snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -244,12 +243,7 @@ class AdaBoostClassifier(BaseTransformer):
244
243
  )
245
244
  return selected_cols
246
245
 
247
- @telemetry.send_api_usage_telemetry(
248
- project=_PROJECT,
249
- subproject=_SUBPROJECT,
250
- custom_tags=dict([("autogen", True)]),
251
- )
252
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AdaBoostClassifier":
246
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AdaBoostClassifier":
253
247
  """Build a boosted classifier/regressor from the training set (X, y)
254
248
  For more details on this function, see [sklearn.ensemble.AdaBoostClassifier.fit]
255
249
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier.fit)
@@ -276,12 +270,14 @@ class AdaBoostClassifier(BaseTransformer):
276
270
 
277
271
  self._snowpark_cols = dataset.select(self.input_cols).columns
278
272
 
279
- # If we are already in a stored procedure, no need to kick off another one.
273
+ # If we are already in a stored procedure, no need to kick off another one.
280
274
  if SNOWML_SPROC_ENV in os.environ:
281
275
  statement_params = telemetry.get_function_usage_statement_params(
282
276
  project=_PROJECT,
283
277
  subproject=_SUBPROJECT,
284
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AdaBoostClassifier.__class__.__name__),
278
+ function_name=telemetry.get_statement_params_full_func_name(
279
+ inspect.currentframe(), AdaBoostClassifier.__class__.__name__
280
+ ),
285
281
  api_calls=[Session.call],
286
282
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
287
283
  )
@@ -302,7 +298,7 @@ class AdaBoostClassifier(BaseTransformer):
302
298
  )
303
299
  self._sklearn_object = model_trainer.train()
304
300
  self._is_fitted = True
305
- self._get_model_signatures(dataset)
301
+ self._generate_model_signatures(dataset)
306
302
  return self
307
303
 
308
304
  def _batch_inference_validate_snowpark(
@@ -378,7 +374,9 @@ class AdaBoostClassifier(BaseTransformer):
378
374
  # when it is classifier, infer the datatype from label columns
379
375
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
380
376
  # Batch inference takes a single expected output column type. Use the first columns type for now.
381
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
377
+ label_cols_signatures = [
378
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
379
+ ]
382
380
  if len(label_cols_signatures) == 0:
383
381
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
384
382
  raise exceptions.SnowflakeMLException(
@@ -386,25 +384,22 @@ class AdaBoostClassifier(BaseTransformer):
386
384
  original_exception=ValueError(error_str),
387
385
  )
388
386
 
389
- expected_type_inferred = convert_sp_to_sf_type(
390
- label_cols_signatures[0].as_snowpark_type()
391
- )
387
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
392
388
 
393
389
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
394
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
390
+ assert isinstance(
391
+ dataset._session, Session
392
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
395
393
 
396
394
  transform_kwargs = dict(
397
- session = dataset._session,
398
- dependencies = self._deps,
399
- drop_input_cols = self._drop_input_cols,
400
- expected_output_cols_type = expected_type_inferred,
395
+ session=dataset._session,
396
+ dependencies=self._deps,
397
+ drop_input_cols=self._drop_input_cols,
398
+ expected_output_cols_type=expected_type_inferred,
401
399
  )
402
400
 
403
401
  elif isinstance(dataset, pd.DataFrame):
404
- transform_kwargs = dict(
405
- snowpark_input_cols = self._snowpark_cols,
406
- drop_input_cols = self._drop_input_cols
407
- )
402
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
408
403
 
409
404
  transform_handlers = ModelTransformerBuilder.build(
410
405
  dataset=dataset,
@@ -444,7 +439,7 @@ class AdaBoostClassifier(BaseTransformer):
444
439
  Transformed dataset.
445
440
  """
446
441
  super()._check_dataset_type(dataset)
447
- inference_method="transform"
442
+ inference_method = "transform"
448
443
 
449
444
  # This dictionary contains optional kwargs for batch inference. These kwargs
450
445
  # are specific to the type of dataset used.
@@ -481,17 +476,14 @@ class AdaBoostClassifier(BaseTransformer):
481
476
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
482
477
 
483
478
  transform_kwargs = dict(
484
- session = dataset._session,
485
- dependencies = self._deps,
486
- drop_input_cols = self._drop_input_cols,
487
- expected_output_cols_type = expected_dtype,
479
+ session=dataset._session,
480
+ dependencies=self._deps,
481
+ drop_input_cols=self._drop_input_cols,
482
+ expected_output_cols_type=expected_dtype,
488
483
  )
489
484
 
490
485
  elif isinstance(dataset, pd.DataFrame):
491
- transform_kwargs = dict(
492
- snowpark_input_cols = self._snowpark_cols,
493
- drop_input_cols = self._drop_input_cols
494
- )
486
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
495
487
 
496
488
  transform_handlers = ModelTransformerBuilder.build(
497
489
  dataset=dataset,
@@ -510,7 +502,11 @@ class AdaBoostClassifier(BaseTransformer):
510
502
  return output_df
511
503
 
512
504
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
513
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
505
+ def fit_predict(
506
+ self,
507
+ dataset: Union[DataFrame, pd.DataFrame],
508
+ output_cols_prefix: str = "fit_predict_",
509
+ ) -> Union[DataFrame, pd.DataFrame]:
514
510
  """ Method not supported for this class.
515
511
 
516
512
 
@@ -535,7 +531,9 @@ class AdaBoostClassifier(BaseTransformer):
535
531
  )
536
532
  output_result, fitted_estimator = model_trainer.train_fit_predict(
537
533
  drop_input_cols=self._drop_input_cols,
538
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
534
+ expected_output_cols_list=(
535
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
536
+ ),
539
537
  )
540
538
  self._sklearn_object = fitted_estimator
541
539
  self._is_fitted = True
@@ -552,6 +550,62 @@ class AdaBoostClassifier(BaseTransformer):
552
550
  assert self._sklearn_object is not None
553
551
  return self._sklearn_object.embedding_
554
552
 
553
+
554
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
555
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
556
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
557
+ """
558
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
559
+ # The following condition is introduced for kneighbors methods, and not used in other methods
560
+ if output_cols:
561
+ output_cols = [
562
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
563
+ for c in output_cols
564
+ ]
565
+ elif getattr(self._sklearn_object, "classes_", None) is None:
566
+ output_cols = [output_cols_prefix]
567
+ elif self._sklearn_object is not None:
568
+ classes = self._sklearn_object.classes_
569
+ if isinstance(classes, numpy.ndarray):
570
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
571
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
572
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
573
+ output_cols = []
574
+ for i, cl in enumerate(classes):
575
+ # For binary classification, there is only one output column for each class
576
+ # ndarray as the two classes are complementary.
577
+ if len(cl) == 2:
578
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
579
+ else:
580
+ output_cols.extend([
581
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
582
+ ])
583
+ else:
584
+ output_cols = []
585
+
586
+ # Make sure column names are valid snowflake identifiers.
587
+ assert output_cols is not None # Make MyPy happy
588
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
589
+
590
+ return rv
591
+
592
+ def _align_expected_output_names(
593
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
594
+ ) -> List[str]:
595
+ # in case the inferred output column names dimension is different
596
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
597
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
598
+ output_df_columns = list(output_df_pd.columns)
599
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
600
+ if self.sample_weight_col:
601
+ output_df_columns_set -= set(self.sample_weight_col)
602
+ # if the dimension of inferred output column names is correct; use it
603
+ if len(expected_output_cols_list) == len(output_df_columns_set):
604
+ return expected_output_cols_list
605
+ # otherwise, use the sklearn estimator's output
606
+ else:
607
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
608
+
555
609
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
556
610
  @telemetry.send_api_usage_telemetry(
557
611
  project=_PROJECT,
@@ -584,24 +638,28 @@ class AdaBoostClassifier(BaseTransformer):
584
638
  # are specific to the type of dataset used.
585
639
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
586
640
 
641
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
642
+
587
643
  if isinstance(dataset, DataFrame):
588
644
  self._deps = self._batch_inference_validate_snowpark(
589
645
  dataset=dataset,
590
646
  inference_method=inference_method,
591
647
  )
592
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
648
+ assert isinstance(
649
+ dataset._session, Session
650
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
593
651
  transform_kwargs = dict(
594
652
  session=dataset._session,
595
653
  dependencies=self._deps,
596
- drop_input_cols = self._drop_input_cols,
654
+ drop_input_cols=self._drop_input_cols,
597
655
  expected_output_cols_type="float",
598
656
  )
657
+ expected_output_cols = self._align_expected_output_names(
658
+ inference_method, dataset, expected_output_cols, output_cols_prefix
659
+ )
599
660
 
600
661
  elif isinstance(dataset, pd.DataFrame):
601
- transform_kwargs = dict(
602
- snowpark_input_cols = self._snowpark_cols,
603
- drop_input_cols = self._drop_input_cols
604
- )
662
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
605
663
 
606
664
  transform_handlers = ModelTransformerBuilder.build(
607
665
  dataset=dataset,
@@ -613,7 +671,7 @@ class AdaBoostClassifier(BaseTransformer):
613
671
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
614
672
  inference_method=inference_method,
615
673
  input_cols=self.input_cols,
616
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
674
+ expected_output_cols=expected_output_cols,
617
675
  **transform_kwargs
618
676
  )
619
677
  return output_df
@@ -645,7 +703,8 @@ class AdaBoostClassifier(BaseTransformer):
645
703
  Output dataset with log probability of the sample for each class in the model.
646
704
  """
647
705
  super()._check_dataset_type(dataset)
648
- inference_method="predict_log_proba"
706
+ inference_method = "predict_log_proba"
707
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
649
708
 
650
709
  # This dictionary contains optional kwargs for batch inference. These kwargs
651
710
  # are specific to the type of dataset used.
@@ -656,18 +715,20 @@ class AdaBoostClassifier(BaseTransformer):
656
715
  dataset=dataset,
657
716
  inference_method=inference_method,
658
717
  )
659
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
718
+ assert isinstance(
719
+ dataset._session, Session
720
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
660
721
  transform_kwargs = dict(
661
722
  session=dataset._session,
662
723
  dependencies=self._deps,
663
- drop_input_cols = self._drop_input_cols,
724
+ drop_input_cols=self._drop_input_cols,
664
725
  expected_output_cols_type="float",
665
726
  )
727
+ expected_output_cols = self._align_expected_output_names(
728
+ inference_method, dataset, expected_output_cols, output_cols_prefix
729
+ )
666
730
  elif isinstance(dataset, pd.DataFrame):
667
- transform_kwargs = dict(
668
- snowpark_input_cols = self._snowpark_cols,
669
- drop_input_cols = self._drop_input_cols
670
- )
731
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
671
732
 
672
733
  transform_handlers = ModelTransformerBuilder.build(
673
734
  dataset=dataset,
@@ -680,7 +741,7 @@ class AdaBoostClassifier(BaseTransformer):
680
741
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
681
742
  inference_method=inference_method,
682
743
  input_cols=self.input_cols,
683
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
744
+ expected_output_cols=expected_output_cols,
684
745
  **transform_kwargs
685
746
  )
686
747
  return output_df
@@ -708,30 +769,34 @@ class AdaBoostClassifier(BaseTransformer):
708
769
  Output dataset with results of the decision function for the samples in input dataset.
709
770
  """
710
771
  super()._check_dataset_type(dataset)
711
- inference_method="decision_function"
772
+ inference_method = "decision_function"
712
773
 
713
774
  # This dictionary contains optional kwargs for batch inference. These kwargs
714
775
  # are specific to the type of dataset used.
715
776
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
716
777
 
778
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
779
+
717
780
  if isinstance(dataset, DataFrame):
718
781
  self._deps = self._batch_inference_validate_snowpark(
719
782
  dataset=dataset,
720
783
  inference_method=inference_method,
721
784
  )
722
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
785
+ assert isinstance(
786
+ dataset._session, Session
787
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
723
788
  transform_kwargs = dict(
724
789
  session=dataset._session,
725
790
  dependencies=self._deps,
726
- drop_input_cols = self._drop_input_cols,
791
+ drop_input_cols=self._drop_input_cols,
727
792
  expected_output_cols_type="float",
728
793
  )
794
+ expected_output_cols = self._align_expected_output_names(
795
+ inference_method, dataset, expected_output_cols, output_cols_prefix
796
+ )
729
797
 
730
798
  elif isinstance(dataset, pd.DataFrame):
731
- transform_kwargs = dict(
732
- snowpark_input_cols = self._snowpark_cols,
733
- drop_input_cols = self._drop_input_cols
734
- )
799
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
735
800
 
736
801
  transform_handlers = ModelTransformerBuilder.build(
737
802
  dataset=dataset,
@@ -744,7 +809,7 @@ class AdaBoostClassifier(BaseTransformer):
744
809
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
745
810
  inference_method=inference_method,
746
811
  input_cols=self.input_cols,
747
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
812
+ expected_output_cols=expected_output_cols,
748
813
  **transform_kwargs
749
814
  )
750
815
  return output_df
@@ -773,12 +838,14 @@ class AdaBoostClassifier(BaseTransformer):
773
838
  Output dataset with probability of the sample for each class in the model.
774
839
  """
775
840
  super()._check_dataset_type(dataset)
776
- inference_method="score_samples"
841
+ inference_method = "score_samples"
777
842
 
778
843
  # This dictionary contains optional kwargs for batch inference. These kwargs
779
844
  # are specific to the type of dataset used.
780
845
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
781
846
 
847
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
848
+
782
849
  if isinstance(dataset, DataFrame):
783
850
  self._deps = self._batch_inference_validate_snowpark(
784
851
  dataset=dataset,
@@ -791,6 +858,9 @@ class AdaBoostClassifier(BaseTransformer):
791
858
  drop_input_cols = self._drop_input_cols,
792
859
  expected_output_cols_type="float",
793
860
  )
861
+ expected_output_cols = self._align_expected_output_names(
862
+ inference_method, dataset, expected_output_cols, output_cols_prefix
863
+ )
794
864
 
795
865
  elif isinstance(dataset, pd.DataFrame):
796
866
  transform_kwargs = dict(
@@ -809,7 +879,7 @@ class AdaBoostClassifier(BaseTransformer):
809
879
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
810
880
  inference_method=inference_method,
811
881
  input_cols=self.input_cols,
812
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
882
+ expected_output_cols=expected_output_cols,
813
883
  **transform_kwargs
814
884
  )
815
885
  return output_df
@@ -956,50 +1026,84 @@ class AdaBoostClassifier(BaseTransformer):
956
1026
  )
957
1027
  return output_df
958
1028
 
1029
+
1030
+
1031
+ def to_sklearn(self) -> Any:
1032
+ """Get sklearn.ensemble.AdaBoostClassifier object.
1033
+ """
1034
+ if self._sklearn_object is None:
1035
+ self._sklearn_object = self._create_sklearn_object()
1036
+ return self._sklearn_object
1037
+
1038
+ def to_xgboost(self) -> Any:
1039
+ raise exceptions.SnowflakeMLException(
1040
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1041
+ original_exception=AttributeError(
1042
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1043
+ "to_xgboost()",
1044
+ "to_sklearn()"
1045
+ )
1046
+ ),
1047
+ )
1048
+
1049
+ def to_lightgbm(self) -> Any:
1050
+ raise exceptions.SnowflakeMLException(
1051
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1052
+ original_exception=AttributeError(
1053
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1054
+ "to_lightgbm()",
1055
+ "to_sklearn()"
1056
+ )
1057
+ ),
1058
+ )
959
1059
 
960
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1060
+ def _get_dependencies(self) -> List[str]:
1061
+ return self._deps
1062
+
1063
+
1064
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
961
1065
  self._model_signature_dict = dict()
962
1066
 
963
1067
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
964
1068
 
965
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1069
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
966
1070
  outputs: List[BaseFeatureSpec] = []
967
1071
  if hasattr(self, "predict"):
968
1072
  # keep mypy happy
969
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1073
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
970
1074
  # For classifier, the type of predict is the same as the type of label
971
- if self._sklearn_object._estimator_type == 'classifier':
972
- # label columns is the desired type for output
1075
+ if self._sklearn_object._estimator_type == "classifier":
1076
+ # label columns is the desired type for output
973
1077
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
974
1078
  # rename the output columns
975
1079
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
976
- self._model_signature_dict["predict"] = ModelSignature(inputs,
977
- ([] if self._drop_input_cols else inputs)
978
- + outputs)
1080
+ self._model_signature_dict["predict"] = ModelSignature(
1081
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1082
+ )
979
1083
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
980
1084
  # For outlier models, returns -1 for outliers and 1 for inliers.
981
- # Clusterer returns int64 cluster labels.
1085
+ # Clusterer returns int64 cluster labels.
982
1086
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
983
1087
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
984
- self._model_signature_dict["predict"] = ModelSignature(inputs,
985
- ([] if self._drop_input_cols else inputs)
986
- + outputs)
987
-
1088
+ self._model_signature_dict["predict"] = ModelSignature(
1089
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1090
+ )
1091
+
988
1092
  # For regressor, the type of predict is float64
989
- elif self._sklearn_object._estimator_type == 'regressor':
1093
+ elif self._sklearn_object._estimator_type == "regressor":
990
1094
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
994
-
1095
+ self._model_signature_dict["predict"] = ModelSignature(
1096
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1097
+ )
1098
+
995
1099
  for prob_func in PROB_FUNCTIONS:
996
1100
  if hasattr(self, prob_func):
997
1101
  output_cols_prefix: str = f"{prob_func}_"
998
1102
  output_column_names = self._get_output_column_names(output_cols_prefix)
999
1103
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1000
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1001
- ([] if self._drop_input_cols else inputs)
1002
- + outputs)
1104
+ self._model_signature_dict[prob_func] = ModelSignature(
1105
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1106
+ )
1003
1107
 
1004
1108
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1005
1109
  items = list(self._model_signature_dict.items())
@@ -1012,10 +1116,10 @@ class AdaBoostClassifier(BaseTransformer):
1012
1116
  """Returns model signature of current class.
1013
1117
 
1014
1118
  Raises:
1015
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1119
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1016
1120
 
1017
1121
  Returns:
1018
- Dict[str, ModelSignature]: each method and its input output signature
1122
+ Dict with each method and its input output signature
1019
1123
  """
1020
1124
  if self._model_signature_dict is None:
1021
1125
  raise exceptions.SnowflakeMLException(
@@ -1023,35 +1127,3 @@ class AdaBoostClassifier(BaseTransformer):
1023
1127
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1024
1128
  )
1025
1129
  return self._model_signature_dict
1026
-
1027
- def to_sklearn(self) -> Any:
1028
- """Get sklearn.ensemble.AdaBoostClassifier object.
1029
- """
1030
- if self._sklearn_object is None:
1031
- self._sklearn_object = self._create_sklearn_object()
1032
- return self._sklearn_object
1033
-
1034
- def to_xgboost(self) -> Any:
1035
- raise exceptions.SnowflakeMLException(
1036
- error_code=error_codes.METHOD_NOT_ALLOWED,
1037
- original_exception=AttributeError(
1038
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1039
- "to_xgboost()",
1040
- "to_sklearn()"
1041
- )
1042
- ),
1043
- )
1044
-
1045
- def to_lightgbm(self) -> Any:
1046
- raise exceptions.SnowflakeMLException(
1047
- error_code=error_codes.METHOD_NOT_ALLOWED,
1048
- original_exception=AttributeError(
1049
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1050
- "to_lightgbm()",
1051
- "to_sklearn()"
1052
- )
1053
- ),
1054
- )
1055
-
1056
- def _get_dependencies(self) -> List[str]:
1057
- return self._deps