snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -202,12 +201,7 @@ class EmpiricalCovariance(BaseTransformer):
202
201
  )
203
202
  return selected_cols
204
203
 
205
- @telemetry.send_api_usage_telemetry(
206
- project=_PROJECT,
207
- subproject=_SUBPROJECT,
208
- custom_tags=dict([("autogen", True)]),
209
- )
210
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "EmpiricalCovariance":
204
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "EmpiricalCovariance":
211
205
  """Fit the maximum likelihood covariance estimator to X
212
206
  For more details on this function, see [sklearn.covariance.EmpiricalCovariance.fit]
213
207
  (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EmpiricalCovariance.html#sklearn.covariance.EmpiricalCovariance.fit)
@@ -234,12 +228,14 @@ class EmpiricalCovariance(BaseTransformer):
234
228
 
235
229
  self._snowpark_cols = dataset.select(self.input_cols).columns
236
230
 
237
- # If we are already in a stored procedure, no need to kick off another one.
231
+ # If we are already in a stored procedure, no need to kick off another one.
238
232
  if SNOWML_SPROC_ENV in os.environ:
239
233
  statement_params = telemetry.get_function_usage_statement_params(
240
234
  project=_PROJECT,
241
235
  subproject=_SUBPROJECT,
242
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), EmpiricalCovariance.__class__.__name__),
236
+ function_name=telemetry.get_statement_params_full_func_name(
237
+ inspect.currentframe(), EmpiricalCovariance.__class__.__name__
238
+ ),
243
239
  api_calls=[Session.call],
244
240
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
245
241
  )
@@ -260,7 +256,7 @@ class EmpiricalCovariance(BaseTransformer):
260
256
  )
261
257
  self._sklearn_object = model_trainer.train()
262
258
  self._is_fitted = True
263
- self._get_model_signatures(dataset)
259
+ self._generate_model_signatures(dataset)
264
260
  return self
265
261
 
266
262
  def _batch_inference_validate_snowpark(
@@ -334,7 +330,9 @@ class EmpiricalCovariance(BaseTransformer):
334
330
  # when it is classifier, infer the datatype from label columns
335
331
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
336
332
  # Batch inference takes a single expected output column type. Use the first columns type for now.
337
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
333
+ label_cols_signatures = [
334
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
335
+ ]
338
336
  if len(label_cols_signatures) == 0:
339
337
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
340
338
  raise exceptions.SnowflakeMLException(
@@ -342,25 +340,22 @@ class EmpiricalCovariance(BaseTransformer):
342
340
  original_exception=ValueError(error_str),
343
341
  )
344
342
 
345
- expected_type_inferred = convert_sp_to_sf_type(
346
- label_cols_signatures[0].as_snowpark_type()
347
- )
343
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
348
344
 
349
345
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
350
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
346
+ assert isinstance(
347
+ dataset._session, Session
348
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
351
349
 
352
350
  transform_kwargs = dict(
353
- session = dataset._session,
354
- dependencies = self._deps,
355
- drop_input_cols = self._drop_input_cols,
356
- expected_output_cols_type = expected_type_inferred,
351
+ session=dataset._session,
352
+ dependencies=self._deps,
353
+ drop_input_cols=self._drop_input_cols,
354
+ expected_output_cols_type=expected_type_inferred,
357
355
  )
358
356
 
359
357
  elif isinstance(dataset, pd.DataFrame):
360
- transform_kwargs = dict(
361
- snowpark_input_cols = self._snowpark_cols,
362
- drop_input_cols = self._drop_input_cols
363
- )
358
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
364
359
 
365
360
  transform_handlers = ModelTransformerBuilder.build(
366
361
  dataset=dataset,
@@ -400,7 +395,7 @@ class EmpiricalCovariance(BaseTransformer):
400
395
  Transformed dataset.
401
396
  """
402
397
  super()._check_dataset_type(dataset)
403
- inference_method="transform"
398
+ inference_method = "transform"
404
399
 
405
400
  # This dictionary contains optional kwargs for batch inference. These kwargs
406
401
  # are specific to the type of dataset used.
@@ -437,17 +432,14 @@ class EmpiricalCovariance(BaseTransformer):
437
432
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
438
433
 
439
434
  transform_kwargs = dict(
440
- session = dataset._session,
441
- dependencies = self._deps,
442
- drop_input_cols = self._drop_input_cols,
443
- expected_output_cols_type = expected_dtype,
435
+ session=dataset._session,
436
+ dependencies=self._deps,
437
+ drop_input_cols=self._drop_input_cols,
438
+ expected_output_cols_type=expected_dtype,
444
439
  )
445
440
 
446
441
  elif isinstance(dataset, pd.DataFrame):
447
- transform_kwargs = dict(
448
- snowpark_input_cols = self._snowpark_cols,
449
- drop_input_cols = self._drop_input_cols
450
- )
442
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
451
443
 
452
444
  transform_handlers = ModelTransformerBuilder.build(
453
445
  dataset=dataset,
@@ -466,7 +458,11 @@ class EmpiricalCovariance(BaseTransformer):
466
458
  return output_df
467
459
 
468
460
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
469
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
461
+ def fit_predict(
462
+ self,
463
+ dataset: Union[DataFrame, pd.DataFrame],
464
+ output_cols_prefix: str = "fit_predict_",
465
+ ) -> Union[DataFrame, pd.DataFrame]:
470
466
  """ Method not supported for this class.
471
467
 
472
468
 
@@ -491,7 +487,9 @@ class EmpiricalCovariance(BaseTransformer):
491
487
  )
492
488
  output_result, fitted_estimator = model_trainer.train_fit_predict(
493
489
  drop_input_cols=self._drop_input_cols,
494
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
490
+ expected_output_cols_list=(
491
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
492
+ ),
495
493
  )
496
494
  self._sklearn_object = fitted_estimator
497
495
  self._is_fitted = True
@@ -508,6 +506,62 @@ class EmpiricalCovariance(BaseTransformer):
508
506
  assert self._sklearn_object is not None
509
507
  return self._sklearn_object.embedding_
510
508
 
509
+
510
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
511
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
512
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
513
+ """
514
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
515
+ # The following condition is introduced for kneighbors methods, and not used in other methods
516
+ if output_cols:
517
+ output_cols = [
518
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
519
+ for c in output_cols
520
+ ]
521
+ elif getattr(self._sklearn_object, "classes_", None) is None:
522
+ output_cols = [output_cols_prefix]
523
+ elif self._sklearn_object is not None:
524
+ classes = self._sklearn_object.classes_
525
+ if isinstance(classes, numpy.ndarray):
526
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
527
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
528
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
529
+ output_cols = []
530
+ for i, cl in enumerate(classes):
531
+ # For binary classification, there is only one output column for each class
532
+ # ndarray as the two classes are complementary.
533
+ if len(cl) == 2:
534
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
535
+ else:
536
+ output_cols.extend([
537
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
538
+ ])
539
+ else:
540
+ output_cols = []
541
+
542
+ # Make sure column names are valid snowflake identifiers.
543
+ assert output_cols is not None # Make MyPy happy
544
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
545
+
546
+ return rv
547
+
548
+ def _align_expected_output_names(
549
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
550
+ ) -> List[str]:
551
+ # in case the inferred output column names dimension is different
552
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
553
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
554
+ output_df_columns = list(output_df_pd.columns)
555
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
556
+ if self.sample_weight_col:
557
+ output_df_columns_set -= set(self.sample_weight_col)
558
+ # if the dimension of inferred output column names is correct; use it
559
+ if len(expected_output_cols_list) == len(output_df_columns_set):
560
+ return expected_output_cols_list
561
+ # otherwise, use the sklearn estimator's output
562
+ else:
563
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
564
+
511
565
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
512
566
  @telemetry.send_api_usage_telemetry(
513
567
  project=_PROJECT,
@@ -538,24 +592,28 @@ class EmpiricalCovariance(BaseTransformer):
538
592
  # are specific to the type of dataset used.
539
593
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
540
594
 
595
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
596
+
541
597
  if isinstance(dataset, DataFrame):
542
598
  self._deps = self._batch_inference_validate_snowpark(
543
599
  dataset=dataset,
544
600
  inference_method=inference_method,
545
601
  )
546
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
602
+ assert isinstance(
603
+ dataset._session, Session
604
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
547
605
  transform_kwargs = dict(
548
606
  session=dataset._session,
549
607
  dependencies=self._deps,
550
- drop_input_cols = self._drop_input_cols,
608
+ drop_input_cols=self._drop_input_cols,
551
609
  expected_output_cols_type="float",
552
610
  )
611
+ expected_output_cols = self._align_expected_output_names(
612
+ inference_method, dataset, expected_output_cols, output_cols_prefix
613
+ )
553
614
 
554
615
  elif isinstance(dataset, pd.DataFrame):
555
- transform_kwargs = dict(
556
- snowpark_input_cols = self._snowpark_cols,
557
- drop_input_cols = self._drop_input_cols
558
- )
616
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
559
617
 
560
618
  transform_handlers = ModelTransformerBuilder.build(
561
619
  dataset=dataset,
@@ -567,7 +625,7 @@ class EmpiricalCovariance(BaseTransformer):
567
625
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
568
626
  inference_method=inference_method,
569
627
  input_cols=self.input_cols,
570
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
628
+ expected_output_cols=expected_output_cols,
571
629
  **transform_kwargs
572
630
  )
573
631
  return output_df
@@ -597,7 +655,8 @@ class EmpiricalCovariance(BaseTransformer):
597
655
  Output dataset with log probability of the sample for each class in the model.
598
656
  """
599
657
  super()._check_dataset_type(dataset)
600
- inference_method="predict_log_proba"
658
+ inference_method = "predict_log_proba"
659
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
601
660
 
602
661
  # This dictionary contains optional kwargs for batch inference. These kwargs
603
662
  # are specific to the type of dataset used.
@@ -608,18 +667,20 @@ class EmpiricalCovariance(BaseTransformer):
608
667
  dataset=dataset,
609
668
  inference_method=inference_method,
610
669
  )
611
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
670
+ assert isinstance(
671
+ dataset._session, Session
672
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
612
673
  transform_kwargs = dict(
613
674
  session=dataset._session,
614
675
  dependencies=self._deps,
615
- drop_input_cols = self._drop_input_cols,
676
+ drop_input_cols=self._drop_input_cols,
616
677
  expected_output_cols_type="float",
617
678
  )
679
+ expected_output_cols = self._align_expected_output_names(
680
+ inference_method, dataset, expected_output_cols, output_cols_prefix
681
+ )
618
682
  elif isinstance(dataset, pd.DataFrame):
619
- transform_kwargs = dict(
620
- snowpark_input_cols = self._snowpark_cols,
621
- drop_input_cols = self._drop_input_cols
622
- )
683
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
623
684
 
624
685
  transform_handlers = ModelTransformerBuilder.build(
625
686
  dataset=dataset,
@@ -632,7 +693,7 @@ class EmpiricalCovariance(BaseTransformer):
632
693
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
633
694
  inference_method=inference_method,
634
695
  input_cols=self.input_cols,
635
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
696
+ expected_output_cols=expected_output_cols,
636
697
  **transform_kwargs
637
698
  )
638
699
  return output_df
@@ -658,30 +719,34 @@ class EmpiricalCovariance(BaseTransformer):
658
719
  Output dataset with results of the decision function for the samples in input dataset.
659
720
  """
660
721
  super()._check_dataset_type(dataset)
661
- inference_method="decision_function"
722
+ inference_method = "decision_function"
662
723
 
663
724
  # This dictionary contains optional kwargs for batch inference. These kwargs
664
725
  # are specific to the type of dataset used.
665
726
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
666
727
 
728
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
729
+
667
730
  if isinstance(dataset, DataFrame):
668
731
  self._deps = self._batch_inference_validate_snowpark(
669
732
  dataset=dataset,
670
733
  inference_method=inference_method,
671
734
  )
672
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
735
+ assert isinstance(
736
+ dataset._session, Session
737
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
673
738
  transform_kwargs = dict(
674
739
  session=dataset._session,
675
740
  dependencies=self._deps,
676
- drop_input_cols = self._drop_input_cols,
741
+ drop_input_cols=self._drop_input_cols,
677
742
  expected_output_cols_type="float",
678
743
  )
744
+ expected_output_cols = self._align_expected_output_names(
745
+ inference_method, dataset, expected_output_cols, output_cols_prefix
746
+ )
679
747
 
680
748
  elif isinstance(dataset, pd.DataFrame):
681
- transform_kwargs = dict(
682
- snowpark_input_cols = self._snowpark_cols,
683
- drop_input_cols = self._drop_input_cols
684
- )
749
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
685
750
 
686
751
  transform_handlers = ModelTransformerBuilder.build(
687
752
  dataset=dataset,
@@ -694,7 +759,7 @@ class EmpiricalCovariance(BaseTransformer):
694
759
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
695
760
  inference_method=inference_method,
696
761
  input_cols=self.input_cols,
697
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
762
+ expected_output_cols=expected_output_cols,
698
763
  **transform_kwargs
699
764
  )
700
765
  return output_df
@@ -723,12 +788,14 @@ class EmpiricalCovariance(BaseTransformer):
723
788
  Output dataset with probability of the sample for each class in the model.
724
789
  """
725
790
  super()._check_dataset_type(dataset)
726
- inference_method="score_samples"
791
+ inference_method = "score_samples"
727
792
 
728
793
  # This dictionary contains optional kwargs for batch inference. These kwargs
729
794
  # are specific to the type of dataset used.
730
795
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
731
796
 
797
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
798
+
732
799
  if isinstance(dataset, DataFrame):
733
800
  self._deps = self._batch_inference_validate_snowpark(
734
801
  dataset=dataset,
@@ -741,6 +808,9 @@ class EmpiricalCovariance(BaseTransformer):
741
808
  drop_input_cols = self._drop_input_cols,
742
809
  expected_output_cols_type="float",
743
810
  )
811
+ expected_output_cols = self._align_expected_output_names(
812
+ inference_method, dataset, expected_output_cols, output_cols_prefix
813
+ )
744
814
 
745
815
  elif isinstance(dataset, pd.DataFrame):
746
816
  transform_kwargs = dict(
@@ -759,7 +829,7 @@ class EmpiricalCovariance(BaseTransformer):
759
829
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
760
830
  inference_method=inference_method,
761
831
  input_cols=self.input_cols,
762
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
832
+ expected_output_cols=expected_output_cols,
763
833
  **transform_kwargs
764
834
  )
765
835
  return output_df
@@ -906,50 +976,84 @@ class EmpiricalCovariance(BaseTransformer):
906
976
  )
907
977
  return output_df
908
978
 
979
+
980
+
981
+ def to_sklearn(self) -> Any:
982
+ """Get sklearn.covariance.EmpiricalCovariance object.
983
+ """
984
+ if self._sklearn_object is None:
985
+ self._sklearn_object = self._create_sklearn_object()
986
+ return self._sklearn_object
987
+
988
+ def to_xgboost(self) -> Any:
989
+ raise exceptions.SnowflakeMLException(
990
+ error_code=error_codes.METHOD_NOT_ALLOWED,
991
+ original_exception=AttributeError(
992
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
993
+ "to_xgboost()",
994
+ "to_sklearn()"
995
+ )
996
+ ),
997
+ )
998
+
999
+ def to_lightgbm(self) -> Any:
1000
+ raise exceptions.SnowflakeMLException(
1001
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1002
+ original_exception=AttributeError(
1003
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1004
+ "to_lightgbm()",
1005
+ "to_sklearn()"
1006
+ )
1007
+ ),
1008
+ )
909
1009
 
910
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1010
+ def _get_dependencies(self) -> List[str]:
1011
+ return self._deps
1012
+
1013
+
1014
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
911
1015
  self._model_signature_dict = dict()
912
1016
 
913
1017
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
914
1018
 
915
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1019
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
916
1020
  outputs: List[BaseFeatureSpec] = []
917
1021
  if hasattr(self, "predict"):
918
1022
  # keep mypy happy
919
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1023
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
920
1024
  # For classifier, the type of predict is the same as the type of label
921
- if self._sklearn_object._estimator_type == 'classifier':
922
- # label columns is the desired type for output
1025
+ if self._sklearn_object._estimator_type == "classifier":
1026
+ # label columns is the desired type for output
923
1027
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
924
1028
  # rename the output columns
925
1029
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
926
- self._model_signature_dict["predict"] = ModelSignature(inputs,
927
- ([] if self._drop_input_cols else inputs)
928
- + outputs)
1030
+ self._model_signature_dict["predict"] = ModelSignature(
1031
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1032
+ )
929
1033
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
930
1034
  # For outlier models, returns -1 for outliers and 1 for inliers.
931
- # Clusterer returns int64 cluster labels.
1035
+ # Clusterer returns int64 cluster labels.
932
1036
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
933
1037
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
934
- self._model_signature_dict["predict"] = ModelSignature(inputs,
935
- ([] if self._drop_input_cols else inputs)
936
- + outputs)
937
-
1038
+ self._model_signature_dict["predict"] = ModelSignature(
1039
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1040
+ )
1041
+
938
1042
  # For regressor, the type of predict is float64
939
- elif self._sklearn_object._estimator_type == 'regressor':
1043
+ elif self._sklearn_object._estimator_type == "regressor":
940
1044
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
941
- self._model_signature_dict["predict"] = ModelSignature(inputs,
942
- ([] if self._drop_input_cols else inputs)
943
- + outputs)
944
-
1045
+ self._model_signature_dict["predict"] = ModelSignature(
1046
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1047
+ )
1048
+
945
1049
  for prob_func in PROB_FUNCTIONS:
946
1050
  if hasattr(self, prob_func):
947
1051
  output_cols_prefix: str = f"{prob_func}_"
948
1052
  output_column_names = self._get_output_column_names(output_cols_prefix)
949
1053
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
950
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
951
- ([] if self._drop_input_cols else inputs)
952
- + outputs)
1054
+ self._model_signature_dict[prob_func] = ModelSignature(
1055
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1056
+ )
953
1057
 
954
1058
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
955
1059
  items = list(self._model_signature_dict.items())
@@ -962,10 +1066,10 @@ class EmpiricalCovariance(BaseTransformer):
962
1066
  """Returns model signature of current class.
963
1067
 
964
1068
  Raises:
965
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1069
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
966
1070
 
967
1071
  Returns:
968
- Dict[str, ModelSignature]: each method and its input output signature
1072
+ Dict with each method and its input output signature
969
1073
  """
970
1074
  if self._model_signature_dict is None:
971
1075
  raise exceptions.SnowflakeMLException(
@@ -973,35 +1077,3 @@ class EmpiricalCovariance(BaseTransformer):
973
1077
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
974
1078
  )
975
1079
  return self._model_signature_dict
976
-
977
- def to_sklearn(self) -> Any:
978
- """Get sklearn.covariance.EmpiricalCovariance object.
979
- """
980
- if self._sklearn_object is None:
981
- self._sklearn_object = self._create_sklearn_object()
982
- return self._sklearn_object
983
-
984
- def to_xgboost(self) -> Any:
985
- raise exceptions.SnowflakeMLException(
986
- error_code=error_codes.METHOD_NOT_ALLOWED,
987
- original_exception=AttributeError(
988
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
989
- "to_xgboost()",
990
- "to_sklearn()"
991
- )
992
- ),
993
- )
994
-
995
- def to_lightgbm(self) -> Any:
996
- raise exceptions.SnowflakeMLException(
997
- error_code=error_codes.METHOD_NOT_ALLOWED,
998
- original_exception=AttributeError(
999
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1000
- "to_lightgbm()",
1001
- "to_sklearn()"
1002
- )
1003
- ),
1004
- )
1005
-
1006
- def _get_dependencies(self) -> List[str]:
1007
- return self._deps