snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -219,12 +218,7 @@ class OneVsRestClassifier(BaseTransformer):
219
218
  )
220
219
  return selected_cols
221
220
 
222
- @telemetry.send_api_usage_telemetry(
223
- project=_PROJECT,
224
- subproject=_SUBPROJECT,
225
- custom_tags=dict([("autogen", True)]),
226
- )
227
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OneVsRestClassifier":
221
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OneVsRestClassifier":
228
222
  """Fit underlying estimators
229
223
  For more details on this function, see [sklearn.multiclass.OneVsRestClassifier.fit]
230
224
  (https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html#sklearn.multiclass.OneVsRestClassifier.fit)
@@ -251,12 +245,14 @@ class OneVsRestClassifier(BaseTransformer):
251
245
 
252
246
  self._snowpark_cols = dataset.select(self.input_cols).columns
253
247
 
254
- # If we are already in a stored procedure, no need to kick off another one.
248
+ # If we are already in a stored procedure, no need to kick off another one.
255
249
  if SNOWML_SPROC_ENV in os.environ:
256
250
  statement_params = telemetry.get_function_usage_statement_params(
257
251
  project=_PROJECT,
258
252
  subproject=_SUBPROJECT,
259
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OneVsRestClassifier.__class__.__name__),
253
+ function_name=telemetry.get_statement_params_full_func_name(
254
+ inspect.currentframe(), OneVsRestClassifier.__class__.__name__
255
+ ),
260
256
  api_calls=[Session.call],
261
257
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
262
258
  )
@@ -277,7 +273,7 @@ class OneVsRestClassifier(BaseTransformer):
277
273
  )
278
274
  self._sklearn_object = model_trainer.train()
279
275
  self._is_fitted = True
280
- self._get_model_signatures(dataset)
276
+ self._generate_model_signatures(dataset)
281
277
  return self
282
278
 
283
279
  def _batch_inference_validate_snowpark(
@@ -353,7 +349,9 @@ class OneVsRestClassifier(BaseTransformer):
353
349
  # when it is classifier, infer the datatype from label columns
354
350
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
355
351
  # Batch inference takes a single expected output column type. Use the first columns type for now.
356
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
352
+ label_cols_signatures = [
353
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
354
+ ]
357
355
  if len(label_cols_signatures) == 0:
358
356
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
359
357
  raise exceptions.SnowflakeMLException(
@@ -361,25 +359,22 @@ class OneVsRestClassifier(BaseTransformer):
361
359
  original_exception=ValueError(error_str),
362
360
  )
363
361
 
364
- expected_type_inferred = convert_sp_to_sf_type(
365
- label_cols_signatures[0].as_snowpark_type()
366
- )
362
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
367
363
 
368
364
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
369
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
365
+ assert isinstance(
366
+ dataset._session, Session
367
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
370
368
 
371
369
  transform_kwargs = dict(
372
- session = dataset._session,
373
- dependencies = self._deps,
374
- drop_input_cols = self._drop_input_cols,
375
- expected_output_cols_type = expected_type_inferred,
370
+ session=dataset._session,
371
+ dependencies=self._deps,
372
+ drop_input_cols=self._drop_input_cols,
373
+ expected_output_cols_type=expected_type_inferred,
376
374
  )
377
375
 
378
376
  elif isinstance(dataset, pd.DataFrame):
379
- transform_kwargs = dict(
380
- snowpark_input_cols = self._snowpark_cols,
381
- drop_input_cols = self._drop_input_cols
382
- )
377
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
383
378
 
384
379
  transform_handlers = ModelTransformerBuilder.build(
385
380
  dataset=dataset,
@@ -419,7 +414,7 @@ class OneVsRestClassifier(BaseTransformer):
419
414
  Transformed dataset.
420
415
  """
421
416
  super()._check_dataset_type(dataset)
422
- inference_method="transform"
417
+ inference_method = "transform"
423
418
 
424
419
  # This dictionary contains optional kwargs for batch inference. These kwargs
425
420
  # are specific to the type of dataset used.
@@ -456,17 +451,14 @@ class OneVsRestClassifier(BaseTransformer):
456
451
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
457
452
 
458
453
  transform_kwargs = dict(
459
- session = dataset._session,
460
- dependencies = self._deps,
461
- drop_input_cols = self._drop_input_cols,
462
- expected_output_cols_type = expected_dtype,
454
+ session=dataset._session,
455
+ dependencies=self._deps,
456
+ drop_input_cols=self._drop_input_cols,
457
+ expected_output_cols_type=expected_dtype,
463
458
  )
464
459
 
465
460
  elif isinstance(dataset, pd.DataFrame):
466
- transform_kwargs = dict(
467
- snowpark_input_cols = self._snowpark_cols,
468
- drop_input_cols = self._drop_input_cols
469
- )
461
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
470
462
 
471
463
  transform_handlers = ModelTransformerBuilder.build(
472
464
  dataset=dataset,
@@ -485,7 +477,11 @@ class OneVsRestClassifier(BaseTransformer):
485
477
  return output_df
486
478
 
487
479
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
488
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
480
+ def fit_predict(
481
+ self,
482
+ dataset: Union[DataFrame, pd.DataFrame],
483
+ output_cols_prefix: str = "fit_predict_",
484
+ ) -> Union[DataFrame, pd.DataFrame]:
489
485
  """ Method not supported for this class.
490
486
 
491
487
 
@@ -510,7 +506,9 @@ class OneVsRestClassifier(BaseTransformer):
510
506
  )
511
507
  output_result, fitted_estimator = model_trainer.train_fit_predict(
512
508
  drop_input_cols=self._drop_input_cols,
513
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
509
+ expected_output_cols_list=(
510
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
511
+ ),
514
512
  )
515
513
  self._sklearn_object = fitted_estimator
516
514
  self._is_fitted = True
@@ -527,6 +525,62 @@ class OneVsRestClassifier(BaseTransformer):
527
525
  assert self._sklearn_object is not None
528
526
  return self._sklearn_object.embedding_
529
527
 
528
+
529
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
530
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
531
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
532
+ """
533
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
534
+ # The following condition is introduced for kneighbors methods, and not used in other methods
535
+ if output_cols:
536
+ output_cols = [
537
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
538
+ for c in output_cols
539
+ ]
540
+ elif getattr(self._sklearn_object, "classes_", None) is None:
541
+ output_cols = [output_cols_prefix]
542
+ elif self._sklearn_object is not None:
543
+ classes = self._sklearn_object.classes_
544
+ if isinstance(classes, numpy.ndarray):
545
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
546
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
547
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
548
+ output_cols = []
549
+ for i, cl in enumerate(classes):
550
+ # For binary classification, there is only one output column for each class
551
+ # ndarray as the two classes are complementary.
552
+ if len(cl) == 2:
553
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
554
+ else:
555
+ output_cols.extend([
556
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
557
+ ])
558
+ else:
559
+ output_cols = []
560
+
561
+ # Make sure column names are valid snowflake identifiers.
562
+ assert output_cols is not None # Make MyPy happy
563
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
564
+
565
+ return rv
566
+
567
+ def _align_expected_output_names(
568
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
569
+ ) -> List[str]:
570
+ # in case the inferred output column names dimension is different
571
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
572
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
573
+ output_df_columns = list(output_df_pd.columns)
574
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
575
+ if self.sample_weight_col:
576
+ output_df_columns_set -= set(self.sample_weight_col)
577
+ # if the dimension of inferred output column names is correct; use it
578
+ if len(expected_output_cols_list) == len(output_df_columns_set):
579
+ return expected_output_cols_list
580
+ # otherwise, use the sklearn estimator's output
581
+ else:
582
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
583
+
530
584
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
531
585
  @telemetry.send_api_usage_telemetry(
532
586
  project=_PROJECT,
@@ -559,24 +613,28 @@ class OneVsRestClassifier(BaseTransformer):
559
613
  # are specific to the type of dataset used.
560
614
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
561
615
 
616
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
617
+
562
618
  if isinstance(dataset, DataFrame):
563
619
  self._deps = self._batch_inference_validate_snowpark(
564
620
  dataset=dataset,
565
621
  inference_method=inference_method,
566
622
  )
567
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
623
+ assert isinstance(
624
+ dataset._session, Session
625
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
568
626
  transform_kwargs = dict(
569
627
  session=dataset._session,
570
628
  dependencies=self._deps,
571
- drop_input_cols = self._drop_input_cols,
629
+ drop_input_cols=self._drop_input_cols,
572
630
  expected_output_cols_type="float",
573
631
  )
632
+ expected_output_cols = self._align_expected_output_names(
633
+ inference_method, dataset, expected_output_cols, output_cols_prefix
634
+ )
574
635
 
575
636
  elif isinstance(dataset, pd.DataFrame):
576
- transform_kwargs = dict(
577
- snowpark_input_cols = self._snowpark_cols,
578
- drop_input_cols = self._drop_input_cols
579
- )
637
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
580
638
 
581
639
  transform_handlers = ModelTransformerBuilder.build(
582
640
  dataset=dataset,
@@ -588,7 +646,7 @@ class OneVsRestClassifier(BaseTransformer):
588
646
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
589
647
  inference_method=inference_method,
590
648
  input_cols=self.input_cols,
591
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
649
+ expected_output_cols=expected_output_cols,
592
650
  **transform_kwargs
593
651
  )
594
652
  return output_df
@@ -620,7 +678,8 @@ class OneVsRestClassifier(BaseTransformer):
620
678
  Output dataset with log probability of the sample for each class in the model.
621
679
  """
622
680
  super()._check_dataset_type(dataset)
623
- inference_method="predict_log_proba"
681
+ inference_method = "predict_log_proba"
682
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
624
683
 
625
684
  # This dictionary contains optional kwargs for batch inference. These kwargs
626
685
  # are specific to the type of dataset used.
@@ -631,18 +690,20 @@ class OneVsRestClassifier(BaseTransformer):
631
690
  dataset=dataset,
632
691
  inference_method=inference_method,
633
692
  )
634
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
693
+ assert isinstance(
694
+ dataset._session, Session
695
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
635
696
  transform_kwargs = dict(
636
697
  session=dataset._session,
637
698
  dependencies=self._deps,
638
- drop_input_cols = self._drop_input_cols,
699
+ drop_input_cols=self._drop_input_cols,
639
700
  expected_output_cols_type="float",
640
701
  )
702
+ expected_output_cols = self._align_expected_output_names(
703
+ inference_method, dataset, expected_output_cols, output_cols_prefix
704
+ )
641
705
  elif isinstance(dataset, pd.DataFrame):
642
- transform_kwargs = dict(
643
- snowpark_input_cols = self._snowpark_cols,
644
- drop_input_cols = self._drop_input_cols
645
- )
706
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
646
707
 
647
708
  transform_handlers = ModelTransformerBuilder.build(
648
709
  dataset=dataset,
@@ -655,7 +716,7 @@ class OneVsRestClassifier(BaseTransformer):
655
716
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
656
717
  inference_method=inference_method,
657
718
  input_cols=self.input_cols,
658
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
719
+ expected_output_cols=expected_output_cols,
659
720
  **transform_kwargs
660
721
  )
661
722
  return output_df
@@ -683,30 +744,34 @@ class OneVsRestClassifier(BaseTransformer):
683
744
  Output dataset with results of the decision function for the samples in input dataset.
684
745
  """
685
746
  super()._check_dataset_type(dataset)
686
- inference_method="decision_function"
747
+ inference_method = "decision_function"
687
748
 
688
749
  # This dictionary contains optional kwargs for batch inference. These kwargs
689
750
  # are specific to the type of dataset used.
690
751
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
691
752
 
753
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
754
+
692
755
  if isinstance(dataset, DataFrame):
693
756
  self._deps = self._batch_inference_validate_snowpark(
694
757
  dataset=dataset,
695
758
  inference_method=inference_method,
696
759
  )
697
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
760
+ assert isinstance(
761
+ dataset._session, Session
762
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
698
763
  transform_kwargs = dict(
699
764
  session=dataset._session,
700
765
  dependencies=self._deps,
701
- drop_input_cols = self._drop_input_cols,
766
+ drop_input_cols=self._drop_input_cols,
702
767
  expected_output_cols_type="float",
703
768
  )
769
+ expected_output_cols = self._align_expected_output_names(
770
+ inference_method, dataset, expected_output_cols, output_cols_prefix
771
+ )
704
772
 
705
773
  elif isinstance(dataset, pd.DataFrame):
706
- transform_kwargs = dict(
707
- snowpark_input_cols = self._snowpark_cols,
708
- drop_input_cols = self._drop_input_cols
709
- )
774
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
710
775
 
711
776
  transform_handlers = ModelTransformerBuilder.build(
712
777
  dataset=dataset,
@@ -719,7 +784,7 @@ class OneVsRestClassifier(BaseTransformer):
719
784
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
720
785
  inference_method=inference_method,
721
786
  input_cols=self.input_cols,
722
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
787
+ expected_output_cols=expected_output_cols,
723
788
  **transform_kwargs
724
789
  )
725
790
  return output_df
@@ -748,12 +813,14 @@ class OneVsRestClassifier(BaseTransformer):
748
813
  Output dataset with probability of the sample for each class in the model.
749
814
  """
750
815
  super()._check_dataset_type(dataset)
751
- inference_method="score_samples"
816
+ inference_method = "score_samples"
752
817
 
753
818
  # This dictionary contains optional kwargs for batch inference. These kwargs
754
819
  # are specific to the type of dataset used.
755
820
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
756
821
 
822
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
823
+
757
824
  if isinstance(dataset, DataFrame):
758
825
  self._deps = self._batch_inference_validate_snowpark(
759
826
  dataset=dataset,
@@ -766,6 +833,9 @@ class OneVsRestClassifier(BaseTransformer):
766
833
  drop_input_cols = self._drop_input_cols,
767
834
  expected_output_cols_type="float",
768
835
  )
836
+ expected_output_cols = self._align_expected_output_names(
837
+ inference_method, dataset, expected_output_cols, output_cols_prefix
838
+ )
769
839
 
770
840
  elif isinstance(dataset, pd.DataFrame):
771
841
  transform_kwargs = dict(
@@ -784,7 +854,7 @@ class OneVsRestClassifier(BaseTransformer):
784
854
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
785
855
  inference_method=inference_method,
786
856
  input_cols=self.input_cols,
787
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
857
+ expected_output_cols=expected_output_cols,
788
858
  **transform_kwargs
789
859
  )
790
860
  return output_df
@@ -931,50 +1001,84 @@ class OneVsRestClassifier(BaseTransformer):
931
1001
  )
932
1002
  return output_df
933
1003
 
1004
+
1005
+
1006
+ def to_sklearn(self) -> Any:
1007
+ """Get sklearn.multiclass.OneVsRestClassifier object.
1008
+ """
1009
+ if self._sklearn_object is None:
1010
+ self._sklearn_object = self._create_sklearn_object()
1011
+ return self._sklearn_object
1012
+
1013
+ def to_xgboost(self) -> Any:
1014
+ raise exceptions.SnowflakeMLException(
1015
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1016
+ original_exception=AttributeError(
1017
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1018
+ "to_xgboost()",
1019
+ "to_sklearn()"
1020
+ )
1021
+ ),
1022
+ )
1023
+
1024
+ def to_lightgbm(self) -> Any:
1025
+ raise exceptions.SnowflakeMLException(
1026
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1027
+ original_exception=AttributeError(
1028
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1029
+ "to_lightgbm()",
1030
+ "to_sklearn()"
1031
+ )
1032
+ ),
1033
+ )
934
1034
 
935
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1035
+ def _get_dependencies(self) -> List[str]:
1036
+ return self._deps
1037
+
1038
+
1039
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
936
1040
  self._model_signature_dict = dict()
937
1041
 
938
1042
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
939
1043
 
940
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1044
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
941
1045
  outputs: List[BaseFeatureSpec] = []
942
1046
  if hasattr(self, "predict"):
943
1047
  # keep mypy happy
944
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1048
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
945
1049
  # For classifier, the type of predict is the same as the type of label
946
- if self._sklearn_object._estimator_type == 'classifier':
947
- # label columns is the desired type for output
1050
+ if self._sklearn_object._estimator_type == "classifier":
1051
+ # label columns is the desired type for output
948
1052
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
949
1053
  # rename the output columns
950
1054
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
951
- self._model_signature_dict["predict"] = ModelSignature(inputs,
952
- ([] if self._drop_input_cols else inputs)
953
- + outputs)
1055
+ self._model_signature_dict["predict"] = ModelSignature(
1056
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1057
+ )
954
1058
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
955
1059
  # For outlier models, returns -1 for outliers and 1 for inliers.
956
- # Clusterer returns int64 cluster labels.
1060
+ # Clusterer returns int64 cluster labels.
957
1061
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
958
1062
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
959
- self._model_signature_dict["predict"] = ModelSignature(inputs,
960
- ([] if self._drop_input_cols else inputs)
961
- + outputs)
962
-
1063
+ self._model_signature_dict["predict"] = ModelSignature(
1064
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1065
+ )
1066
+
963
1067
  # For regressor, the type of predict is float64
964
- elif self._sklearn_object._estimator_type == 'regressor':
1068
+ elif self._sklearn_object._estimator_type == "regressor":
965
1069
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
966
- self._model_signature_dict["predict"] = ModelSignature(inputs,
967
- ([] if self._drop_input_cols else inputs)
968
- + outputs)
969
-
1070
+ self._model_signature_dict["predict"] = ModelSignature(
1071
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1072
+ )
1073
+
970
1074
  for prob_func in PROB_FUNCTIONS:
971
1075
  if hasattr(self, prob_func):
972
1076
  output_cols_prefix: str = f"{prob_func}_"
973
1077
  output_column_names = self._get_output_column_names(output_cols_prefix)
974
1078
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
975
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
976
- ([] if self._drop_input_cols else inputs)
977
- + outputs)
1079
+ self._model_signature_dict[prob_func] = ModelSignature(
1080
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1081
+ )
978
1082
 
979
1083
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
980
1084
  items = list(self._model_signature_dict.items())
@@ -987,10 +1091,10 @@ class OneVsRestClassifier(BaseTransformer):
987
1091
  """Returns model signature of current class.
988
1092
 
989
1093
  Raises:
990
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1094
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
991
1095
 
992
1096
  Returns:
993
- Dict[str, ModelSignature]: each method and its input output signature
1097
+ Dict with each method and its input output signature
994
1098
  """
995
1099
  if self._model_signature_dict is None:
996
1100
  raise exceptions.SnowflakeMLException(
@@ -998,35 +1102,3 @@ class OneVsRestClassifier(BaseTransformer):
998
1102
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
999
1103
  )
1000
1104
  return self._model_signature_dict
1001
-
1002
- def to_sklearn(self) -> Any:
1003
- """Get sklearn.multiclass.OneVsRestClassifier object.
1004
- """
1005
- if self._sklearn_object is None:
1006
- self._sklearn_object = self._create_sklearn_object()
1007
- return self._sklearn_object
1008
-
1009
- def to_xgboost(self) -> Any:
1010
- raise exceptions.SnowflakeMLException(
1011
- error_code=error_codes.METHOD_NOT_ALLOWED,
1012
- original_exception=AttributeError(
1013
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1014
- "to_xgboost()",
1015
- "to_sklearn()"
1016
- )
1017
- ),
1018
- )
1019
-
1020
- def to_lightgbm(self) -> Any:
1021
- raise exceptions.SnowflakeMLException(
1022
- error_code=error_codes.METHOD_NOT_ALLOWED,
1023
- original_exception=AttributeError(
1024
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1025
- "to_lightgbm()",
1026
- "to_sklearn()"
1027
- )
1028
- ),
1029
- )
1030
-
1031
- def _get_dependencies(self) -> List[str]:
1032
- return self._deps