn_object = self._create_sklearn_object()
1068
+ return self._sklearn_object
1069
+
1070
+ def to_xgboost(self) -> Any:
1071
+ raise exceptions.SnowflakeMLException(
1072
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1073
+ original_exception=AttributeError(
1074
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1075
+ "to_xgboost()",
1076
+ "to_sklearn()"
1077
+ )
1078
+ ),
1079
+ )
1080
+
1081
+ def to_lightgbm(self) -> Any:
1082
+ raise exceptions.SnowflakeMLException(
1083
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1084
+ original_exception=AttributeError(
1085
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1086
+ "to_lightgbm()",
1087
+ "to_sklearn()"
1088
+ )
1089
+ ),
1090
+ )
991
1091
 
992
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1092
+ def _get_dependencies(self) -> List[str]:
1093
+ return self._deps
1094
+
1095
+
1096
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
993
1097
  self._model_signature_dict = dict()
994
1098
 
995
1099
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
996
1100
 
997
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1101
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
998
1102
  outputs: List[BaseFeatureSpec] = []
999
1103
  if hasattr(self, "predict"):
1000
1104
  # keep mypy happy
1001
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1105
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1002
1106
  # For classifier, the type of predict is the same as the type of label
1003
- if self._sklearn_object._estimator_type == 'classifier':
1004
- # label columns is the desired type for output
1107
+ if self._sklearn_object._estimator_type == "classifier":
1108
+ # label columns is the desired type for output
1005
1109
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1006
1110
  # rename the output columns
1007
1111
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1008
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1009
- ([] if self._drop_input_cols else inputs)
1010
- + outputs)
1112
+ self._model_signature_dict["predict"] = ModelSignature(
1113
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1114
+ )
1011
1115
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1012
1116
  # For outlier models, returns -1 for outliers and 1 for inliers.
1013
- # Clusterer returns int64 cluster labels.
1117
+ # Clusterer returns int64 cluster labels.
1014
1118
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1015
1119
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1016
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1017
- ([] if self._drop_input_cols else inputs)
1018
- + outputs)
1019
-
1120
+ self._model_signature_dict["predict"] = ModelSignature(
1121
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1122
+ )
1123
+
1020
1124
  # For regressor, the type of predict is float64
1021
- elif self._sklearn_object._estimator_type == 'regressor':
1125
+ elif self._sklearn_object._estimator_type == "regressor":
1022
1126
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1023
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1024
- ([] if self._drop_input_cols else inputs)
1025
- + outputs)
1026
-
1127
+ self._model_signature_dict["predict"] = ModelSignature(
1128
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1129
+ )
1130
+
1027
1131
  for prob_func in PROB_FUNCTIONS:
1028
1132
  if hasattr(self, prob_func):
1029
1133
  output_cols_prefix: str = f"{prob_func}_"
1030
1134
  output_column_names = self._get_output_column_names(output_cols_prefix)
1031
1135
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1032
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1033
- ([] if self._drop_input_cols else inputs)
1034
- + outputs)
1136
+ self._model_signature_dict[prob_func] = ModelSignature(
1137
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1138
+ )
1035
1139
 
1036
1140
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1037
1141
  items = list(self._model_signature_dict.items())
@@ -1044,10 +1148,10 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
1044
1148
  """Returns model signature of current class.
1045
1149
 
1046
1150
  Raises:
1047
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1151
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1048
1152
 
1049
1153
  Returns:
1050
- Dict[str, ModelSignature]: each method and its input output signature
1154
+ Dict with each method and its input output signature
1051
1155
  """
1052
1156
  if self._model_signature_dict is None:
1053
1157
  raise exceptions.SnowflakeMLException(
@@ -1055,35 +1159,3 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
1055
1159
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1056
1160
  )
1057
1161
  return self._model_signature_dict
1058
-
1059
- def to_sklearn(self) -> Any:
1060
- """Get sklearn.neighbors.NeighborhoodComponentsAnalysis object.
1061
- """
1062
- if self._sklearn_object is None:
1063
- self._sklearn_object = self._create_sklearn_object()
1064
- return self._sklearn_object
1065
-
1066
- def to_xgboost(self) -> Any:
1067
- raise exceptions.SnowflakeMLException(
1068
- error_code=error_codes.METHOD_NOT_ALLOWED,
1069
- original_exception=AttributeError(
1070
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1071
- "to_xgboost()",
1072
- "to_sklearn()"
1073
- )
1074
- ),
1075
- )
1076
-
1077
- def to_lightgbm(self) -> Any:
1078
- raise exceptions.SnowflakeMLException(
1079
- error_code=error_codes.METHOD_NOT_ALLOWED,
1080
- original_exception=AttributeError(
1081
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1082
- "to_lightgbm()",
1083
- "to_sklearn()"
1084
- )
1085
- ),
1086
- )
1087
-
1088
- def _get_dependencies(self) -> List[str]:
1089
- return self._deps