snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -312,12 +311,7 @@ class DecisionTreeRegressor(BaseTransformer):
312
311
  )
313
312
  return selected_cols
314
313
 
315
- @telemetry.send_api_usage_telemetry(
316
- project=_PROJECT,
317
- subproject=_SUBPROJECT,
318
- custom_tags=dict([("autogen", True)]),
319
- )
320
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DecisionTreeRegressor":
314
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DecisionTreeRegressor":
321
315
  """Build a decision tree regressor from the training set (X, y)
322
316
  For more details on this function, see [sklearn.tree.DecisionTreeRegressor.fit]
323
317
  (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor.fit)
@@ -344,12 +338,14 @@ class DecisionTreeRegressor(BaseTransformer):
344
338
 
345
339
  self._snowpark_cols = dataset.select(self.input_cols).columns
346
340
 
347
- # If we are already in a stored procedure, no need to kick off another one.
341
+ # If we are already in a stored procedure, no need to kick off another one.
348
342
  if SNOWML_SPROC_ENV in os.environ:
349
343
  statement_params = telemetry.get_function_usage_statement_params(
350
344
  project=_PROJECT,
351
345
  subproject=_SUBPROJECT,
352
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DecisionTreeRegressor.__class__.__name__),
346
+ function_name=telemetry.get_statement_params_full_func_name(
347
+ inspect.currentframe(), DecisionTreeRegressor.__class__.__name__
348
+ ),
353
349
  api_calls=[Session.call],
354
350
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
355
351
  )
@@ -370,7 +366,7 @@ class DecisionTreeRegressor(BaseTransformer):
370
366
  )
371
367
  self._sklearn_object = model_trainer.train()
372
368
  self._is_fitted = True
373
- self._get_model_signatures(dataset)
369
+ self._generate_model_signatures(dataset)
374
370
  return self
375
371
 
376
372
  def _batch_inference_validate_snowpark(
@@ -446,7 +442,9 @@ class DecisionTreeRegressor(BaseTransformer):
446
442
  # when it is classifier, infer the datatype from label columns
447
443
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
448
444
  # Batch inference takes a single expected output column type. Use the first columns type for now.
449
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
445
+ label_cols_signatures = [
446
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
447
+ ]
450
448
  if len(label_cols_signatures) == 0:
451
449
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
452
450
  raise exceptions.SnowflakeMLException(
@@ -454,25 +452,22 @@ class DecisionTreeRegressor(BaseTransformer):
454
452
  original_exception=ValueError(error_str),
455
453
  )
456
454
 
457
- expected_type_inferred = convert_sp_to_sf_type(
458
- label_cols_signatures[0].as_snowpark_type()
459
- )
455
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
460
456
 
461
457
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
462
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
458
+ assert isinstance(
459
+ dataset._session, Session
460
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
463
461
 
464
462
  transform_kwargs = dict(
465
- session = dataset._session,
466
- dependencies = self._deps,
467
- drop_input_cols = self._drop_input_cols,
468
- expected_output_cols_type = expected_type_inferred,
463
+ session=dataset._session,
464
+ dependencies=self._deps,
465
+ drop_input_cols=self._drop_input_cols,
466
+ expected_output_cols_type=expected_type_inferred,
469
467
  )
470
468
 
471
469
  elif isinstance(dataset, pd.DataFrame):
472
- transform_kwargs = dict(
473
- snowpark_input_cols = self._snowpark_cols,
474
- drop_input_cols = self._drop_input_cols
475
- )
470
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
476
471
 
477
472
  transform_handlers = ModelTransformerBuilder.build(
478
473
  dataset=dataset,
@@ -512,7 +507,7 @@ class DecisionTreeRegressor(BaseTransformer):
512
507
  Transformed dataset.
513
508
  """
514
509
  super()._check_dataset_type(dataset)
515
- inference_method="transform"
510
+ inference_method = "transform"
516
511
 
517
512
  # This dictionary contains optional kwargs for batch inference. These kwargs
518
513
  # are specific to the type of dataset used.
@@ -549,17 +544,14 @@ class DecisionTreeRegressor(BaseTransformer):
549
544
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
550
545
 
551
546
  transform_kwargs = dict(
552
- session = dataset._session,
553
- dependencies = self._deps,
554
- drop_input_cols = self._drop_input_cols,
555
- expected_output_cols_type = expected_dtype,
547
+ session=dataset._session,
548
+ dependencies=self._deps,
549
+ drop_input_cols=self._drop_input_cols,
550
+ expected_output_cols_type=expected_dtype,
556
551
  )
557
552
 
558
553
  elif isinstance(dataset, pd.DataFrame):
559
- transform_kwargs = dict(
560
- snowpark_input_cols = self._snowpark_cols,
561
- drop_input_cols = self._drop_input_cols
562
- )
554
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
563
555
 
564
556
  transform_handlers = ModelTransformerBuilder.build(
565
557
  dataset=dataset,
@@ -578,7 +570,11 @@ class DecisionTreeRegressor(BaseTransformer):
578
570
  return output_df
579
571
 
580
572
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
581
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
573
+ def fit_predict(
574
+ self,
575
+ dataset: Union[DataFrame, pd.DataFrame],
576
+ output_cols_prefix: str = "fit_predict_",
577
+ ) -> Union[DataFrame, pd.DataFrame]:
582
578
  """ Method not supported for this class.
583
579
 
584
580
 
@@ -603,7 +599,9 @@ class DecisionTreeRegressor(BaseTransformer):
603
599
  )
604
600
  output_result, fitted_estimator = model_trainer.train_fit_predict(
605
601
  drop_input_cols=self._drop_input_cols,
606
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
602
+ expected_output_cols_list=(
603
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
604
+ ),
607
605
  )
608
606
  self._sklearn_object = fitted_estimator
609
607
  self._is_fitted = True
@@ -620,6 +618,62 @@ class DecisionTreeRegressor(BaseTransformer):
620
618
  assert self._sklearn_object is not None
621
619
  return self._sklearn_object.embedding_
622
620
 
621
+
622
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
623
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
624
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
625
+ """
626
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
627
+ # The following condition is introduced for kneighbors methods, and not used in other methods
628
+ if output_cols:
629
+ output_cols = [
630
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
631
+ for c in output_cols
632
+ ]
633
+ elif getattr(self._sklearn_object, "classes_", None) is None:
634
+ output_cols = [output_cols_prefix]
635
+ elif self._sklearn_object is not None:
636
+ classes = self._sklearn_object.classes_
637
+ if isinstance(classes, numpy.ndarray):
638
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
639
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
640
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
641
+ output_cols = []
642
+ for i, cl in enumerate(classes):
643
+ # For binary classification, there is only one output column for each class
644
+ # ndarray as the two classes are complementary.
645
+ if len(cl) == 2:
646
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
647
+ else:
648
+ output_cols.extend([
649
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
650
+ ])
651
+ else:
652
+ output_cols = []
653
+
654
+ # Make sure column names are valid snowflake identifiers.
655
+ assert output_cols is not None # Make MyPy happy
656
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
657
+
658
+ return rv
659
+
660
+ def _align_expected_output_names(
661
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
662
+ ) -> List[str]:
663
+ # in case the inferred output column names dimension is different
664
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
665
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
666
+ output_df_columns = list(output_df_pd.columns)
667
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
668
+ if self.sample_weight_col:
669
+ output_df_columns_set -= set(self.sample_weight_col)
670
+ # if the dimension of inferred output column names is correct; use it
671
+ if len(expected_output_cols_list) == len(output_df_columns_set):
672
+ return expected_output_cols_list
673
+ # otherwise, use the sklearn estimator's output
674
+ else:
675
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
676
+
623
677
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
624
678
  @telemetry.send_api_usage_telemetry(
625
679
  project=_PROJECT,
@@ -650,24 +704,28 @@ class DecisionTreeRegressor(BaseTransformer):
650
704
  # are specific to the type of dataset used.
651
705
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
652
706
 
707
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
708
+
653
709
  if isinstance(dataset, DataFrame):
654
710
  self._deps = self._batch_inference_validate_snowpark(
655
711
  dataset=dataset,
656
712
  inference_method=inference_method,
657
713
  )
658
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
714
+ assert isinstance(
715
+ dataset._session, Session
716
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
659
717
  transform_kwargs = dict(
660
718
  session=dataset._session,
661
719
  dependencies=self._deps,
662
- drop_input_cols = self._drop_input_cols,
720
+ drop_input_cols=self._drop_input_cols,
663
721
  expected_output_cols_type="float",
664
722
  )
723
+ expected_output_cols = self._align_expected_output_names(
724
+ inference_method, dataset, expected_output_cols, output_cols_prefix
725
+ )
665
726
 
666
727
  elif isinstance(dataset, pd.DataFrame):
667
- transform_kwargs = dict(
668
- snowpark_input_cols = self._snowpark_cols,
669
- drop_input_cols = self._drop_input_cols
670
- )
728
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
671
729
 
672
730
  transform_handlers = ModelTransformerBuilder.build(
673
731
  dataset=dataset,
@@ -679,7 +737,7 @@ class DecisionTreeRegressor(BaseTransformer):
679
737
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
680
738
  inference_method=inference_method,
681
739
  input_cols=self.input_cols,
682
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
740
+ expected_output_cols=expected_output_cols,
683
741
  **transform_kwargs
684
742
  )
685
743
  return output_df
@@ -709,7 +767,8 @@ class DecisionTreeRegressor(BaseTransformer):
709
767
  Output dataset with log probability of the sample for each class in the model.
710
768
  """
711
769
  super()._check_dataset_type(dataset)
712
- inference_method="predict_log_proba"
770
+ inference_method = "predict_log_proba"
771
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
713
772
 
714
773
  # This dictionary contains optional kwargs for batch inference. These kwargs
715
774
  # are specific to the type of dataset used.
@@ -720,18 +779,20 @@ class DecisionTreeRegressor(BaseTransformer):
720
779
  dataset=dataset,
721
780
  inference_method=inference_method,
722
781
  )
723
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
782
+ assert isinstance(
783
+ dataset._session, Session
784
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
724
785
  transform_kwargs = dict(
725
786
  session=dataset._session,
726
787
  dependencies=self._deps,
727
- drop_input_cols = self._drop_input_cols,
788
+ drop_input_cols=self._drop_input_cols,
728
789
  expected_output_cols_type="float",
729
790
  )
791
+ expected_output_cols = self._align_expected_output_names(
792
+ inference_method, dataset, expected_output_cols, output_cols_prefix
793
+ )
730
794
  elif isinstance(dataset, pd.DataFrame):
731
- transform_kwargs = dict(
732
- snowpark_input_cols = self._snowpark_cols,
733
- drop_input_cols = self._drop_input_cols
734
- )
795
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
735
796
 
736
797
  transform_handlers = ModelTransformerBuilder.build(
737
798
  dataset=dataset,
@@ -744,7 +805,7 @@ class DecisionTreeRegressor(BaseTransformer):
744
805
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
745
806
  inference_method=inference_method,
746
807
  input_cols=self.input_cols,
747
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
808
+ expected_output_cols=expected_output_cols,
748
809
  **transform_kwargs
749
810
  )
750
811
  return output_df
@@ -770,30 +831,34 @@ class DecisionTreeRegressor(BaseTransformer):
770
831
  Output dataset with results of the decision function for the samples in input dataset.
771
832
  """
772
833
  super()._check_dataset_type(dataset)
773
- inference_method="decision_function"
834
+ inference_method = "decision_function"
774
835
 
775
836
  # This dictionary contains optional kwargs for batch inference. These kwargs
776
837
  # are specific to the type of dataset used.
777
838
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
778
839
 
840
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
841
+
779
842
  if isinstance(dataset, DataFrame):
780
843
  self._deps = self._batch_inference_validate_snowpark(
781
844
  dataset=dataset,
782
845
  inference_method=inference_method,
783
846
  )
784
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
847
+ assert isinstance(
848
+ dataset._session, Session
849
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
785
850
  transform_kwargs = dict(
786
851
  session=dataset._session,
787
852
  dependencies=self._deps,
788
- drop_input_cols = self._drop_input_cols,
853
+ drop_input_cols=self._drop_input_cols,
789
854
  expected_output_cols_type="float",
790
855
  )
856
+ expected_output_cols = self._align_expected_output_names(
857
+ inference_method, dataset, expected_output_cols, output_cols_prefix
858
+ )
791
859
 
792
860
  elif isinstance(dataset, pd.DataFrame):
793
- transform_kwargs = dict(
794
- snowpark_input_cols = self._snowpark_cols,
795
- drop_input_cols = self._drop_input_cols
796
- )
861
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
797
862
 
798
863
  transform_handlers = ModelTransformerBuilder.build(
799
864
  dataset=dataset,
@@ -806,7 +871,7 @@ class DecisionTreeRegressor(BaseTransformer):
806
871
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
807
872
  inference_method=inference_method,
808
873
  input_cols=self.input_cols,
809
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
874
+ expected_output_cols=expected_output_cols,
810
875
  **transform_kwargs
811
876
  )
812
877
  return output_df
@@ -835,12 +900,14 @@ class DecisionTreeRegressor(BaseTransformer):
835
900
  Output dataset with probability of the sample for each class in the model.
836
901
  """
837
902
  super()._check_dataset_type(dataset)
838
- inference_method="score_samples"
903
+ inference_method = "score_samples"
839
904
 
840
905
  # This dictionary contains optional kwargs for batch inference. These kwargs
841
906
  # are specific to the type of dataset used.
842
907
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
843
908
 
909
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
910
+
844
911
  if isinstance(dataset, DataFrame):
845
912
  self._deps = self._batch_inference_validate_snowpark(
846
913
  dataset=dataset,
@@ -853,6 +920,9 @@ class DecisionTreeRegressor(BaseTransformer):
853
920
  drop_input_cols = self._drop_input_cols,
854
921
  expected_output_cols_type="float",
855
922
  )
923
+ expected_output_cols = self._align_expected_output_names(
924
+ inference_method, dataset, expected_output_cols, output_cols_prefix
925
+ )
856
926
 
857
927
  elif isinstance(dataset, pd.DataFrame):
858
928
  transform_kwargs = dict(
@@ -871,7 +941,7 @@ class DecisionTreeRegressor(BaseTransformer):
871
941
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
872
942
  inference_method=inference_method,
873
943
  input_cols=self.input_cols,
874
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
944
+ expected_output_cols=expected_output_cols,
875
945
  **transform_kwargs
876
946
  )
877
947
  return output_df
@@ -1018,50 +1088,84 @@ class DecisionTreeRegressor(BaseTransformer):
1018
1088
  )
1019
1089
  return output_df
1020
1090
 
1091
+
1092
+
1093
+ def to_sklearn(self) -> Any:
1094
+ """Get sklearn.tree.DecisionTreeRegressor object.
1095
+ """
1096
+ if self._sklearn_object is None:
1097
+ self._sklearn_object = self._create_sklearn_object()
1098
+ return self._sklearn_object
1099
+
1100
+ def to_xgboost(self) -> Any:
1101
+ raise exceptions.SnowflakeMLException(
1102
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1103
+ original_exception=AttributeError(
1104
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1105
+ "to_xgboost()",
1106
+ "to_sklearn()"
1107
+ )
1108
+ ),
1109
+ )
1110
+
1111
+ def to_lightgbm(self) -> Any:
1112
+ raise exceptions.SnowflakeMLException(
1113
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1114
+ original_exception=AttributeError(
1115
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1116
+ "to_lightgbm()",
1117
+ "to_sklearn()"
1118
+ )
1119
+ ),
1120
+ )
1021
1121
 
1022
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1122
+ def _get_dependencies(self) -> List[str]:
1123
+ return self._deps
1124
+
1125
+
1126
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1023
1127
  self._model_signature_dict = dict()
1024
1128
 
1025
1129
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1026
1130
 
1027
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1131
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1028
1132
  outputs: List[BaseFeatureSpec] = []
1029
1133
  if hasattr(self, "predict"):
1030
1134
  # keep mypy happy
1031
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1135
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1032
1136
  # For classifier, the type of predict is the same as the type of label
1033
- if self._sklearn_object._estimator_type == 'classifier':
1034
- # label columns is the desired type for output
1137
+ if self._sklearn_object._estimator_type == "classifier":
1138
+ # label columns is the desired type for output
1035
1139
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1036
1140
  # rename the output columns
1037
1141
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1038
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1039
- ([] if self._drop_input_cols else inputs)
1040
- + outputs)
1142
+ self._model_signature_dict["predict"] = ModelSignature(
1143
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1144
+ )
1041
1145
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1042
1146
  # For outlier models, returns -1 for outliers and 1 for inliers.
1043
- # Clusterer returns int64 cluster labels.
1147
+ # Clusterer returns int64 cluster labels.
1044
1148
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1045
1149
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1046
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1047
- ([] if self._drop_input_cols else inputs)
1048
- + outputs)
1049
-
1150
+ self._model_signature_dict["predict"] = ModelSignature(
1151
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1152
+ )
1153
+
1050
1154
  # For regressor, the type of predict is float64
1051
- elif self._sklearn_object._estimator_type == 'regressor':
1155
+ elif self._sklearn_object._estimator_type == "regressor":
1052
1156
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1053
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1054
- ([] if self._drop_input_cols else inputs)
1055
- + outputs)
1056
-
1157
+ self._model_signature_dict["predict"] = ModelSignature(
1158
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1159
+ )
1160
+
1057
1161
  for prob_func in PROB_FUNCTIONS:
1058
1162
  if hasattr(self, prob_func):
1059
1163
  output_cols_prefix: str = f"{prob_func}_"
1060
1164
  output_column_names = self._get_output_column_names(output_cols_prefix)
1061
1165
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1062
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1063
- ([] if self._drop_input_cols else inputs)
1064
- + outputs)
1166
+ self._model_signature_dict[prob_func] = ModelSignature(
1167
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1168
+ )
1065
1169
 
1066
1170
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1067
1171
  items = list(self._model_signature_dict.items())
@@ -1074,10 +1178,10 @@ class DecisionTreeRegressor(BaseTransformer):
1074
1178
  """Returns model signature of current class.
1075
1179
 
1076
1180
  Raises:
1077
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1181
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1078
1182
 
1079
1183
  Returns:
1080
- Dict[str, ModelSignature]: each method and its input output signature
1184
+ Dict with each method and its input output signature
1081
1185
  """
1082
1186
  if self._model_signature_dict is None:
1083
1187
  raise exceptions.SnowflakeMLException(
@@ -1085,35 +1189,3 @@ class DecisionTreeRegressor(BaseTransformer):
1085
1189
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1086
1190
  )
1087
1191
  return self._model_signature_dict
1088
-
1089
- def to_sklearn(self) -> Any:
1090
- """Get sklearn.tree.DecisionTreeRegressor object.
1091
- """
1092
- if self._sklearn_object is None:
1093
- self._sklearn_object = self._create_sklearn_object()
1094
- return self._sklearn_object
1095
-
1096
- def to_xgboost(self) -> Any:
1097
- raise exceptions.SnowflakeMLException(
1098
- error_code=error_codes.METHOD_NOT_ALLOWED,
1099
- original_exception=AttributeError(
1100
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1101
- "to_xgboost()",
1102
- "to_sklearn()"
1103
- )
1104
- ),
1105
- )
1106
-
1107
- def to_lightgbm(self) -> Any:
1108
- raise exceptions.SnowflakeMLException(
1109
- error_code=error_codes.METHOD_NOT_ALLOWED,
1110
- original_exception=AttributeError(
1111
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1112
- "to_lightgbm()",
1113
- "to_sklearn()"
1114
- )
1115
- ),
1116
- )
1117
-
1118
- def _get_dependencies(self) -> List[str]:
1119
- return self._deps