snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -322,12 +321,7 @@ class ExtraTreeClassifier(BaseTransformer):
322
321
  )
323
322
  return selected_cols
324
323
 
325
- @telemetry.send_api_usage_telemetry(
326
- project=_PROJECT,
327
- subproject=_SUBPROJECT,
328
- custom_tags=dict([("autogen", True)]),
329
- )
330
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreeClassifier":
324
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreeClassifier":
331
325
  """Build a decision tree classifier from the training set (X, y)
332
326
  For more details on this function, see [sklearn.tree.ExtraTreeClassifier.fit]
333
327
  (https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeClassifier.html#sklearn.tree.ExtraTreeClassifier.fit)
@@ -354,12 +348,14 @@ class ExtraTreeClassifier(BaseTransformer):
354
348
 
355
349
  self._snowpark_cols = dataset.select(self.input_cols).columns
356
350
 
357
- # If we are already in a stored procedure, no need to kick off another one.
351
+ # If we are already in a stored procedure, no need to kick off another one.
358
352
  if SNOWML_SPROC_ENV in os.environ:
359
353
  statement_params = telemetry.get_function_usage_statement_params(
360
354
  project=_PROJECT,
361
355
  subproject=_SUBPROJECT,
362
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreeClassifier.__class__.__name__),
356
+ function_name=telemetry.get_statement_params_full_func_name(
357
+ inspect.currentframe(), ExtraTreeClassifier.__class__.__name__
358
+ ),
363
359
  api_calls=[Session.call],
364
360
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
365
361
  )
@@ -380,7 +376,7 @@ class ExtraTreeClassifier(BaseTransformer):
380
376
  )
381
377
  self._sklearn_object = model_trainer.train()
382
378
  self._is_fitted = True
383
- self._get_model_signatures(dataset)
379
+ self._generate_model_signatures(dataset)
384
380
  return self
385
381
 
386
382
  def _batch_inference_validate_snowpark(
@@ -456,7 +452,9 @@ class ExtraTreeClassifier(BaseTransformer):
456
452
  # when it is classifier, infer the datatype from label columns
457
453
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
458
454
  # Batch inference takes a single expected output column type. Use the first columns type for now.
459
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
455
+ label_cols_signatures = [
456
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
457
+ ]
460
458
  if len(label_cols_signatures) == 0:
461
459
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
462
460
  raise exceptions.SnowflakeMLException(
@@ -464,25 +462,22 @@ class ExtraTreeClassifier(BaseTransformer):
464
462
  original_exception=ValueError(error_str),
465
463
  )
466
464
 
467
- expected_type_inferred = convert_sp_to_sf_type(
468
- label_cols_signatures[0].as_snowpark_type()
469
- )
465
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
470
466
 
471
467
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
472
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
468
+ assert isinstance(
469
+ dataset._session, Session
470
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
473
471
 
474
472
  transform_kwargs = dict(
475
- session = dataset._session,
476
- dependencies = self._deps,
477
- drop_input_cols = self._drop_input_cols,
478
- expected_output_cols_type = expected_type_inferred,
473
+ session=dataset._session,
474
+ dependencies=self._deps,
475
+ drop_input_cols=self._drop_input_cols,
476
+ expected_output_cols_type=expected_type_inferred,
479
477
  )
480
478
 
481
479
  elif isinstance(dataset, pd.DataFrame):
482
- transform_kwargs = dict(
483
- snowpark_input_cols = self._snowpark_cols,
484
- drop_input_cols = self._drop_input_cols
485
- )
480
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
486
481
 
487
482
  transform_handlers = ModelTransformerBuilder.build(
488
483
  dataset=dataset,
@@ -522,7 +517,7 @@ class ExtraTreeClassifier(BaseTransformer):
522
517
  Transformed dataset.
523
518
  """
524
519
  super()._check_dataset_type(dataset)
525
- inference_method="transform"
520
+ inference_method = "transform"
526
521
 
527
522
  # This dictionary contains optional kwargs for batch inference. These kwargs
528
523
  # are specific to the type of dataset used.
@@ -559,17 +554,14 @@ class ExtraTreeClassifier(BaseTransformer):
559
554
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
560
555
 
561
556
  transform_kwargs = dict(
562
- session = dataset._session,
563
- dependencies = self._deps,
564
- drop_input_cols = self._drop_input_cols,
565
- expected_output_cols_type = expected_dtype,
557
+ session=dataset._session,
558
+ dependencies=self._deps,
559
+ drop_input_cols=self._drop_input_cols,
560
+ expected_output_cols_type=expected_dtype,
566
561
  )
567
562
 
568
563
  elif isinstance(dataset, pd.DataFrame):
569
- transform_kwargs = dict(
570
- snowpark_input_cols = self._snowpark_cols,
571
- drop_input_cols = self._drop_input_cols
572
- )
564
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
573
565
 
574
566
  transform_handlers = ModelTransformerBuilder.build(
575
567
  dataset=dataset,
@@ -588,7 +580,11 @@ class ExtraTreeClassifier(BaseTransformer):
588
580
  return output_df
589
581
 
590
582
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
591
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
583
+ def fit_predict(
584
+ self,
585
+ dataset: Union[DataFrame, pd.DataFrame],
586
+ output_cols_prefix: str = "fit_predict_",
587
+ ) -> Union[DataFrame, pd.DataFrame]:
592
588
  """ Method not supported for this class.
593
589
 
594
590
 
@@ -613,7 +609,9 @@ class ExtraTreeClassifier(BaseTransformer):
613
609
  )
614
610
  output_result, fitted_estimator = model_trainer.train_fit_predict(
615
611
  drop_input_cols=self._drop_input_cols,
616
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
612
+ expected_output_cols_list=(
613
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
614
+ ),
617
615
  )
618
616
  self._sklearn_object = fitted_estimator
619
617
  self._is_fitted = True
@@ -630,6 +628,62 @@ class ExtraTreeClassifier(BaseTransformer):
630
628
  assert self._sklearn_object is not None
631
629
  return self._sklearn_object.embedding_
632
630
 
631
+
632
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
633
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
634
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
635
+ """
636
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
637
+ # The following condition is introduced for kneighbors methods, and not used in other methods
638
+ if output_cols:
639
+ output_cols = [
640
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
641
+ for c in output_cols
642
+ ]
643
+ elif getattr(self._sklearn_object, "classes_", None) is None:
644
+ output_cols = [output_cols_prefix]
645
+ elif self._sklearn_object is not None:
646
+ classes = self._sklearn_object.classes_
647
+ if isinstance(classes, numpy.ndarray):
648
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
649
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
650
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
651
+ output_cols = []
652
+ for i, cl in enumerate(classes):
653
+ # For binary classification, there is only one output column for each class
654
+ # ndarray as the two classes are complementary.
655
+ if len(cl) == 2:
656
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
657
+ else:
658
+ output_cols.extend([
659
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
660
+ ])
661
+ else:
662
+ output_cols = []
663
+
664
+ # Make sure column names are valid snowflake identifiers.
665
+ assert output_cols is not None # Make MyPy happy
666
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
667
+
668
+ return rv
669
+
670
+ def _align_expected_output_names(
671
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
672
+ ) -> List[str]:
673
+ # in case the inferred output column names dimension is different
674
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
675
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
676
+ output_df_columns = list(output_df_pd.columns)
677
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
678
+ if self.sample_weight_col:
679
+ output_df_columns_set -= set(self.sample_weight_col)
680
+ # if the dimension of inferred output column names is correct; use it
681
+ if len(expected_output_cols_list) == len(output_df_columns_set):
682
+ return expected_output_cols_list
683
+ # otherwise, use the sklearn estimator's output
684
+ else:
685
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
686
+
633
687
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
634
688
  @telemetry.send_api_usage_telemetry(
635
689
  project=_PROJECT,
@@ -662,24 +716,28 @@ class ExtraTreeClassifier(BaseTransformer):
662
716
  # are specific to the type of dataset used.
663
717
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
664
718
 
719
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
720
+
665
721
  if isinstance(dataset, DataFrame):
666
722
  self._deps = self._batch_inference_validate_snowpark(
667
723
  dataset=dataset,
668
724
  inference_method=inference_method,
669
725
  )
670
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
726
+ assert isinstance(
727
+ dataset._session, Session
728
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
671
729
  transform_kwargs = dict(
672
730
  session=dataset._session,
673
731
  dependencies=self._deps,
674
- drop_input_cols = self._drop_input_cols,
732
+ drop_input_cols=self._drop_input_cols,
675
733
  expected_output_cols_type="float",
676
734
  )
735
+ expected_output_cols = self._align_expected_output_names(
736
+ inference_method, dataset, expected_output_cols, output_cols_prefix
737
+ )
677
738
 
678
739
  elif isinstance(dataset, pd.DataFrame):
679
- transform_kwargs = dict(
680
- snowpark_input_cols = self._snowpark_cols,
681
- drop_input_cols = self._drop_input_cols
682
- )
740
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
683
741
 
684
742
  transform_handlers = ModelTransformerBuilder.build(
685
743
  dataset=dataset,
@@ -691,7 +749,7 @@ class ExtraTreeClassifier(BaseTransformer):
691
749
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
692
750
  inference_method=inference_method,
693
751
  input_cols=self.input_cols,
694
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
752
+ expected_output_cols=expected_output_cols,
695
753
  **transform_kwargs
696
754
  )
697
755
  return output_df
@@ -723,7 +781,8 @@ class ExtraTreeClassifier(BaseTransformer):
723
781
  Output dataset with log probability of the sample for each class in the model.
724
782
  """
725
783
  super()._check_dataset_type(dataset)
726
- inference_method="predict_log_proba"
784
+ inference_method = "predict_log_proba"
785
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
727
786
 
728
787
  # This dictionary contains optional kwargs for batch inference. These kwargs
729
788
  # are specific to the type of dataset used.
@@ -734,18 +793,20 @@ class ExtraTreeClassifier(BaseTransformer):
734
793
  dataset=dataset,
735
794
  inference_method=inference_method,
736
795
  )
737
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
796
+ assert isinstance(
797
+ dataset._session, Session
798
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
738
799
  transform_kwargs = dict(
739
800
  session=dataset._session,
740
801
  dependencies=self._deps,
741
- drop_input_cols = self._drop_input_cols,
802
+ drop_input_cols=self._drop_input_cols,
742
803
  expected_output_cols_type="float",
743
804
  )
805
+ expected_output_cols = self._align_expected_output_names(
806
+ inference_method, dataset, expected_output_cols, output_cols_prefix
807
+ )
744
808
  elif isinstance(dataset, pd.DataFrame):
745
- transform_kwargs = dict(
746
- snowpark_input_cols = self._snowpark_cols,
747
- drop_input_cols = self._drop_input_cols
748
- )
809
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
749
810
 
750
811
  transform_handlers = ModelTransformerBuilder.build(
751
812
  dataset=dataset,
@@ -758,7 +819,7 @@ class ExtraTreeClassifier(BaseTransformer):
758
819
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
759
820
  inference_method=inference_method,
760
821
  input_cols=self.input_cols,
761
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
822
+ expected_output_cols=expected_output_cols,
762
823
  **transform_kwargs
763
824
  )
764
825
  return output_df
@@ -784,30 +845,34 @@ class ExtraTreeClassifier(BaseTransformer):
784
845
  Output dataset with results of the decision function for the samples in input dataset.
785
846
  """
786
847
  super()._check_dataset_type(dataset)
787
- inference_method="decision_function"
848
+ inference_method = "decision_function"
788
849
 
789
850
  # This dictionary contains optional kwargs for batch inference. These kwargs
790
851
  # are specific to the type of dataset used.
791
852
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
792
853
 
854
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
855
+
793
856
  if isinstance(dataset, DataFrame):
794
857
  self._deps = self._batch_inference_validate_snowpark(
795
858
  dataset=dataset,
796
859
  inference_method=inference_method,
797
860
  )
798
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
861
+ assert isinstance(
862
+ dataset._session, Session
863
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
799
864
  transform_kwargs = dict(
800
865
  session=dataset._session,
801
866
  dependencies=self._deps,
802
- drop_input_cols = self._drop_input_cols,
867
+ drop_input_cols=self._drop_input_cols,
803
868
  expected_output_cols_type="float",
804
869
  )
870
+ expected_output_cols = self._align_expected_output_names(
871
+ inference_method, dataset, expected_output_cols, output_cols_prefix
872
+ )
805
873
 
806
874
  elif isinstance(dataset, pd.DataFrame):
807
- transform_kwargs = dict(
808
- snowpark_input_cols = self._snowpark_cols,
809
- drop_input_cols = self._drop_input_cols
810
- )
875
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
811
876
 
812
877
  transform_handlers = ModelTransformerBuilder.build(
813
878
  dataset=dataset,
@@ -820,7 +885,7 @@ class ExtraTreeClassifier(BaseTransformer):
820
885
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
821
886
  inference_method=inference_method,
822
887
  input_cols=self.input_cols,
823
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
888
+ expected_output_cols=expected_output_cols,
824
889
  **transform_kwargs
825
890
  )
826
891
  return output_df
@@ -849,12 +914,14 @@ class ExtraTreeClassifier(BaseTransformer):
849
914
  Output dataset with probability of the sample for each class in the model.
850
915
  """
851
916
  super()._check_dataset_type(dataset)
852
- inference_method="score_samples"
917
+ inference_method = "score_samples"
853
918
 
854
919
  # This dictionary contains optional kwargs for batch inference. These kwargs
855
920
  # are specific to the type of dataset used.
856
921
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
857
922
 
923
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
924
+
858
925
  if isinstance(dataset, DataFrame):
859
926
  self._deps = self._batch_inference_validate_snowpark(
860
927
  dataset=dataset,
@@ -867,6 +934,9 @@ class ExtraTreeClassifier(BaseTransformer):
867
934
  drop_input_cols = self._drop_input_cols,
868
935
  expected_output_cols_type="float",
869
936
  )
937
+ expected_output_cols = self._align_expected_output_names(
938
+ inference_method, dataset, expected_output_cols, output_cols_prefix
939
+ )
870
940
 
871
941
  elif isinstance(dataset, pd.DataFrame):
872
942
  transform_kwargs = dict(
@@ -885,7 +955,7 @@ class ExtraTreeClassifier(BaseTransformer):
885
955
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
886
956
  inference_method=inference_method,
887
957
  input_cols=self.input_cols,
888
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
958
+ expected_output_cols=expected_output_cols,
889
959
  **transform_kwargs
890
960
  )
891
961
  return output_df
@@ -1032,50 +1102,84 @@ class ExtraTreeClassifier(BaseTransformer):
1032
1102
  )
1033
1103
  return output_df
1034
1104
 
1105
+
1106
+
1107
+ def to_sklearn(self) -> Any:
1108
+ """Get sklearn.tree.ExtraTreeClassifier object.
1109
+ """
1110
+ if self._sklearn_object is None:
1111
+ self._sklearn_object = self._create_sklearn_object()
1112
+ return self._sklearn_object
1113
+
1114
+ def to_xgboost(self) -> Any:
1115
+ raise exceptions.SnowflakeMLException(
1116
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1117
+ original_exception=AttributeError(
1118
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1119
+ "to_xgboost()",
1120
+ "to_sklearn()"
1121
+ )
1122
+ ),
1123
+ )
1124
+
1125
+ def to_lightgbm(self) -> Any:
1126
+ raise exceptions.SnowflakeMLException(
1127
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1128
+ original_exception=AttributeError(
1129
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1130
+ "to_lightgbm()",
1131
+ "to_sklearn()"
1132
+ )
1133
+ ),
1134
+ )
1035
1135
 
1036
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1136
+ def _get_dependencies(self) -> List[str]:
1137
+ return self._deps
1138
+
1139
+
1140
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1037
1141
  self._model_signature_dict = dict()
1038
1142
 
1039
1143
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1040
1144
 
1041
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1145
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1042
1146
  outputs: List[BaseFeatureSpec] = []
1043
1147
  if hasattr(self, "predict"):
1044
1148
  # keep mypy happy
1045
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1149
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1046
1150
  # For classifier, the type of predict is the same as the type of label
1047
- if self._sklearn_object._estimator_type == 'classifier':
1048
- # label columns is the desired type for output
1151
+ if self._sklearn_object._estimator_type == "classifier":
1152
+ # label columns is the desired type for output
1049
1153
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1050
1154
  # rename the output columns
1051
1155
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1052
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1053
- ([] if self._drop_input_cols else inputs)
1054
- + outputs)
1156
+ self._model_signature_dict["predict"] = ModelSignature(
1157
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1158
+ )
1055
1159
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1056
1160
  # For outlier models, returns -1 for outliers and 1 for inliers.
1057
- # Clusterer returns int64 cluster labels.
1161
+ # Clusterer returns int64 cluster labels.
1058
1162
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1059
1163
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1060
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1061
- ([] if self._drop_input_cols else inputs)
1062
- + outputs)
1063
-
1164
+ self._model_signature_dict["predict"] = ModelSignature(
1165
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1166
+ )
1167
+
1064
1168
  # For regressor, the type of predict is float64
1065
- elif self._sklearn_object._estimator_type == 'regressor':
1169
+ elif self._sklearn_object._estimator_type == "regressor":
1066
1170
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1067
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1068
- ([] if self._drop_input_cols else inputs)
1069
- + outputs)
1070
-
1171
+ self._model_signature_dict["predict"] = ModelSignature(
1172
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1173
+ )
1174
+
1071
1175
  for prob_func in PROB_FUNCTIONS:
1072
1176
  if hasattr(self, prob_func):
1073
1177
  output_cols_prefix: str = f"{prob_func}_"
1074
1178
  output_column_names = self._get_output_column_names(output_cols_prefix)
1075
1179
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1076
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1077
- ([] if self._drop_input_cols else inputs)
1078
- + outputs)
1180
+ self._model_signature_dict[prob_func] = ModelSignature(
1181
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1182
+ )
1079
1183
 
1080
1184
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1081
1185
  items = list(self._model_signature_dict.items())
@@ -1088,10 +1192,10 @@ class ExtraTreeClassifier(BaseTransformer):
1088
1192
  """Returns model signature of current class.
1089
1193
 
1090
1194
  Raises:
1091
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1195
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1092
1196
 
1093
1197
  Returns:
1094
- Dict[str, ModelSignature]: each method and its input output signature
1198
+ Dict with each method and its input output signature
1095
1199
  """
1096
1200
  if self._model_signature_dict is None:
1097
1201
  raise exceptions.SnowflakeMLException(
@@ -1099,35 +1203,3 @@ class ExtraTreeClassifier(BaseTransformer):
1099
1203
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1100
1204
  )
1101
1205
  return self._model_signature_dict
1102
-
1103
- def to_sklearn(self) -> Any:
1104
- """Get sklearn.tree.ExtraTreeClassifier object.
1105
- """
1106
- if self._sklearn_object is None:
1107
- self._sklearn_object = self._create_sklearn_object()
1108
- return self._sklearn_object
1109
-
1110
- def to_xgboost(self) -> Any:
1111
- raise exceptions.SnowflakeMLException(
1112
- error_code=error_codes.METHOD_NOT_ALLOWED,
1113
- original_exception=AttributeError(
1114
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1115
- "to_xgboost()",
1116
- "to_sklearn()"
1117
- )
1118
- ),
1119
- )
1120
-
1121
- def to_lightgbm(self) -> Any:
1122
- raise exceptions.SnowflakeMLException(
1123
- error_code=error_codes.METHOD_NOT_ALLOWED,
1124
- original_exception=AttributeError(
1125
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1126
- "to_lightgbm()",
1127
- "to_sklearn()"
1128
- )
1129
- ),
1130
- )
1131
-
1132
- def _get_dependencies(self) -> List[str]:
1133
- return self._deps