snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -227,12 +226,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
227
226
  )
228
227
  return selected_cols
229
228
 
230
- @telemetry.send_api_usage_telemetry(
231
- project=_PROJECT,
232
- subproject=_SUBPROJECT,
233
- custom_tags=dict([("autogen", True)]),
234
- )
235
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OrthogonalMatchingPursuit":
229
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OrthogonalMatchingPursuit":
236
230
  """Fit the model using X, y as training data
237
231
  For more details on this function, see [sklearn.linear_model.OrthogonalMatchingPursuit.fit]
238
232
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuit.html#sklearn.linear_model.OrthogonalMatchingPursuit.fit)
@@ -259,12 +253,14 @@ class OrthogonalMatchingPursuit(BaseTransformer):
259
253
 
260
254
  self._snowpark_cols = dataset.select(self.input_cols).columns
261
255
 
262
- # If we are already in a stored procedure, no need to kick off another one.
256
+ # If we are already in a stored procedure, no need to kick off another one.
263
257
  if SNOWML_SPROC_ENV in os.environ:
264
258
  statement_params = telemetry.get_function_usage_statement_params(
265
259
  project=_PROJECT,
266
260
  subproject=_SUBPROJECT,
267
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OrthogonalMatchingPursuit.__class__.__name__),
261
+ function_name=telemetry.get_statement_params_full_func_name(
262
+ inspect.currentframe(), OrthogonalMatchingPursuit.__class__.__name__
263
+ ),
268
264
  api_calls=[Session.call],
269
265
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
270
266
  )
@@ -285,7 +281,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
285
281
  )
286
282
  self._sklearn_object = model_trainer.train()
287
283
  self._is_fitted = True
288
- self._get_model_signatures(dataset)
284
+ self._generate_model_signatures(dataset)
289
285
  return self
290
286
 
291
287
  def _batch_inference_validate_snowpark(
@@ -361,7 +357,9 @@ class OrthogonalMatchingPursuit(BaseTransformer):
361
357
  # when it is classifier, infer the datatype from label columns
362
358
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
363
359
  # Batch inference takes a single expected output column type. Use the first columns type for now.
364
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
360
+ label_cols_signatures = [
361
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
362
+ ]
365
363
  if len(label_cols_signatures) == 0:
366
364
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
367
365
  raise exceptions.SnowflakeMLException(
@@ -369,25 +367,22 @@ class OrthogonalMatchingPursuit(BaseTransformer):
369
367
  original_exception=ValueError(error_str),
370
368
  )
371
369
 
372
- expected_type_inferred = convert_sp_to_sf_type(
373
- label_cols_signatures[0].as_snowpark_type()
374
- )
370
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
375
371
 
376
372
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
377
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
373
+ assert isinstance(
374
+ dataset._session, Session
375
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
378
376
 
379
377
  transform_kwargs = dict(
380
- session = dataset._session,
381
- dependencies = self._deps,
382
- drop_input_cols = self._drop_input_cols,
383
- expected_output_cols_type = expected_type_inferred,
378
+ session=dataset._session,
379
+ dependencies=self._deps,
380
+ drop_input_cols=self._drop_input_cols,
381
+ expected_output_cols_type=expected_type_inferred,
384
382
  )
385
383
 
386
384
  elif isinstance(dataset, pd.DataFrame):
387
- transform_kwargs = dict(
388
- snowpark_input_cols = self._snowpark_cols,
389
- drop_input_cols = self._drop_input_cols
390
- )
385
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
391
386
 
392
387
  transform_handlers = ModelTransformerBuilder.build(
393
388
  dataset=dataset,
@@ -427,7 +422,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
427
422
  Transformed dataset.
428
423
  """
429
424
  super()._check_dataset_type(dataset)
430
- inference_method="transform"
425
+ inference_method = "transform"
431
426
 
432
427
  # This dictionary contains optional kwargs for batch inference. These kwargs
433
428
  # are specific to the type of dataset used.
@@ -464,17 +459,14 @@ class OrthogonalMatchingPursuit(BaseTransformer):
464
459
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
465
460
 
466
461
  transform_kwargs = dict(
467
- session = dataset._session,
468
- dependencies = self._deps,
469
- drop_input_cols = self._drop_input_cols,
470
- expected_output_cols_type = expected_dtype,
462
+ session=dataset._session,
463
+ dependencies=self._deps,
464
+ drop_input_cols=self._drop_input_cols,
465
+ expected_output_cols_type=expected_dtype,
471
466
  )
472
467
 
473
468
  elif isinstance(dataset, pd.DataFrame):
474
- transform_kwargs = dict(
475
- snowpark_input_cols = self._snowpark_cols,
476
- drop_input_cols = self._drop_input_cols
477
- )
469
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
478
470
 
479
471
  transform_handlers = ModelTransformerBuilder.build(
480
472
  dataset=dataset,
@@ -493,7 +485,11 @@ class OrthogonalMatchingPursuit(BaseTransformer):
493
485
  return output_df
494
486
 
495
487
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
496
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
488
+ def fit_predict(
489
+ self,
490
+ dataset: Union[DataFrame, pd.DataFrame],
491
+ output_cols_prefix: str = "fit_predict_",
492
+ ) -> Union[DataFrame, pd.DataFrame]:
497
493
  """ Method not supported for this class.
498
494
 
499
495
 
@@ -518,7 +514,9 @@ class OrthogonalMatchingPursuit(BaseTransformer):
518
514
  )
519
515
  output_result, fitted_estimator = model_trainer.train_fit_predict(
520
516
  drop_input_cols=self._drop_input_cols,
521
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
517
+ expected_output_cols_list=(
518
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
519
+ ),
522
520
  )
523
521
  self._sklearn_object = fitted_estimator
524
522
  self._is_fitted = True
@@ -535,6 +533,62 @@ class OrthogonalMatchingPursuit(BaseTransformer):
535
533
  assert self._sklearn_object is not None
536
534
  return self._sklearn_object.embedding_
537
535
 
536
+
537
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
538
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
539
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
540
+ """
541
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
542
+ # The following condition is introduced for kneighbors methods, and not used in other methods
543
+ if output_cols:
544
+ output_cols = [
545
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
546
+ for c in output_cols
547
+ ]
548
+ elif getattr(self._sklearn_object, "classes_", None) is None:
549
+ output_cols = [output_cols_prefix]
550
+ elif self._sklearn_object is not None:
551
+ classes = self._sklearn_object.classes_
552
+ if isinstance(classes, numpy.ndarray):
553
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
554
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
555
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
556
+ output_cols = []
557
+ for i, cl in enumerate(classes):
558
+ # For binary classification, there is only one output column for each class
559
+ # ndarray as the two classes are complementary.
560
+ if len(cl) == 2:
561
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
562
+ else:
563
+ output_cols.extend([
564
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
565
+ ])
566
+ else:
567
+ output_cols = []
568
+
569
+ # Make sure column names are valid snowflake identifiers.
570
+ assert output_cols is not None # Make MyPy happy
571
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
572
+
573
+ return rv
574
+
575
+ def _align_expected_output_names(
576
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
577
+ ) -> List[str]:
578
+ # in case the inferred output column names dimension is different
579
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
580
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
581
+ output_df_columns = list(output_df_pd.columns)
582
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
583
+ if self.sample_weight_col:
584
+ output_df_columns_set -= set(self.sample_weight_col)
585
+ # if the dimension of inferred output column names is correct; use it
586
+ if len(expected_output_cols_list) == len(output_df_columns_set):
587
+ return expected_output_cols_list
588
+ # otherwise, use the sklearn estimator's output
589
+ else:
590
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
591
+
538
592
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
539
593
  @telemetry.send_api_usage_telemetry(
540
594
  project=_PROJECT,
@@ -565,24 +619,28 @@ class OrthogonalMatchingPursuit(BaseTransformer):
565
619
  # are specific to the type of dataset used.
566
620
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
567
621
 
622
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
623
+
568
624
  if isinstance(dataset, DataFrame):
569
625
  self._deps = self._batch_inference_validate_snowpark(
570
626
  dataset=dataset,
571
627
  inference_method=inference_method,
572
628
  )
573
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
629
+ assert isinstance(
630
+ dataset._session, Session
631
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
574
632
  transform_kwargs = dict(
575
633
  session=dataset._session,
576
634
  dependencies=self._deps,
577
- drop_input_cols = self._drop_input_cols,
635
+ drop_input_cols=self._drop_input_cols,
578
636
  expected_output_cols_type="float",
579
637
  )
638
+ expected_output_cols = self._align_expected_output_names(
639
+ inference_method, dataset, expected_output_cols, output_cols_prefix
640
+ )
580
641
 
581
642
  elif isinstance(dataset, pd.DataFrame):
582
- transform_kwargs = dict(
583
- snowpark_input_cols = self._snowpark_cols,
584
- drop_input_cols = self._drop_input_cols
585
- )
643
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
586
644
 
587
645
  transform_handlers = ModelTransformerBuilder.build(
588
646
  dataset=dataset,
@@ -594,7 +652,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
594
652
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
595
653
  inference_method=inference_method,
596
654
  input_cols=self.input_cols,
597
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
655
+ expected_output_cols=expected_output_cols,
598
656
  **transform_kwargs
599
657
  )
600
658
  return output_df
@@ -624,7 +682,8 @@ class OrthogonalMatchingPursuit(BaseTransformer):
624
682
  Output dataset with log probability of the sample for each class in the model.
625
683
  """
626
684
  super()._check_dataset_type(dataset)
627
- inference_method="predict_log_proba"
685
+ inference_method = "predict_log_proba"
686
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
628
687
 
629
688
  # This dictionary contains optional kwargs for batch inference. These kwargs
630
689
  # are specific to the type of dataset used.
@@ -635,18 +694,20 @@ class OrthogonalMatchingPursuit(BaseTransformer):
635
694
  dataset=dataset,
636
695
  inference_method=inference_method,
637
696
  )
638
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
697
+ assert isinstance(
698
+ dataset._session, Session
699
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
639
700
  transform_kwargs = dict(
640
701
  session=dataset._session,
641
702
  dependencies=self._deps,
642
- drop_input_cols = self._drop_input_cols,
703
+ drop_input_cols=self._drop_input_cols,
643
704
  expected_output_cols_type="float",
644
705
  )
706
+ expected_output_cols = self._align_expected_output_names(
707
+ inference_method, dataset, expected_output_cols, output_cols_prefix
708
+ )
645
709
  elif isinstance(dataset, pd.DataFrame):
646
- transform_kwargs = dict(
647
- snowpark_input_cols = self._snowpark_cols,
648
- drop_input_cols = self._drop_input_cols
649
- )
710
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
650
711
 
651
712
  transform_handlers = ModelTransformerBuilder.build(
652
713
  dataset=dataset,
@@ -659,7 +720,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
659
720
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
660
721
  inference_method=inference_method,
661
722
  input_cols=self.input_cols,
662
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
723
+ expected_output_cols=expected_output_cols,
663
724
  **transform_kwargs
664
725
  )
665
726
  return output_df
@@ -685,30 +746,34 @@ class OrthogonalMatchingPursuit(BaseTransformer):
685
746
  Output dataset with results of the decision function for the samples in input dataset.
686
747
  """
687
748
  super()._check_dataset_type(dataset)
688
- inference_method="decision_function"
749
+ inference_method = "decision_function"
689
750
 
690
751
  # This dictionary contains optional kwargs for batch inference. These kwargs
691
752
  # are specific to the type of dataset used.
692
753
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
693
754
 
755
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
756
+
694
757
  if isinstance(dataset, DataFrame):
695
758
  self._deps = self._batch_inference_validate_snowpark(
696
759
  dataset=dataset,
697
760
  inference_method=inference_method,
698
761
  )
699
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
762
+ assert isinstance(
763
+ dataset._session, Session
764
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
700
765
  transform_kwargs = dict(
701
766
  session=dataset._session,
702
767
  dependencies=self._deps,
703
- drop_input_cols = self._drop_input_cols,
768
+ drop_input_cols=self._drop_input_cols,
704
769
  expected_output_cols_type="float",
705
770
  )
771
+ expected_output_cols = self._align_expected_output_names(
772
+ inference_method, dataset, expected_output_cols, output_cols_prefix
773
+ )
706
774
 
707
775
  elif isinstance(dataset, pd.DataFrame):
708
- transform_kwargs = dict(
709
- snowpark_input_cols = self._snowpark_cols,
710
- drop_input_cols = self._drop_input_cols
711
- )
776
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
712
777
 
713
778
  transform_handlers = ModelTransformerBuilder.build(
714
779
  dataset=dataset,
@@ -721,7 +786,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
721
786
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
722
787
  inference_method=inference_method,
723
788
  input_cols=self.input_cols,
724
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
789
+ expected_output_cols=expected_output_cols,
725
790
  **transform_kwargs
726
791
  )
727
792
  return output_df
@@ -750,12 +815,14 @@ class OrthogonalMatchingPursuit(BaseTransformer):
750
815
  Output dataset with probability of the sample for each class in the model.
751
816
  """
752
817
  super()._check_dataset_type(dataset)
753
- inference_method="score_samples"
818
+ inference_method = "score_samples"
754
819
 
755
820
  # This dictionary contains optional kwargs for batch inference. These kwargs
756
821
  # are specific to the type of dataset used.
757
822
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
758
823
 
824
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
825
+
759
826
  if isinstance(dataset, DataFrame):
760
827
  self._deps = self._batch_inference_validate_snowpark(
761
828
  dataset=dataset,
@@ -768,6 +835,9 @@ class OrthogonalMatchingPursuit(BaseTransformer):
768
835
  drop_input_cols = self._drop_input_cols,
769
836
  expected_output_cols_type="float",
770
837
  )
838
+ expected_output_cols = self._align_expected_output_names(
839
+ inference_method, dataset, expected_output_cols, output_cols_prefix
840
+ )
771
841
 
772
842
  elif isinstance(dataset, pd.DataFrame):
773
843
  transform_kwargs = dict(
@@ -786,7 +856,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
786
856
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
787
857
  inference_method=inference_method,
788
858
  input_cols=self.input_cols,
789
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
859
+ expected_output_cols=expected_output_cols,
790
860
  **transform_kwargs
791
861
  )
792
862
  return output_df
@@ -933,50 +1003,84 @@ class OrthogonalMatchingPursuit(BaseTransformer):
933
1003
  )
934
1004
  return output_df
935
1005
 
1006
+
1007
+
1008
+ def to_sklearn(self) -> Any:
1009
+ """Get sklearn.linear_model.OrthogonalMatchingPursuit object.
1010
+ """
1011
+ if self._sklearn_object is None:
1012
+ self._sklearn_object = self._create_sklearn_object()
1013
+ return self._sklearn_object
1014
+
1015
+ def to_xgboost(self) -> Any:
1016
+ raise exceptions.SnowflakeMLException(
1017
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1018
+ original_exception=AttributeError(
1019
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1020
+ "to_xgboost()",
1021
+ "to_sklearn()"
1022
+ )
1023
+ ),
1024
+ )
1025
+
1026
+ def to_lightgbm(self) -> Any:
1027
+ raise exceptions.SnowflakeMLException(
1028
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1029
+ original_exception=AttributeError(
1030
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1031
+ "to_lightgbm()",
1032
+ "to_sklearn()"
1033
+ )
1034
+ ),
1035
+ )
936
1036
 
937
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1037
+ def _get_dependencies(self) -> List[str]:
1038
+ return self._deps
1039
+
1040
+
1041
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
938
1042
  self._model_signature_dict = dict()
939
1043
 
940
1044
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
941
1045
 
942
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1046
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
943
1047
  outputs: List[BaseFeatureSpec] = []
944
1048
  if hasattr(self, "predict"):
945
1049
  # keep mypy happy
946
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1050
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
947
1051
  # For classifier, the type of predict is the same as the type of label
948
- if self._sklearn_object._estimator_type == 'classifier':
949
- # label columns is the desired type for output
1052
+ if self._sklearn_object._estimator_type == "classifier":
1053
+ # label columns is the desired type for output
950
1054
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
951
1055
  # rename the output columns
952
1056
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
953
- self._model_signature_dict["predict"] = ModelSignature(inputs,
954
- ([] if self._drop_input_cols else inputs)
955
- + outputs)
1057
+ self._model_signature_dict["predict"] = ModelSignature(
1058
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1059
+ )
956
1060
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
957
1061
  # For outlier models, returns -1 for outliers and 1 for inliers.
958
- # Clusterer returns int64 cluster labels.
1062
+ # Clusterer returns int64 cluster labels.
959
1063
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
960
1064
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
961
- self._model_signature_dict["predict"] = ModelSignature(inputs,
962
- ([] if self._drop_input_cols else inputs)
963
- + outputs)
964
-
1065
+ self._model_signature_dict["predict"] = ModelSignature(
1066
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1067
+ )
1068
+
965
1069
  # For regressor, the type of predict is float64
966
- elif self._sklearn_object._estimator_type == 'regressor':
1070
+ elif self._sklearn_object._estimator_type == "regressor":
967
1071
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
968
- self._model_signature_dict["predict"] = ModelSignature(inputs,
969
- ([] if self._drop_input_cols else inputs)
970
- + outputs)
971
-
1072
+ self._model_signature_dict["predict"] = ModelSignature(
1073
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1074
+ )
1075
+
972
1076
  for prob_func in PROB_FUNCTIONS:
973
1077
  if hasattr(self, prob_func):
974
1078
  output_cols_prefix: str = f"{prob_func}_"
975
1079
  output_column_names = self._get_output_column_names(output_cols_prefix)
976
1080
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
977
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
978
- ([] if self._drop_input_cols else inputs)
979
- + outputs)
1081
+ self._model_signature_dict[prob_func] = ModelSignature(
1082
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1083
+ )
980
1084
 
981
1085
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
982
1086
  items = list(self._model_signature_dict.items())
@@ -989,10 +1093,10 @@ class OrthogonalMatchingPursuit(BaseTransformer):
989
1093
  """Returns model signature of current class.
990
1094
 
991
1095
  Raises:
992
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1096
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
993
1097
 
994
1098
  Returns:
995
- Dict[str, ModelSignature]: each method and its input output signature
1099
+ Dict with each method and its input output signature
996
1100
  """
997
1101
  if self._model_signature_dict is None:
998
1102
  raise exceptions.SnowflakeMLException(
@@ -1000,35 +1104,3 @@ class OrthogonalMatchingPursuit(BaseTransformer):
1000
1104
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1001
1105
  )
1002
1106
  return self._model_signature_dict
1003
-
1004
- def to_sklearn(self) -> Any:
1005
- """Get sklearn.linear_model.OrthogonalMatchingPursuit object.
1006
- """
1007
- if self._sklearn_object is None:
1008
- self._sklearn_object = self._create_sklearn_object()
1009
- return self._sklearn_object
1010
-
1011
- def to_xgboost(self) -> Any:
1012
- raise exceptions.SnowflakeMLException(
1013
- error_code=error_codes.METHOD_NOT_ALLOWED,
1014
- original_exception=AttributeError(
1015
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1016
- "to_xgboost()",
1017
- "to_sklearn()"
1018
- )
1019
- ),
1020
- )
1021
-
1022
- def to_lightgbm(self) -> Any:
1023
- raise exceptions.SnowflakeMLException(
1024
- error_code=error_codes.METHOD_NOT_ALLOWED,
1025
- original_exception=AttributeError(
1026
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1027
- "to_lightgbm()",
1028
- "to_sklearn()"
1029
- )
1030
- ),
1031
- )
1032
-
1033
- def _get_dependencies(self) -> List[str]:
1034
- return self._deps