snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +151 -78
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +2 -50
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +9 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -244,12 +243,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
244
243
|
)
|
245
244
|
return selected_cols
|
246
245
|
|
247
|
-
|
248
|
-
project=_PROJECT,
|
249
|
-
subproject=_SUBPROJECT,
|
250
|
-
custom_tags=dict([("autogen", True)]),
|
251
|
-
)
|
252
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AdaBoostClassifier":
|
246
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AdaBoostClassifier":
|
253
247
|
"""Build a boosted classifier/regressor from the training set (X, y)
|
254
248
|
For more details on this function, see [sklearn.ensemble.AdaBoostClassifier.fit]
|
255
249
|
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier.fit)
|
@@ -276,12 +270,14 @@ class AdaBoostClassifier(BaseTransformer):
|
|
276
270
|
|
277
271
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
278
272
|
|
279
|
-
|
273
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
280
274
|
if SNOWML_SPROC_ENV in os.environ:
|
281
275
|
statement_params = telemetry.get_function_usage_statement_params(
|
282
276
|
project=_PROJECT,
|
283
277
|
subproject=_SUBPROJECT,
|
284
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
278
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
279
|
+
inspect.currentframe(), AdaBoostClassifier.__class__.__name__
|
280
|
+
),
|
285
281
|
api_calls=[Session.call],
|
286
282
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
287
283
|
)
|
@@ -302,7 +298,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
302
298
|
)
|
303
299
|
self._sklearn_object = model_trainer.train()
|
304
300
|
self._is_fitted = True
|
305
|
-
self.
|
301
|
+
self._generate_model_signatures(dataset)
|
306
302
|
return self
|
307
303
|
|
308
304
|
def _batch_inference_validate_snowpark(
|
@@ -378,7 +374,9 @@ class AdaBoostClassifier(BaseTransformer):
|
|
378
374
|
# when it is classifier, infer the datatype from label columns
|
379
375
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
380
376
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
381
|
-
label_cols_signatures = [
|
377
|
+
label_cols_signatures = [
|
378
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
379
|
+
]
|
382
380
|
if len(label_cols_signatures) == 0:
|
383
381
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
384
382
|
raise exceptions.SnowflakeMLException(
|
@@ -386,25 +384,22 @@ class AdaBoostClassifier(BaseTransformer):
|
|
386
384
|
original_exception=ValueError(error_str),
|
387
385
|
)
|
388
386
|
|
389
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
390
|
-
label_cols_signatures[0].as_snowpark_type()
|
391
|
-
)
|
387
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
392
388
|
|
393
389
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
394
|
-
assert isinstance(
|
390
|
+
assert isinstance(
|
391
|
+
dataset._session, Session
|
392
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
395
393
|
|
396
394
|
transform_kwargs = dict(
|
397
|
-
session
|
398
|
-
dependencies
|
399
|
-
drop_input_cols
|
400
|
-
expected_output_cols_type
|
395
|
+
session=dataset._session,
|
396
|
+
dependencies=self._deps,
|
397
|
+
drop_input_cols=self._drop_input_cols,
|
398
|
+
expected_output_cols_type=expected_type_inferred,
|
401
399
|
)
|
402
400
|
|
403
401
|
elif isinstance(dataset, pd.DataFrame):
|
404
|
-
transform_kwargs = dict(
|
405
|
-
snowpark_input_cols = self._snowpark_cols,
|
406
|
-
drop_input_cols = self._drop_input_cols
|
407
|
-
)
|
402
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
408
403
|
|
409
404
|
transform_handlers = ModelTransformerBuilder.build(
|
410
405
|
dataset=dataset,
|
@@ -444,7 +439,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
444
439
|
Transformed dataset.
|
445
440
|
"""
|
446
441
|
super()._check_dataset_type(dataset)
|
447
|
-
inference_method="transform"
|
442
|
+
inference_method = "transform"
|
448
443
|
|
449
444
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
450
445
|
# are specific to the type of dataset used.
|
@@ -481,17 +476,14 @@ class AdaBoostClassifier(BaseTransformer):
|
|
481
476
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
482
477
|
|
483
478
|
transform_kwargs = dict(
|
484
|
-
session
|
485
|
-
dependencies
|
486
|
-
drop_input_cols
|
487
|
-
expected_output_cols_type
|
479
|
+
session=dataset._session,
|
480
|
+
dependencies=self._deps,
|
481
|
+
drop_input_cols=self._drop_input_cols,
|
482
|
+
expected_output_cols_type=expected_dtype,
|
488
483
|
)
|
489
484
|
|
490
485
|
elif isinstance(dataset, pd.DataFrame):
|
491
|
-
transform_kwargs = dict(
|
492
|
-
snowpark_input_cols = self._snowpark_cols,
|
493
|
-
drop_input_cols = self._drop_input_cols
|
494
|
-
)
|
486
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
495
487
|
|
496
488
|
transform_handlers = ModelTransformerBuilder.build(
|
497
489
|
dataset=dataset,
|
@@ -510,7 +502,11 @@ class AdaBoostClassifier(BaseTransformer):
|
|
510
502
|
return output_df
|
511
503
|
|
512
504
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
513
|
-
def fit_predict(
|
505
|
+
def fit_predict(
|
506
|
+
self,
|
507
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
508
|
+
output_cols_prefix: str = "fit_predict_",
|
509
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
514
510
|
""" Method not supported for this class.
|
515
511
|
|
516
512
|
|
@@ -535,7 +531,9 @@ class AdaBoostClassifier(BaseTransformer):
|
|
535
531
|
)
|
536
532
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
537
533
|
drop_input_cols=self._drop_input_cols,
|
538
|
-
expected_output_cols_list=
|
534
|
+
expected_output_cols_list=(
|
535
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
536
|
+
),
|
539
537
|
)
|
540
538
|
self._sklearn_object = fitted_estimator
|
541
539
|
self._is_fitted = True
|
@@ -552,6 +550,62 @@ class AdaBoostClassifier(BaseTransformer):
|
|
552
550
|
assert self._sklearn_object is not None
|
553
551
|
return self._sklearn_object.embedding_
|
554
552
|
|
553
|
+
|
554
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
555
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
556
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
557
|
+
"""
|
558
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
559
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
560
|
+
if output_cols:
|
561
|
+
output_cols = [
|
562
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
563
|
+
for c in output_cols
|
564
|
+
]
|
565
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
566
|
+
output_cols = [output_cols_prefix]
|
567
|
+
elif self._sklearn_object is not None:
|
568
|
+
classes = self._sklearn_object.classes_
|
569
|
+
if isinstance(classes, numpy.ndarray):
|
570
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
571
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
572
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
573
|
+
output_cols = []
|
574
|
+
for i, cl in enumerate(classes):
|
575
|
+
# For binary classification, there is only one output column for each class
|
576
|
+
# ndarray as the two classes are complementary.
|
577
|
+
if len(cl) == 2:
|
578
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
579
|
+
else:
|
580
|
+
output_cols.extend([
|
581
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
582
|
+
])
|
583
|
+
else:
|
584
|
+
output_cols = []
|
585
|
+
|
586
|
+
# Make sure column names are valid snowflake identifiers.
|
587
|
+
assert output_cols is not None # Make MyPy happy
|
588
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
589
|
+
|
590
|
+
return rv
|
591
|
+
|
592
|
+
def _align_expected_output_names(
|
593
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
594
|
+
) -> List[str]:
|
595
|
+
# in case the inferred output column names dimension is different
|
596
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
597
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
598
|
+
output_df_columns = list(output_df_pd.columns)
|
599
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
600
|
+
if self.sample_weight_col:
|
601
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
602
|
+
# if the dimension of inferred output column names is correct; use it
|
603
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
604
|
+
return expected_output_cols_list
|
605
|
+
# otherwise, use the sklearn estimator's output
|
606
|
+
else:
|
607
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
608
|
+
|
555
609
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
556
610
|
@telemetry.send_api_usage_telemetry(
|
557
611
|
project=_PROJECT,
|
@@ -584,24 +638,28 @@ class AdaBoostClassifier(BaseTransformer):
|
|
584
638
|
# are specific to the type of dataset used.
|
585
639
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
586
640
|
|
641
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
642
|
+
|
587
643
|
if isinstance(dataset, DataFrame):
|
588
644
|
self._deps = self._batch_inference_validate_snowpark(
|
589
645
|
dataset=dataset,
|
590
646
|
inference_method=inference_method,
|
591
647
|
)
|
592
|
-
assert isinstance(
|
648
|
+
assert isinstance(
|
649
|
+
dataset._session, Session
|
650
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
593
651
|
transform_kwargs = dict(
|
594
652
|
session=dataset._session,
|
595
653
|
dependencies=self._deps,
|
596
|
-
drop_input_cols
|
654
|
+
drop_input_cols=self._drop_input_cols,
|
597
655
|
expected_output_cols_type="float",
|
598
656
|
)
|
657
|
+
expected_output_cols = self._align_expected_output_names(
|
658
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
659
|
+
)
|
599
660
|
|
600
661
|
elif isinstance(dataset, pd.DataFrame):
|
601
|
-
transform_kwargs = dict(
|
602
|
-
snowpark_input_cols = self._snowpark_cols,
|
603
|
-
drop_input_cols = self._drop_input_cols
|
604
|
-
)
|
662
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
605
663
|
|
606
664
|
transform_handlers = ModelTransformerBuilder.build(
|
607
665
|
dataset=dataset,
|
@@ -613,7 +671,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
613
671
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
614
672
|
inference_method=inference_method,
|
615
673
|
input_cols=self.input_cols,
|
616
|
-
expected_output_cols=
|
674
|
+
expected_output_cols=expected_output_cols,
|
617
675
|
**transform_kwargs
|
618
676
|
)
|
619
677
|
return output_df
|
@@ -645,7 +703,8 @@ class AdaBoostClassifier(BaseTransformer):
|
|
645
703
|
Output dataset with log probability of the sample for each class in the model.
|
646
704
|
"""
|
647
705
|
super()._check_dataset_type(dataset)
|
648
|
-
inference_method="predict_log_proba"
|
706
|
+
inference_method = "predict_log_proba"
|
707
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
649
708
|
|
650
709
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
651
710
|
# are specific to the type of dataset used.
|
@@ -656,18 +715,20 @@ class AdaBoostClassifier(BaseTransformer):
|
|
656
715
|
dataset=dataset,
|
657
716
|
inference_method=inference_method,
|
658
717
|
)
|
659
|
-
assert isinstance(
|
718
|
+
assert isinstance(
|
719
|
+
dataset._session, Session
|
720
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
660
721
|
transform_kwargs = dict(
|
661
722
|
session=dataset._session,
|
662
723
|
dependencies=self._deps,
|
663
|
-
drop_input_cols
|
724
|
+
drop_input_cols=self._drop_input_cols,
|
664
725
|
expected_output_cols_type="float",
|
665
726
|
)
|
727
|
+
expected_output_cols = self._align_expected_output_names(
|
728
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
729
|
+
)
|
666
730
|
elif isinstance(dataset, pd.DataFrame):
|
667
|
-
transform_kwargs = dict(
|
668
|
-
snowpark_input_cols = self._snowpark_cols,
|
669
|
-
drop_input_cols = self._drop_input_cols
|
670
|
-
)
|
731
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
671
732
|
|
672
733
|
transform_handlers = ModelTransformerBuilder.build(
|
673
734
|
dataset=dataset,
|
@@ -680,7 +741,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
680
741
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
681
742
|
inference_method=inference_method,
|
682
743
|
input_cols=self.input_cols,
|
683
|
-
expected_output_cols=
|
744
|
+
expected_output_cols=expected_output_cols,
|
684
745
|
**transform_kwargs
|
685
746
|
)
|
686
747
|
return output_df
|
@@ -708,30 +769,34 @@ class AdaBoostClassifier(BaseTransformer):
|
|
708
769
|
Output dataset with results of the decision function for the samples in input dataset.
|
709
770
|
"""
|
710
771
|
super()._check_dataset_type(dataset)
|
711
|
-
inference_method="decision_function"
|
772
|
+
inference_method = "decision_function"
|
712
773
|
|
713
774
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
714
775
|
# are specific to the type of dataset used.
|
715
776
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
716
777
|
|
778
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
779
|
+
|
717
780
|
if isinstance(dataset, DataFrame):
|
718
781
|
self._deps = self._batch_inference_validate_snowpark(
|
719
782
|
dataset=dataset,
|
720
783
|
inference_method=inference_method,
|
721
784
|
)
|
722
|
-
assert isinstance(
|
785
|
+
assert isinstance(
|
786
|
+
dataset._session, Session
|
787
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
723
788
|
transform_kwargs = dict(
|
724
789
|
session=dataset._session,
|
725
790
|
dependencies=self._deps,
|
726
|
-
drop_input_cols
|
791
|
+
drop_input_cols=self._drop_input_cols,
|
727
792
|
expected_output_cols_type="float",
|
728
793
|
)
|
794
|
+
expected_output_cols = self._align_expected_output_names(
|
795
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
796
|
+
)
|
729
797
|
|
730
798
|
elif isinstance(dataset, pd.DataFrame):
|
731
|
-
transform_kwargs = dict(
|
732
|
-
snowpark_input_cols = self._snowpark_cols,
|
733
|
-
drop_input_cols = self._drop_input_cols
|
734
|
-
)
|
799
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
735
800
|
|
736
801
|
transform_handlers = ModelTransformerBuilder.build(
|
737
802
|
dataset=dataset,
|
@@ -744,7 +809,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
744
809
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
745
810
|
inference_method=inference_method,
|
746
811
|
input_cols=self.input_cols,
|
747
|
-
expected_output_cols=
|
812
|
+
expected_output_cols=expected_output_cols,
|
748
813
|
**transform_kwargs
|
749
814
|
)
|
750
815
|
return output_df
|
@@ -773,12 +838,14 @@ class AdaBoostClassifier(BaseTransformer):
|
|
773
838
|
Output dataset with probability of the sample for each class in the model.
|
774
839
|
"""
|
775
840
|
super()._check_dataset_type(dataset)
|
776
|
-
inference_method="score_samples"
|
841
|
+
inference_method = "score_samples"
|
777
842
|
|
778
843
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
779
844
|
# are specific to the type of dataset used.
|
780
845
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
781
846
|
|
847
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
848
|
+
|
782
849
|
if isinstance(dataset, DataFrame):
|
783
850
|
self._deps = self._batch_inference_validate_snowpark(
|
784
851
|
dataset=dataset,
|
@@ -791,6 +858,9 @@ class AdaBoostClassifier(BaseTransformer):
|
|
791
858
|
drop_input_cols = self._drop_input_cols,
|
792
859
|
expected_output_cols_type="float",
|
793
860
|
)
|
861
|
+
expected_output_cols = self._align_expected_output_names(
|
862
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
863
|
+
)
|
794
864
|
|
795
865
|
elif isinstance(dataset, pd.DataFrame):
|
796
866
|
transform_kwargs = dict(
|
@@ -809,7 +879,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
809
879
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
810
880
|
inference_method=inference_method,
|
811
881
|
input_cols=self.input_cols,
|
812
|
-
expected_output_cols=
|
882
|
+
expected_output_cols=expected_output_cols,
|
813
883
|
**transform_kwargs
|
814
884
|
)
|
815
885
|
return output_df
|
@@ -956,50 +1026,84 @@ class AdaBoostClassifier(BaseTransformer):
|
|
956
1026
|
)
|
957
1027
|
return output_df
|
958
1028
|
|
1029
|
+
|
1030
|
+
|
1031
|
+
def to_sklearn(self) -> Any:
|
1032
|
+
"""Get sklearn.ensemble.AdaBoostClassifier object.
|
1033
|
+
"""
|
1034
|
+
if self._sklearn_object is None:
|
1035
|
+
self._sklearn_object = self._create_sklearn_object()
|
1036
|
+
return self._sklearn_object
|
1037
|
+
|
1038
|
+
def to_xgboost(self) -> Any:
|
1039
|
+
raise exceptions.SnowflakeMLException(
|
1040
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1041
|
+
original_exception=AttributeError(
|
1042
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1043
|
+
"to_xgboost()",
|
1044
|
+
"to_sklearn()"
|
1045
|
+
)
|
1046
|
+
),
|
1047
|
+
)
|
1048
|
+
|
1049
|
+
def to_lightgbm(self) -> Any:
|
1050
|
+
raise exceptions.SnowflakeMLException(
|
1051
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1052
|
+
original_exception=AttributeError(
|
1053
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1054
|
+
"to_lightgbm()",
|
1055
|
+
"to_sklearn()"
|
1056
|
+
)
|
1057
|
+
),
|
1058
|
+
)
|
959
1059
|
|
960
|
-
def
|
1060
|
+
def _get_dependencies(self) -> List[str]:
|
1061
|
+
return self._deps
|
1062
|
+
|
1063
|
+
|
1064
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
961
1065
|
self._model_signature_dict = dict()
|
962
1066
|
|
963
1067
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
964
1068
|
|
965
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1069
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
966
1070
|
outputs: List[BaseFeatureSpec] = []
|
967
1071
|
if hasattr(self, "predict"):
|
968
1072
|
# keep mypy happy
|
969
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1073
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
970
1074
|
# For classifier, the type of predict is the same as the type of label
|
971
|
-
if self._sklearn_object._estimator_type ==
|
972
|
-
|
1075
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1076
|
+
# label columns is the desired type for output
|
973
1077
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
974
1078
|
# rename the output columns
|
975
1079
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
976
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
977
|
-
|
978
|
-
|
1080
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1081
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1082
|
+
)
|
979
1083
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
980
1084
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
981
|
-
# Clusterer returns int64 cluster labels.
|
1085
|
+
# Clusterer returns int64 cluster labels.
|
982
1086
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
983
1087
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
984
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
985
|
-
|
986
|
-
|
987
|
-
|
1088
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1089
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1090
|
+
)
|
1091
|
+
|
988
1092
|
# For regressor, the type of predict is float64
|
989
|
-
elif self._sklearn_object._estimator_type ==
|
1093
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
990
1094
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
991
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
992
|
-
|
993
|
-
|
994
|
-
|
1095
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1096
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1097
|
+
)
|
1098
|
+
|
995
1099
|
for prob_func in PROB_FUNCTIONS:
|
996
1100
|
if hasattr(self, prob_func):
|
997
1101
|
output_cols_prefix: str = f"{prob_func}_"
|
998
1102
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
999
1103
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1000
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1001
|
-
|
1002
|
-
|
1104
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1105
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1106
|
+
)
|
1003
1107
|
|
1004
1108
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1005
1109
|
items = list(self._model_signature_dict.items())
|
@@ -1012,10 +1116,10 @@ class AdaBoostClassifier(BaseTransformer):
|
|
1012
1116
|
"""Returns model signature of current class.
|
1013
1117
|
|
1014
1118
|
Raises:
|
1015
|
-
|
1119
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1016
1120
|
|
1017
1121
|
Returns:
|
1018
|
-
Dict
|
1122
|
+
Dict with each method and its input output signature
|
1019
1123
|
"""
|
1020
1124
|
if self._model_signature_dict is None:
|
1021
1125
|
raise exceptions.SnowflakeMLException(
|
@@ -1023,35 +1127,3 @@ class AdaBoostClassifier(BaseTransformer):
|
|
1023
1127
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1024
1128
|
)
|
1025
1129
|
return self._model_signature_dict
|
1026
|
-
|
1027
|
-
def to_sklearn(self) -> Any:
|
1028
|
-
"""Get sklearn.ensemble.AdaBoostClassifier object.
|
1029
|
-
"""
|
1030
|
-
if self._sklearn_object is None:
|
1031
|
-
self._sklearn_object = self._create_sklearn_object()
|
1032
|
-
return self._sklearn_object
|
1033
|
-
|
1034
|
-
def to_xgboost(self) -> Any:
|
1035
|
-
raise exceptions.SnowflakeMLException(
|
1036
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1037
|
-
original_exception=AttributeError(
|
1038
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1039
|
-
"to_xgboost()",
|
1040
|
-
"to_sklearn()"
|
1041
|
-
)
|
1042
|
-
),
|
1043
|
-
)
|
1044
|
-
|
1045
|
-
def to_lightgbm(self) -> Any:
|
1046
|
-
raise exceptions.SnowflakeMLException(
|
1047
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1048
|
-
original_exception=AttributeError(
|
1049
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1050
|
-
"to_lightgbm()",
|
1051
|
-
"to_sklearn()"
|
1052
|
-
)
|
1053
|
-
),
|
1054
|
-
)
|
1055
|
-
|
1056
|
-
def _get_dependencies(self) -> List[str]:
|
1057
|
-
return self._deps
|