snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -293,12 +292,7 @@ class MultiTaskElasticNetCV(BaseTransformer):
293
292
  )
294
293
  return selected_cols
295
294
 
296
- @telemetry.send_api_usage_telemetry(
297
- project=_PROJECT,
298
- subproject=_SUBPROJECT,
299
- custom_tags=dict([("autogen", True)]),
300
- )
301
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MultiTaskElasticNetCV":
295
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MultiTaskElasticNetCV":
302
296
  """Fit MultiTaskElasticNet model with coordinate descent
303
297
  For more details on this function, see [sklearn.linear_model.MultiTaskElasticNetCV.fit]
304
298
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskElasticNetCV.html#sklearn.linear_model.MultiTaskElasticNetCV.fit)
@@ -325,12 +319,14 @@ class MultiTaskElasticNetCV(BaseTransformer):
325
319
 
326
320
  self._snowpark_cols = dataset.select(self.input_cols).columns
327
321
 
328
- # If we are already in a stored procedure, no need to kick off another one.
322
+ # If we are already in a stored procedure, no need to kick off another one.
329
323
  if SNOWML_SPROC_ENV in os.environ:
330
324
  statement_params = telemetry.get_function_usage_statement_params(
331
325
  project=_PROJECT,
332
326
  subproject=_SUBPROJECT,
333
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultiTaskElasticNetCV.__class__.__name__),
327
+ function_name=telemetry.get_statement_params_full_func_name(
328
+ inspect.currentframe(), MultiTaskElasticNetCV.__class__.__name__
329
+ ),
334
330
  api_calls=[Session.call],
335
331
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
336
332
  )
@@ -351,7 +347,7 @@ class MultiTaskElasticNetCV(BaseTransformer):
351
347
  )
352
348
  self._sklearn_object = model_trainer.train()
353
349
  self._is_fitted = True
354
- self._get_model_signatures(dataset)
350
+ self._generate_model_signatures(dataset)
355
351
  return self
356
352
 
357
353
  def _batch_inference_validate_snowpark(
@@ -427,7 +423,9 @@ class MultiTaskElasticNetCV(BaseTransformer):
427
423
  # when it is classifier, infer the datatype from label columns
428
424
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
429
425
  # Batch inference takes a single expected output column type. Use the first columns type for now.
430
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
426
+ label_cols_signatures = [
427
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
428
+ ]
431
429
  if len(label_cols_signatures) == 0:
432
430
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
433
431
  raise exceptions.SnowflakeMLException(
@@ -435,25 +433,22 @@ class MultiTaskElasticNetCV(BaseTransformer):
435
433
  original_exception=ValueError(error_str),
436
434
  )
437
435
 
438
- expected_type_inferred = convert_sp_to_sf_type(
439
- label_cols_signatures[0].as_snowpark_type()
440
- )
436
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
441
437
 
442
438
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
443
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
439
+ assert isinstance(
440
+ dataset._session, Session
441
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
444
442
 
445
443
  transform_kwargs = dict(
446
- session = dataset._session,
447
- dependencies = self._deps,
448
- drop_input_cols = self._drop_input_cols,
449
- expected_output_cols_type = expected_type_inferred,
444
+ session=dataset._session,
445
+ dependencies=self._deps,
446
+ drop_input_cols=self._drop_input_cols,
447
+ expected_output_cols_type=expected_type_inferred,
450
448
  )
451
449
 
452
450
  elif isinstance(dataset, pd.DataFrame):
453
- transform_kwargs = dict(
454
- snowpark_input_cols = self._snowpark_cols,
455
- drop_input_cols = self._drop_input_cols
456
- )
451
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
457
452
 
458
453
  transform_handlers = ModelTransformerBuilder.build(
459
454
  dataset=dataset,
@@ -493,7 +488,7 @@ class MultiTaskElasticNetCV(BaseTransformer):
493
488
  Transformed dataset.
494
489
  """
495
490
  super()._check_dataset_type(dataset)
496
- inference_method="transform"
491
+ inference_method = "transform"
497
492
 
498
493
  # This dictionary contains optional kwargs for batch inference. These kwargs
499
494
  # are specific to the type of dataset used.
@@ -530,17 +525,14 @@ class MultiTaskElasticNetCV(BaseTransformer):
530
525
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
531
526
 
532
527
  transform_kwargs = dict(
533
- session = dataset._session,
534
- dependencies = self._deps,
535
- drop_input_cols = self._drop_input_cols,
536
- expected_output_cols_type = expected_dtype,
528
+ session=dataset._session,
529
+ dependencies=self._deps,
530
+ drop_input_cols=self._drop_input_cols,
531
+ expected_output_cols_type=expected_dtype,
537
532
  )
538
533
 
539
534
  elif isinstance(dataset, pd.DataFrame):
540
- transform_kwargs = dict(
541
- snowpark_input_cols = self._snowpark_cols,
542
- drop_input_cols = self._drop_input_cols
543
- )
535
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
544
536
 
545
537
  transform_handlers = ModelTransformerBuilder.build(
546
538
  dataset=dataset,
@@ -559,7 +551,11 @@ class MultiTaskElasticNetCV(BaseTransformer):
559
551
  return output_df
560
552
 
561
553
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
562
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
554
+ def fit_predict(
555
+ self,
556
+ dataset: Union[DataFrame, pd.DataFrame],
557
+ output_cols_prefix: str = "fit_predict_",
558
+ ) -> Union[DataFrame, pd.DataFrame]:
563
559
  """ Method not supported for this class.
564
560
 
565
561
 
@@ -584,7 +580,9 @@ class MultiTaskElasticNetCV(BaseTransformer):
584
580
  )
585
581
  output_result, fitted_estimator = model_trainer.train_fit_predict(
586
582
  drop_input_cols=self._drop_input_cols,
587
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
583
+ expected_output_cols_list=(
584
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
585
+ ),
588
586
  )
589
587
  self._sklearn_object = fitted_estimator
590
588
  self._is_fitted = True
@@ -601,6 +599,62 @@ class MultiTaskElasticNetCV(BaseTransformer):
601
599
  assert self._sklearn_object is not None
602
600
  return self._sklearn_object.embedding_
603
601
 
602
+
603
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
604
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
605
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
606
+ """
607
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
608
+ # The following condition is introduced for kneighbors methods, and not used in other methods
609
+ if output_cols:
610
+ output_cols = [
611
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
612
+ for c in output_cols
613
+ ]
614
+ elif getattr(self._sklearn_object, "classes_", None) is None:
615
+ output_cols = [output_cols_prefix]
616
+ elif self._sklearn_object is not None:
617
+ classes = self._sklearn_object.classes_
618
+ if isinstance(classes, numpy.ndarray):
619
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
620
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
621
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
622
+ output_cols = []
623
+ for i, cl in enumerate(classes):
624
+ # For binary classification, there is only one output column for each class
625
+ # ndarray as the two classes are complementary.
626
+ if len(cl) == 2:
627
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
628
+ else:
629
+ output_cols.extend([
630
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
631
+ ])
632
+ else:
633
+ output_cols = []
634
+
635
+ # Make sure column names are valid snowflake identifiers.
636
+ assert output_cols is not None # Make MyPy happy
637
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
638
+
639
+ return rv
640
+
641
+ def _align_expected_output_names(
642
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
643
+ ) -> List[str]:
644
+ # in case the inferred output column names dimension is different
645
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
646
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
647
+ output_df_columns = list(output_df_pd.columns)
648
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
649
+ if self.sample_weight_col:
650
+ output_df_columns_set -= set(self.sample_weight_col)
651
+ # if the dimension of inferred output column names is correct; use it
652
+ if len(expected_output_cols_list) == len(output_df_columns_set):
653
+ return expected_output_cols_list
654
+ # otherwise, use the sklearn estimator's output
655
+ else:
656
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
657
+
604
658
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
605
659
  @telemetry.send_api_usage_telemetry(
606
660
  project=_PROJECT,
@@ -631,24 +685,28 @@ class MultiTaskElasticNetCV(BaseTransformer):
631
685
  # are specific to the type of dataset used.
632
686
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
633
687
 
688
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
689
+
634
690
  if isinstance(dataset, DataFrame):
635
691
  self._deps = self._batch_inference_validate_snowpark(
636
692
  dataset=dataset,
637
693
  inference_method=inference_method,
638
694
  )
639
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
695
+ assert isinstance(
696
+ dataset._session, Session
697
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
640
698
  transform_kwargs = dict(
641
699
  session=dataset._session,
642
700
  dependencies=self._deps,
643
- drop_input_cols = self._drop_input_cols,
701
+ drop_input_cols=self._drop_input_cols,
644
702
  expected_output_cols_type="float",
645
703
  )
704
+ expected_output_cols = self._align_expected_output_names(
705
+ inference_method, dataset, expected_output_cols, output_cols_prefix
706
+ )
646
707
 
647
708
  elif isinstance(dataset, pd.DataFrame):
648
- transform_kwargs = dict(
649
- snowpark_input_cols = self._snowpark_cols,
650
- drop_input_cols = self._drop_input_cols
651
- )
709
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
652
710
 
653
711
  transform_handlers = ModelTransformerBuilder.build(
654
712
  dataset=dataset,
@@ -660,7 +718,7 @@ class MultiTaskElasticNetCV(BaseTransformer):
660
718
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
661
719
  inference_method=inference_method,
662
720
  input_cols=self.input_cols,
663
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
721
+ expected_output_cols=expected_output_cols,
664
722
  **transform_kwargs
665
723
  )
666
724
  return output_df
@@ -690,7 +748,8 @@ class MultiTaskElasticNetCV(BaseTransformer):
690
748
  Output dataset with log probability of the sample for each class in the model.
691
749
  """
692
750
  super()._check_dataset_type(dataset)
693
- inference_method="predict_log_proba"
751
+ inference_method = "predict_log_proba"
752
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
694
753
 
695
754
  # This dictionary contains optional kwargs for batch inference. These kwargs
696
755
  # are specific to the type of dataset used.
@@ -701,18 +760,20 @@ class MultiTaskElasticNetCV(BaseTransformer):
701
760
  dataset=dataset,
702
761
  inference_method=inference_method,
703
762
  )
704
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
763
+ assert isinstance(
764
+ dataset._session, Session
765
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
705
766
  transform_kwargs = dict(
706
767
  session=dataset._session,
707
768
  dependencies=self._deps,
708
- drop_input_cols = self._drop_input_cols,
769
+ drop_input_cols=self._drop_input_cols,
709
770
  expected_output_cols_type="float",
710
771
  )
772
+ expected_output_cols = self._align_expected_output_names(
773
+ inference_method, dataset, expected_output_cols, output_cols_prefix
774
+ )
711
775
  elif isinstance(dataset, pd.DataFrame):
712
- transform_kwargs = dict(
713
- snowpark_input_cols = self._snowpark_cols,
714
- drop_input_cols = self._drop_input_cols
715
- )
776
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
716
777
 
717
778
  transform_handlers = ModelTransformerBuilder.build(
718
779
  dataset=dataset,
@@ -725,7 +786,7 @@ class MultiTaskElasticNetCV(BaseTransformer):
725
786
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
726
787
  inference_method=inference_method,
727
788
  input_cols=self.input_cols,
728
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
789
+ expected_output_cols=expected_output_cols,
729
790
  **transform_kwargs
730
791
  )
731
792
  return output_df
@@ -751,30 +812,34 @@ class MultiTaskElasticNetCV(BaseTransformer):
751
812
  Output dataset with results of the decision function for the samples in input dataset.
752
813
  """
753
814
  super()._check_dataset_type(dataset)
754
- inference_method="decision_function"
815
+ inference_method = "decision_function"
755
816
 
756
817
  # This dictionary contains optional kwargs for batch inference. These kwargs
757
818
  # are specific to the type of dataset used.
758
819
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
759
820
 
821
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
822
+
760
823
  if isinstance(dataset, DataFrame):
761
824
  self._deps = self._batch_inference_validate_snowpark(
762
825
  dataset=dataset,
763
826
  inference_method=inference_method,
764
827
  )
765
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
828
+ assert isinstance(
829
+ dataset._session, Session
830
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
766
831
  transform_kwargs = dict(
767
832
  session=dataset._session,
768
833
  dependencies=self._deps,
769
- drop_input_cols = self._drop_input_cols,
834
+ drop_input_cols=self._drop_input_cols,
770
835
  expected_output_cols_type="float",
771
836
  )
837
+ expected_output_cols = self._align_expected_output_names(
838
+ inference_method, dataset, expected_output_cols, output_cols_prefix
839
+ )
772
840
 
773
841
  elif isinstance(dataset, pd.DataFrame):
774
- transform_kwargs = dict(
775
- snowpark_input_cols = self._snowpark_cols,
776
- drop_input_cols = self._drop_input_cols
777
- )
842
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
778
843
 
779
844
  transform_handlers = ModelTransformerBuilder.build(
780
845
  dataset=dataset,
@@ -787,7 +852,7 @@ class MultiTaskElasticNetCV(BaseTransformer):
787
852
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
788
853
  inference_method=inference_method,
789
854
  input_cols=self.input_cols,
790
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
855
+ expected_output_cols=expected_output_cols,
791
856
  **transform_kwargs
792
857
  )
793
858
  return output_df
@@ -816,12 +881,14 @@ class MultiTaskElasticNetCV(BaseTransformer):
816
881
  Output dataset with probability of the sample for each class in the model.
817
882
  """
818
883
  super()._check_dataset_type(dataset)
819
- inference_method="score_samples"
884
+ inference_method = "score_samples"
820
885
 
821
886
  # This dictionary contains optional kwargs for batch inference. These kwargs
822
887
  # are specific to the type of dataset used.
823
888
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
824
889
 
890
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
891
+
825
892
  if isinstance(dataset, DataFrame):
826
893
  self._deps = self._batch_inference_validate_snowpark(
827
894
  dataset=dataset,
@@ -834,6 +901,9 @@ class MultiTaskElasticNetCV(BaseTransformer):
834
901
  drop_input_cols = self._drop_input_cols,
835
902
  expected_output_cols_type="float",
836
903
  )
904
+ expected_output_cols = self._align_expected_output_names(
905
+ inference_method, dataset, expected_output_cols, output_cols_prefix
906
+ )
837
907
 
838
908
  elif isinstance(dataset, pd.DataFrame):
839
909
  transform_kwargs = dict(
@@ -852,7 +922,7 @@ class MultiTaskElasticNetCV(BaseTransformer):
852
922
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
853
923
  inference_method=inference_method,
854
924
  input_cols=self.input_cols,
855
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
925
+ expected_output_cols=expected_output_cols,
856
926
  **transform_kwargs
857
927
  )
858
928
  return output_df
@@ -999,50 +1069,84 @@ class MultiTaskElasticNetCV(BaseTransformer):
999
1069
  )
1000
1070
  return output_df
1001
1071
 
1072
+
1073
+
1074
+ def to_sklearn(self) -> Any:
1075
+ """Get sklearn.linear_model.MultiTaskElasticNetCV object.
1076
+ """
1077
+ if self._sklearn_object is None:
1078
+ self._sklearn_object = self._create_sklearn_object()
1079
+ return self._sklearn_object
1080
+
1081
+ def to_xgboost(self) -> Any:
1082
+ raise exceptions.SnowflakeMLException(
1083
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1084
+ original_exception=AttributeError(
1085
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1086
+ "to_xgboost()",
1087
+ "to_sklearn()"
1088
+ )
1089
+ ),
1090
+ )
1091
+
1092
+ def to_lightgbm(self) -> Any:
1093
+ raise exceptions.SnowflakeMLException(
1094
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1095
+ original_exception=AttributeError(
1096
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1097
+ "to_lightgbm()",
1098
+ "to_sklearn()"
1099
+ )
1100
+ ),
1101
+ )
1002
1102
 
1003
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1103
+ def _get_dependencies(self) -> List[str]:
1104
+ return self._deps
1105
+
1106
+
1107
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1004
1108
  self._model_signature_dict = dict()
1005
1109
 
1006
1110
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1007
1111
 
1008
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1112
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1009
1113
  outputs: List[BaseFeatureSpec] = []
1010
1114
  if hasattr(self, "predict"):
1011
1115
  # keep mypy happy
1012
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1116
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1013
1117
  # For classifier, the type of predict is the same as the type of label
1014
- if self._sklearn_object._estimator_type == 'classifier':
1015
- # label columns is the desired type for output
1118
+ if self._sklearn_object._estimator_type == "classifier":
1119
+ # label columns is the desired type for output
1016
1120
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1017
1121
  # rename the output columns
1018
1122
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1019
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1020
- ([] if self._drop_input_cols else inputs)
1021
- + outputs)
1123
+ self._model_signature_dict["predict"] = ModelSignature(
1124
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1125
+ )
1022
1126
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1023
1127
  # For outlier models, returns -1 for outliers and 1 for inliers.
1024
- # Clusterer returns int64 cluster labels.
1128
+ # Clusterer returns int64 cluster labels.
1025
1129
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1026
1130
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1027
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1028
- ([] if self._drop_input_cols else inputs)
1029
- + outputs)
1030
-
1131
+ self._model_signature_dict["predict"] = ModelSignature(
1132
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1133
+ )
1134
+
1031
1135
  # For regressor, the type of predict is float64
1032
- elif self._sklearn_object._estimator_type == 'regressor':
1136
+ elif self._sklearn_object._estimator_type == "regressor":
1033
1137
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1034
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1035
- ([] if self._drop_input_cols else inputs)
1036
- + outputs)
1037
-
1138
+ self._model_signature_dict["predict"] = ModelSignature(
1139
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1140
+ )
1141
+
1038
1142
  for prob_func in PROB_FUNCTIONS:
1039
1143
  if hasattr(self, prob_func):
1040
1144
  output_cols_prefix: str = f"{prob_func}_"
1041
1145
  output_column_names = self._get_output_column_names(output_cols_prefix)
1042
1146
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1043
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1044
- ([] if self._drop_input_cols else inputs)
1045
- + outputs)
1147
+ self._model_signature_dict[prob_func] = ModelSignature(
1148
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1149
+ )
1046
1150
 
1047
1151
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1048
1152
  items = list(self._model_signature_dict.items())
@@ -1055,10 +1159,10 @@ class MultiTaskElasticNetCV(BaseTransformer):
1055
1159
  """Returns model signature of current class.
1056
1160
 
1057
1161
  Raises:
1058
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1162
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1059
1163
 
1060
1164
  Returns:
1061
- Dict[str, ModelSignature]: each method and its input output signature
1165
+ Dict with each method and its input output signature
1062
1166
  """
1063
1167
  if self._model_signature_dict is None:
1064
1168
  raise exceptions.SnowflakeMLException(
@@ -1066,35 +1170,3 @@ class MultiTaskElasticNetCV(BaseTransformer):
1066
1170
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1067
1171
  )
1068
1172
  return self._model_signature_dict
1069
-
1070
- def to_sklearn(self) -> Any:
1071
- """Get sklearn.linear_model.MultiTaskElasticNetCV object.
1072
- """
1073
- if self._sklearn_object is None:
1074
- self._sklearn_object = self._create_sklearn_object()
1075
- return self._sklearn_object
1076
-
1077
- def to_xgboost(self) -> Any:
1078
- raise exceptions.SnowflakeMLException(
1079
- error_code=error_codes.METHOD_NOT_ALLOWED,
1080
- original_exception=AttributeError(
1081
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1082
- "to_xgboost()",
1083
- "to_sklearn()"
1084
- )
1085
- ),
1086
- )
1087
-
1088
- def to_lightgbm(self) -> Any:
1089
- raise exceptions.SnowflakeMLException(
1090
- error_code=error_codes.METHOD_NOT_ALLOWED,
1091
- original_exception=AttributeError(
1092
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1093
- "to_lightgbm()",
1094
- "to_sklearn()"
1095
- )
1096
- ),
1097
- )
1098
-
1099
- def _get_dependencies(self) -> List[str]:
1100
- return self._deps