snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -196,12 +195,7 @@ class VarianceThreshold(BaseTransformer):
196
195
  )
197
196
  return selected_cols
198
197
 
199
- @telemetry.send_api_usage_telemetry(
200
- project=_PROJECT,
201
- subproject=_SUBPROJECT,
202
- custom_tags=dict([("autogen", True)]),
203
- )
204
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "VarianceThreshold":
198
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "VarianceThreshold":
205
199
  """Learn empirical variances from X
206
200
  For more details on this function, see [sklearn.feature_selection.VarianceThreshold.fit]
207
201
  (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold.fit)
@@ -228,12 +222,14 @@ class VarianceThreshold(BaseTransformer):
228
222
 
229
223
  self._snowpark_cols = dataset.select(self.input_cols).columns
230
224
 
231
- # If we are already in a stored procedure, no need to kick off another one.
225
+ # If we are already in a stored procedure, no need to kick off another one.
232
226
  if SNOWML_SPROC_ENV in os.environ:
233
227
  statement_params = telemetry.get_function_usage_statement_params(
234
228
  project=_PROJECT,
235
229
  subproject=_SUBPROJECT,
236
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), VarianceThreshold.__class__.__name__),
230
+ function_name=telemetry.get_statement_params_full_func_name(
231
+ inspect.currentframe(), VarianceThreshold.__class__.__name__
232
+ ),
237
233
  api_calls=[Session.call],
238
234
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
239
235
  )
@@ -254,7 +250,7 @@ class VarianceThreshold(BaseTransformer):
254
250
  )
255
251
  self._sklearn_object = model_trainer.train()
256
252
  self._is_fitted = True
257
- self._get_model_signatures(dataset)
253
+ self._generate_model_signatures(dataset)
258
254
  return self
259
255
 
260
256
  def _batch_inference_validate_snowpark(
@@ -328,7 +324,9 @@ class VarianceThreshold(BaseTransformer):
328
324
  # when it is classifier, infer the datatype from label columns
329
325
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
330
326
  # Batch inference takes a single expected output column type. Use the first columns type for now.
331
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
327
+ label_cols_signatures = [
328
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
329
+ ]
332
330
  if len(label_cols_signatures) == 0:
333
331
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
334
332
  raise exceptions.SnowflakeMLException(
@@ -336,25 +334,22 @@ class VarianceThreshold(BaseTransformer):
336
334
  original_exception=ValueError(error_str),
337
335
  )
338
336
 
339
- expected_type_inferred = convert_sp_to_sf_type(
340
- label_cols_signatures[0].as_snowpark_type()
341
- )
337
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
342
338
 
343
339
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
344
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
340
+ assert isinstance(
341
+ dataset._session, Session
342
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
345
343
 
346
344
  transform_kwargs = dict(
347
- session = dataset._session,
348
- dependencies = self._deps,
349
- drop_input_cols = self._drop_input_cols,
350
- expected_output_cols_type = expected_type_inferred,
345
+ session=dataset._session,
346
+ dependencies=self._deps,
347
+ drop_input_cols=self._drop_input_cols,
348
+ expected_output_cols_type=expected_type_inferred,
351
349
  )
352
350
 
353
351
  elif isinstance(dataset, pd.DataFrame):
354
- transform_kwargs = dict(
355
- snowpark_input_cols = self._snowpark_cols,
356
- drop_input_cols = self._drop_input_cols
357
- )
352
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
358
353
 
359
354
  transform_handlers = ModelTransformerBuilder.build(
360
355
  dataset=dataset,
@@ -396,7 +391,7 @@ class VarianceThreshold(BaseTransformer):
396
391
  Transformed dataset.
397
392
  """
398
393
  super()._check_dataset_type(dataset)
399
- inference_method="transform"
394
+ inference_method = "transform"
400
395
 
401
396
  # This dictionary contains optional kwargs for batch inference. These kwargs
402
397
  # are specific to the type of dataset used.
@@ -433,17 +428,14 @@ class VarianceThreshold(BaseTransformer):
433
428
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
434
429
 
435
430
  transform_kwargs = dict(
436
- session = dataset._session,
437
- dependencies = self._deps,
438
- drop_input_cols = self._drop_input_cols,
439
- expected_output_cols_type = expected_dtype,
431
+ session=dataset._session,
432
+ dependencies=self._deps,
433
+ drop_input_cols=self._drop_input_cols,
434
+ expected_output_cols_type=expected_dtype,
440
435
  )
441
436
 
442
437
  elif isinstance(dataset, pd.DataFrame):
443
- transform_kwargs = dict(
444
- snowpark_input_cols = self._snowpark_cols,
445
- drop_input_cols = self._drop_input_cols
446
- )
438
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
447
439
 
448
440
  transform_handlers = ModelTransformerBuilder.build(
449
441
  dataset=dataset,
@@ -462,7 +454,11 @@ class VarianceThreshold(BaseTransformer):
462
454
  return output_df
463
455
 
464
456
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
465
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
457
+ def fit_predict(
458
+ self,
459
+ dataset: Union[DataFrame, pd.DataFrame],
460
+ output_cols_prefix: str = "fit_predict_",
461
+ ) -> Union[DataFrame, pd.DataFrame]:
466
462
  """ Method not supported for this class.
467
463
 
468
464
 
@@ -487,7 +483,9 @@ class VarianceThreshold(BaseTransformer):
487
483
  )
488
484
  output_result, fitted_estimator = model_trainer.train_fit_predict(
489
485
  drop_input_cols=self._drop_input_cols,
490
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
486
+ expected_output_cols_list=(
487
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
488
+ ),
491
489
  )
492
490
  self._sklearn_object = fitted_estimator
493
491
  self._is_fitted = True
@@ -504,6 +502,62 @@ class VarianceThreshold(BaseTransformer):
504
502
  assert self._sklearn_object is not None
505
503
  return self._sklearn_object.embedding_
506
504
 
505
+
506
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
507
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
508
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
509
+ """
510
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
511
+ # The following condition is introduced for kneighbors methods, and not used in other methods
512
+ if output_cols:
513
+ output_cols = [
514
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
515
+ for c in output_cols
516
+ ]
517
+ elif getattr(self._sklearn_object, "classes_", None) is None:
518
+ output_cols = [output_cols_prefix]
519
+ elif self._sklearn_object is not None:
520
+ classes = self._sklearn_object.classes_
521
+ if isinstance(classes, numpy.ndarray):
522
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
523
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
524
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
525
+ output_cols = []
526
+ for i, cl in enumerate(classes):
527
+ # For binary classification, there is only one output column for each class
528
+ # ndarray as the two classes are complementary.
529
+ if len(cl) == 2:
530
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
531
+ else:
532
+ output_cols.extend([
533
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
534
+ ])
535
+ else:
536
+ output_cols = []
537
+
538
+ # Make sure column names are valid snowflake identifiers.
539
+ assert output_cols is not None # Make MyPy happy
540
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
541
+
542
+ return rv
543
+
544
+ def _align_expected_output_names(
545
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
546
+ ) -> List[str]:
547
+ # in case the inferred output column names dimension is different
548
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
549
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
550
+ output_df_columns = list(output_df_pd.columns)
551
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
552
+ if self.sample_weight_col:
553
+ output_df_columns_set -= set(self.sample_weight_col)
554
+ # if the dimension of inferred output column names is correct; use it
555
+ if len(expected_output_cols_list) == len(output_df_columns_set):
556
+ return expected_output_cols_list
557
+ # otherwise, use the sklearn estimator's output
558
+ else:
559
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
560
+
507
561
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
508
562
  @telemetry.send_api_usage_telemetry(
509
563
  project=_PROJECT,
@@ -534,24 +588,28 @@ class VarianceThreshold(BaseTransformer):
534
588
  # are specific to the type of dataset used.
535
589
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
536
590
 
591
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
592
+
537
593
  if isinstance(dataset, DataFrame):
538
594
  self._deps = self._batch_inference_validate_snowpark(
539
595
  dataset=dataset,
540
596
  inference_method=inference_method,
541
597
  )
542
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
598
+ assert isinstance(
599
+ dataset._session, Session
600
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
543
601
  transform_kwargs = dict(
544
602
  session=dataset._session,
545
603
  dependencies=self._deps,
546
- drop_input_cols = self._drop_input_cols,
604
+ drop_input_cols=self._drop_input_cols,
547
605
  expected_output_cols_type="float",
548
606
  )
607
+ expected_output_cols = self._align_expected_output_names(
608
+ inference_method, dataset, expected_output_cols, output_cols_prefix
609
+ )
549
610
 
550
611
  elif isinstance(dataset, pd.DataFrame):
551
- transform_kwargs = dict(
552
- snowpark_input_cols = self._snowpark_cols,
553
- drop_input_cols = self._drop_input_cols
554
- )
612
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
555
613
 
556
614
  transform_handlers = ModelTransformerBuilder.build(
557
615
  dataset=dataset,
@@ -563,7 +621,7 @@ class VarianceThreshold(BaseTransformer):
563
621
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
564
622
  inference_method=inference_method,
565
623
  input_cols=self.input_cols,
566
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
624
+ expected_output_cols=expected_output_cols,
567
625
  **transform_kwargs
568
626
  )
569
627
  return output_df
@@ -593,7 +651,8 @@ class VarianceThreshold(BaseTransformer):
593
651
  Output dataset with log probability of the sample for each class in the model.
594
652
  """
595
653
  super()._check_dataset_type(dataset)
596
- inference_method="predict_log_proba"
654
+ inference_method = "predict_log_proba"
655
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
597
656
 
598
657
  # This dictionary contains optional kwargs for batch inference. These kwargs
599
658
  # are specific to the type of dataset used.
@@ -604,18 +663,20 @@ class VarianceThreshold(BaseTransformer):
604
663
  dataset=dataset,
605
664
  inference_method=inference_method,
606
665
  )
607
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
666
+ assert isinstance(
667
+ dataset._session, Session
668
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
608
669
  transform_kwargs = dict(
609
670
  session=dataset._session,
610
671
  dependencies=self._deps,
611
- drop_input_cols = self._drop_input_cols,
672
+ drop_input_cols=self._drop_input_cols,
612
673
  expected_output_cols_type="float",
613
674
  )
675
+ expected_output_cols = self._align_expected_output_names(
676
+ inference_method, dataset, expected_output_cols, output_cols_prefix
677
+ )
614
678
  elif isinstance(dataset, pd.DataFrame):
615
- transform_kwargs = dict(
616
- snowpark_input_cols = self._snowpark_cols,
617
- drop_input_cols = self._drop_input_cols
618
- )
679
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
619
680
 
620
681
  transform_handlers = ModelTransformerBuilder.build(
621
682
  dataset=dataset,
@@ -628,7 +689,7 @@ class VarianceThreshold(BaseTransformer):
628
689
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
629
690
  inference_method=inference_method,
630
691
  input_cols=self.input_cols,
631
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
692
+ expected_output_cols=expected_output_cols,
632
693
  **transform_kwargs
633
694
  )
634
695
  return output_df
@@ -654,30 +715,34 @@ class VarianceThreshold(BaseTransformer):
654
715
  Output dataset with results of the decision function for the samples in input dataset.
655
716
  """
656
717
  super()._check_dataset_type(dataset)
657
- inference_method="decision_function"
718
+ inference_method = "decision_function"
658
719
 
659
720
  # This dictionary contains optional kwargs for batch inference. These kwargs
660
721
  # are specific to the type of dataset used.
661
722
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
662
723
 
724
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
725
+
663
726
  if isinstance(dataset, DataFrame):
664
727
  self._deps = self._batch_inference_validate_snowpark(
665
728
  dataset=dataset,
666
729
  inference_method=inference_method,
667
730
  )
668
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
731
+ assert isinstance(
732
+ dataset._session, Session
733
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
669
734
  transform_kwargs = dict(
670
735
  session=dataset._session,
671
736
  dependencies=self._deps,
672
- drop_input_cols = self._drop_input_cols,
737
+ drop_input_cols=self._drop_input_cols,
673
738
  expected_output_cols_type="float",
674
739
  )
740
+ expected_output_cols = self._align_expected_output_names(
741
+ inference_method, dataset, expected_output_cols, output_cols_prefix
742
+ )
675
743
 
676
744
  elif isinstance(dataset, pd.DataFrame):
677
- transform_kwargs = dict(
678
- snowpark_input_cols = self._snowpark_cols,
679
- drop_input_cols = self._drop_input_cols
680
- )
745
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
681
746
 
682
747
  transform_handlers = ModelTransformerBuilder.build(
683
748
  dataset=dataset,
@@ -690,7 +755,7 @@ class VarianceThreshold(BaseTransformer):
690
755
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
691
756
  inference_method=inference_method,
692
757
  input_cols=self.input_cols,
693
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
758
+ expected_output_cols=expected_output_cols,
694
759
  **transform_kwargs
695
760
  )
696
761
  return output_df
@@ -719,12 +784,14 @@ class VarianceThreshold(BaseTransformer):
719
784
  Output dataset with probability of the sample for each class in the model.
720
785
  """
721
786
  super()._check_dataset_type(dataset)
722
- inference_method="score_samples"
787
+ inference_method = "score_samples"
723
788
 
724
789
  # This dictionary contains optional kwargs for batch inference. These kwargs
725
790
  # are specific to the type of dataset used.
726
791
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
727
792
 
793
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
794
+
728
795
  if isinstance(dataset, DataFrame):
729
796
  self._deps = self._batch_inference_validate_snowpark(
730
797
  dataset=dataset,
@@ -737,6 +804,9 @@ class VarianceThreshold(BaseTransformer):
737
804
  drop_input_cols = self._drop_input_cols,
738
805
  expected_output_cols_type="float",
739
806
  )
807
+ expected_output_cols = self._align_expected_output_names(
808
+ inference_method, dataset, expected_output_cols, output_cols_prefix
809
+ )
740
810
 
741
811
  elif isinstance(dataset, pd.DataFrame):
742
812
  transform_kwargs = dict(
@@ -755,7 +825,7 @@ class VarianceThreshold(BaseTransformer):
755
825
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
756
826
  inference_method=inference_method,
757
827
  input_cols=self.input_cols,
758
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
828
+ expected_output_cols=expected_output_cols,
759
829
  **transform_kwargs
760
830
  )
761
831
  return output_df
@@ -900,50 +970,84 @@ class VarianceThreshold(BaseTransformer):
900
970
  )
901
971
  return output_df
902
972
 
973
+
974
+
975
+ def to_sklearn(self) -> Any:
976
+ """Get sklearn.feature_selection.VarianceThreshold object.
977
+ """
978
+ if self._sklearn_object is None:
979
+ self._sklearn_object = self._create_sklearn_object()
980
+ return self._sklearn_object
981
+
982
+ def to_xgboost(self) -> Any:
983
+ raise exceptions.SnowflakeMLException(
984
+ error_code=error_codes.METHOD_NOT_ALLOWED,
985
+ original_exception=AttributeError(
986
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
987
+ "to_xgboost()",
988
+ "to_sklearn()"
989
+ )
990
+ ),
991
+ )
992
+
993
+ def to_lightgbm(self) -> Any:
994
+ raise exceptions.SnowflakeMLException(
995
+ error_code=error_codes.METHOD_NOT_ALLOWED,
996
+ original_exception=AttributeError(
997
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
998
+ "to_lightgbm()",
999
+ "to_sklearn()"
1000
+ )
1001
+ ),
1002
+ )
903
1003
 
904
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1004
+ def _get_dependencies(self) -> List[str]:
1005
+ return self._deps
1006
+
1007
+
1008
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
905
1009
  self._model_signature_dict = dict()
906
1010
 
907
1011
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
908
1012
 
909
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1013
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
910
1014
  outputs: List[BaseFeatureSpec] = []
911
1015
  if hasattr(self, "predict"):
912
1016
  # keep mypy happy
913
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1017
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
914
1018
  # For classifier, the type of predict is the same as the type of label
915
- if self._sklearn_object._estimator_type == 'classifier':
916
- # label columns is the desired type for output
1019
+ if self._sklearn_object._estimator_type == "classifier":
1020
+ # label columns is the desired type for output
917
1021
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
918
1022
  # rename the output columns
919
1023
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
920
- self._model_signature_dict["predict"] = ModelSignature(inputs,
921
- ([] if self._drop_input_cols else inputs)
922
- + outputs)
1024
+ self._model_signature_dict["predict"] = ModelSignature(
1025
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1026
+ )
923
1027
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
924
1028
  # For outlier models, returns -1 for outliers and 1 for inliers.
925
- # Clusterer returns int64 cluster labels.
1029
+ # Clusterer returns int64 cluster labels.
926
1030
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
927
1031
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
928
- self._model_signature_dict["predict"] = ModelSignature(inputs,
929
- ([] if self._drop_input_cols else inputs)
930
- + outputs)
931
-
1032
+ self._model_signature_dict["predict"] = ModelSignature(
1033
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1034
+ )
1035
+
932
1036
  # For regressor, the type of predict is float64
933
- elif self._sklearn_object._estimator_type == 'regressor':
1037
+ elif self._sklearn_object._estimator_type == "regressor":
934
1038
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
935
- self._model_signature_dict["predict"] = ModelSignature(inputs,
936
- ([] if self._drop_input_cols else inputs)
937
- + outputs)
938
-
1039
+ self._model_signature_dict["predict"] = ModelSignature(
1040
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1041
+ )
1042
+
939
1043
  for prob_func in PROB_FUNCTIONS:
940
1044
  if hasattr(self, prob_func):
941
1045
  output_cols_prefix: str = f"{prob_func}_"
942
1046
  output_column_names = self._get_output_column_names(output_cols_prefix)
943
1047
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
944
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
945
- ([] if self._drop_input_cols else inputs)
946
- + outputs)
1048
+ self._model_signature_dict[prob_func] = ModelSignature(
1049
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1050
+ )
947
1051
 
948
1052
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
949
1053
  items = list(self._model_signature_dict.items())
@@ -956,10 +1060,10 @@ class VarianceThreshold(BaseTransformer):
956
1060
  """Returns model signature of current class.
957
1061
 
958
1062
  Raises:
959
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1063
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
960
1064
 
961
1065
  Returns:
962
- Dict[str, ModelSignature]: each method and its input output signature
1066
+ Dict with each method and its input output signature
963
1067
  """
964
1068
  if self._model_signature_dict is None:
965
1069
  raise exceptions.SnowflakeMLException(
@@ -967,35 +1071,3 @@ class VarianceThreshold(BaseTransformer):
967
1071
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
968
1072
  )
969
1073
  return self._model_signature_dict
970
-
971
- def to_sklearn(self) -> Any:
972
- """Get sklearn.feature_selection.VarianceThreshold object.
973
- """
974
- if self._sklearn_object is None:
975
- self._sklearn_object = self._create_sklearn_object()
976
- return self._sklearn_object
977
-
978
- def to_xgboost(self) -> Any:
979
- raise exceptions.SnowflakeMLException(
980
- error_code=error_codes.METHOD_NOT_ALLOWED,
981
- original_exception=AttributeError(
982
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
983
- "to_xgboost()",
984
- "to_sklearn()"
985
- )
986
- ),
987
- )
988
-
989
- def to_lightgbm(self) -> Any:
990
- raise exceptions.SnowflakeMLException(
991
- error_code=error_codes.METHOD_NOT_ALLOWED,
992
- original_exception=AttributeError(
993
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
994
- "to_lightgbm()",
995
- "to_sklearn()"
996
- )
997
- ),
998
- )
999
-
1000
- def _get_dependencies(self) -> List[str]:
1001
- return self._deps
@@ -200,7 +200,7 @@ def get_filtered_valid_sklearn_args(
200
200
  ):
201
201
  deprecated_version = sklearn_deprecated_keyword_to_version_dict[key]
202
202
  msg = f"Incompatible scikit-learn version: '{key}' deprecated since scikit-learn={deprecated_version}.."
203
- warnings.warn(msg, DeprecationWarning)
203
+ warnings.warn(msg, DeprecationWarning, stacklevel=2)
204
204
 
205
205
  # removed sklearn keyword
206
206
  if (
@@ -247,3 +247,10 @@ def table_exists(session: snowpark.Session, table_name: str, statement_params: D
247
247
  return True
248
248
  except snowpark_exceptions.SnowparkSQLException:
249
249
  return False
250
+
251
+
252
+ def to_float_if_valid(val: Any, col: str, stat: str) -> float:
253
+ try:
254
+ return float(val)
255
+ except TypeError:
256
+ raise TypeError(f"Invalid stat: {stat}[{col}]: {val} cannot be converted to float.")
@@ -419,8 +419,16 @@ class BaseEstimator(Base):
419
419
  """
420
420
  return []
421
421
 
422
+ @telemetry.send_api_usage_telemetry(
423
+ project=PROJECT,
424
+ subproject=SUBPROJECT,
425
+ )
426
+ def fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "BaseEstimator":
427
+ """Runs universal logics for all fit implementations."""
428
+ return self._fit(dataset)
429
+
422
430
  @abstractmethod
423
- def fit(self, dataset: snowpark.DataFrame) -> "BaseEstimator":
431
+ def _fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "BaseEstimator":
424
432
  raise NotImplementedError()
425
433
 
426
434
  def _use_input_cols_only(self, dataset: pd.DataFrame) -> pd.DataFrame: