snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +151 -78
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +2 -50
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +9 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -258,12 +257,7 @@ class ARDRegression(BaseTransformer):
|
|
258
257
|
)
|
259
258
|
return selected_cols
|
260
259
|
|
261
|
-
|
262
|
-
project=_PROJECT,
|
263
|
-
subproject=_SUBPROJECT,
|
264
|
-
custom_tags=dict([("autogen", True)]),
|
265
|
-
)
|
266
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ARDRegression":
|
260
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ARDRegression":
|
267
261
|
"""Fit the model according to the given training data and parameters
|
268
262
|
For more details on this function, see [sklearn.linear_model.ARDRegression.fit]
|
269
263
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ARDRegression.html#sklearn.linear_model.ARDRegression.fit)
|
@@ -290,12 +284,14 @@ class ARDRegression(BaseTransformer):
|
|
290
284
|
|
291
285
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
292
286
|
|
293
|
-
|
287
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
294
288
|
if SNOWML_SPROC_ENV in os.environ:
|
295
289
|
statement_params = telemetry.get_function_usage_statement_params(
|
296
290
|
project=_PROJECT,
|
297
291
|
subproject=_SUBPROJECT,
|
298
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
292
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
293
|
+
inspect.currentframe(), ARDRegression.__class__.__name__
|
294
|
+
),
|
299
295
|
api_calls=[Session.call],
|
300
296
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
301
297
|
)
|
@@ -316,7 +312,7 @@ class ARDRegression(BaseTransformer):
|
|
316
312
|
)
|
317
313
|
self._sklearn_object = model_trainer.train()
|
318
314
|
self._is_fitted = True
|
319
|
-
self.
|
315
|
+
self._generate_model_signatures(dataset)
|
320
316
|
return self
|
321
317
|
|
322
318
|
def _batch_inference_validate_snowpark(
|
@@ -392,7 +388,9 @@ class ARDRegression(BaseTransformer):
|
|
392
388
|
# when it is classifier, infer the datatype from label columns
|
393
389
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
394
390
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
395
|
-
label_cols_signatures = [
|
391
|
+
label_cols_signatures = [
|
392
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
393
|
+
]
|
396
394
|
if len(label_cols_signatures) == 0:
|
397
395
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
398
396
|
raise exceptions.SnowflakeMLException(
|
@@ -400,25 +398,22 @@ class ARDRegression(BaseTransformer):
|
|
400
398
|
original_exception=ValueError(error_str),
|
401
399
|
)
|
402
400
|
|
403
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
404
|
-
label_cols_signatures[0].as_snowpark_type()
|
405
|
-
)
|
401
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
406
402
|
|
407
403
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
408
|
-
assert isinstance(
|
404
|
+
assert isinstance(
|
405
|
+
dataset._session, Session
|
406
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
409
407
|
|
410
408
|
transform_kwargs = dict(
|
411
|
-
session
|
412
|
-
dependencies
|
413
|
-
drop_input_cols
|
414
|
-
expected_output_cols_type
|
409
|
+
session=dataset._session,
|
410
|
+
dependencies=self._deps,
|
411
|
+
drop_input_cols=self._drop_input_cols,
|
412
|
+
expected_output_cols_type=expected_type_inferred,
|
415
413
|
)
|
416
414
|
|
417
415
|
elif isinstance(dataset, pd.DataFrame):
|
418
|
-
transform_kwargs = dict(
|
419
|
-
snowpark_input_cols = self._snowpark_cols,
|
420
|
-
drop_input_cols = self._drop_input_cols
|
421
|
-
)
|
416
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
422
417
|
|
423
418
|
transform_handlers = ModelTransformerBuilder.build(
|
424
419
|
dataset=dataset,
|
@@ -458,7 +453,7 @@ class ARDRegression(BaseTransformer):
|
|
458
453
|
Transformed dataset.
|
459
454
|
"""
|
460
455
|
super()._check_dataset_type(dataset)
|
461
|
-
inference_method="transform"
|
456
|
+
inference_method = "transform"
|
462
457
|
|
463
458
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
464
459
|
# are specific to the type of dataset used.
|
@@ -495,17 +490,14 @@ class ARDRegression(BaseTransformer):
|
|
495
490
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
496
491
|
|
497
492
|
transform_kwargs = dict(
|
498
|
-
session
|
499
|
-
dependencies
|
500
|
-
drop_input_cols
|
501
|
-
expected_output_cols_type
|
493
|
+
session=dataset._session,
|
494
|
+
dependencies=self._deps,
|
495
|
+
drop_input_cols=self._drop_input_cols,
|
496
|
+
expected_output_cols_type=expected_dtype,
|
502
497
|
)
|
503
498
|
|
504
499
|
elif isinstance(dataset, pd.DataFrame):
|
505
|
-
transform_kwargs = dict(
|
506
|
-
snowpark_input_cols = self._snowpark_cols,
|
507
|
-
drop_input_cols = self._drop_input_cols
|
508
|
-
)
|
500
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
509
501
|
|
510
502
|
transform_handlers = ModelTransformerBuilder.build(
|
511
503
|
dataset=dataset,
|
@@ -524,7 +516,11 @@ class ARDRegression(BaseTransformer):
|
|
524
516
|
return output_df
|
525
517
|
|
526
518
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
527
|
-
def fit_predict(
|
519
|
+
def fit_predict(
|
520
|
+
self,
|
521
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
522
|
+
output_cols_prefix: str = "fit_predict_",
|
523
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
528
524
|
""" Method not supported for this class.
|
529
525
|
|
530
526
|
|
@@ -549,7 +545,9 @@ class ARDRegression(BaseTransformer):
|
|
549
545
|
)
|
550
546
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
551
547
|
drop_input_cols=self._drop_input_cols,
|
552
|
-
expected_output_cols_list=
|
548
|
+
expected_output_cols_list=(
|
549
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
550
|
+
),
|
553
551
|
)
|
554
552
|
self._sklearn_object = fitted_estimator
|
555
553
|
self._is_fitted = True
|
@@ -566,6 +564,62 @@ class ARDRegression(BaseTransformer):
|
|
566
564
|
assert self._sklearn_object is not None
|
567
565
|
return self._sklearn_object.embedding_
|
568
566
|
|
567
|
+
|
568
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
569
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
570
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
571
|
+
"""
|
572
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
573
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
574
|
+
if output_cols:
|
575
|
+
output_cols = [
|
576
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
577
|
+
for c in output_cols
|
578
|
+
]
|
579
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
580
|
+
output_cols = [output_cols_prefix]
|
581
|
+
elif self._sklearn_object is not None:
|
582
|
+
classes = self._sklearn_object.classes_
|
583
|
+
if isinstance(classes, numpy.ndarray):
|
584
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
585
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
586
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
587
|
+
output_cols = []
|
588
|
+
for i, cl in enumerate(classes):
|
589
|
+
# For binary classification, there is only one output column for each class
|
590
|
+
# ndarray as the two classes are complementary.
|
591
|
+
if len(cl) == 2:
|
592
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
593
|
+
else:
|
594
|
+
output_cols.extend([
|
595
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
596
|
+
])
|
597
|
+
else:
|
598
|
+
output_cols = []
|
599
|
+
|
600
|
+
# Make sure column names are valid snowflake identifiers.
|
601
|
+
assert output_cols is not None # Make MyPy happy
|
602
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
603
|
+
|
604
|
+
return rv
|
605
|
+
|
606
|
+
def _align_expected_output_names(
|
607
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
608
|
+
) -> List[str]:
|
609
|
+
# in case the inferred output column names dimension is different
|
610
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
611
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
612
|
+
output_df_columns = list(output_df_pd.columns)
|
613
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
614
|
+
if self.sample_weight_col:
|
615
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
616
|
+
# if the dimension of inferred output column names is correct; use it
|
617
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
618
|
+
return expected_output_cols_list
|
619
|
+
# otherwise, use the sklearn estimator's output
|
620
|
+
else:
|
621
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
622
|
+
|
569
623
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
570
624
|
@telemetry.send_api_usage_telemetry(
|
571
625
|
project=_PROJECT,
|
@@ -596,24 +650,28 @@ class ARDRegression(BaseTransformer):
|
|
596
650
|
# are specific to the type of dataset used.
|
597
651
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
598
652
|
|
653
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
654
|
+
|
599
655
|
if isinstance(dataset, DataFrame):
|
600
656
|
self._deps = self._batch_inference_validate_snowpark(
|
601
657
|
dataset=dataset,
|
602
658
|
inference_method=inference_method,
|
603
659
|
)
|
604
|
-
assert isinstance(
|
660
|
+
assert isinstance(
|
661
|
+
dataset._session, Session
|
662
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
605
663
|
transform_kwargs = dict(
|
606
664
|
session=dataset._session,
|
607
665
|
dependencies=self._deps,
|
608
|
-
drop_input_cols
|
666
|
+
drop_input_cols=self._drop_input_cols,
|
609
667
|
expected_output_cols_type="float",
|
610
668
|
)
|
669
|
+
expected_output_cols = self._align_expected_output_names(
|
670
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
671
|
+
)
|
611
672
|
|
612
673
|
elif isinstance(dataset, pd.DataFrame):
|
613
|
-
transform_kwargs = dict(
|
614
|
-
snowpark_input_cols = self._snowpark_cols,
|
615
|
-
drop_input_cols = self._drop_input_cols
|
616
|
-
)
|
674
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
617
675
|
|
618
676
|
transform_handlers = ModelTransformerBuilder.build(
|
619
677
|
dataset=dataset,
|
@@ -625,7 +683,7 @@ class ARDRegression(BaseTransformer):
|
|
625
683
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
626
684
|
inference_method=inference_method,
|
627
685
|
input_cols=self.input_cols,
|
628
|
-
expected_output_cols=
|
686
|
+
expected_output_cols=expected_output_cols,
|
629
687
|
**transform_kwargs
|
630
688
|
)
|
631
689
|
return output_df
|
@@ -655,7 +713,8 @@ class ARDRegression(BaseTransformer):
|
|
655
713
|
Output dataset with log probability of the sample for each class in the model.
|
656
714
|
"""
|
657
715
|
super()._check_dataset_type(dataset)
|
658
|
-
inference_method="predict_log_proba"
|
716
|
+
inference_method = "predict_log_proba"
|
717
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
659
718
|
|
660
719
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
661
720
|
# are specific to the type of dataset used.
|
@@ -666,18 +725,20 @@ class ARDRegression(BaseTransformer):
|
|
666
725
|
dataset=dataset,
|
667
726
|
inference_method=inference_method,
|
668
727
|
)
|
669
|
-
assert isinstance(
|
728
|
+
assert isinstance(
|
729
|
+
dataset._session, Session
|
730
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
670
731
|
transform_kwargs = dict(
|
671
732
|
session=dataset._session,
|
672
733
|
dependencies=self._deps,
|
673
|
-
drop_input_cols
|
734
|
+
drop_input_cols=self._drop_input_cols,
|
674
735
|
expected_output_cols_type="float",
|
675
736
|
)
|
737
|
+
expected_output_cols = self._align_expected_output_names(
|
738
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
739
|
+
)
|
676
740
|
elif isinstance(dataset, pd.DataFrame):
|
677
|
-
transform_kwargs = dict(
|
678
|
-
snowpark_input_cols = self._snowpark_cols,
|
679
|
-
drop_input_cols = self._drop_input_cols
|
680
|
-
)
|
741
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
681
742
|
|
682
743
|
transform_handlers = ModelTransformerBuilder.build(
|
683
744
|
dataset=dataset,
|
@@ -690,7 +751,7 @@ class ARDRegression(BaseTransformer):
|
|
690
751
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
691
752
|
inference_method=inference_method,
|
692
753
|
input_cols=self.input_cols,
|
693
|
-
expected_output_cols=
|
754
|
+
expected_output_cols=expected_output_cols,
|
694
755
|
**transform_kwargs
|
695
756
|
)
|
696
757
|
return output_df
|
@@ -716,30 +777,34 @@ class ARDRegression(BaseTransformer):
|
|
716
777
|
Output dataset with results of the decision function for the samples in input dataset.
|
717
778
|
"""
|
718
779
|
super()._check_dataset_type(dataset)
|
719
|
-
inference_method="decision_function"
|
780
|
+
inference_method = "decision_function"
|
720
781
|
|
721
782
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
722
783
|
# are specific to the type of dataset used.
|
723
784
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
724
785
|
|
786
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
787
|
+
|
725
788
|
if isinstance(dataset, DataFrame):
|
726
789
|
self._deps = self._batch_inference_validate_snowpark(
|
727
790
|
dataset=dataset,
|
728
791
|
inference_method=inference_method,
|
729
792
|
)
|
730
|
-
assert isinstance(
|
793
|
+
assert isinstance(
|
794
|
+
dataset._session, Session
|
795
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
731
796
|
transform_kwargs = dict(
|
732
797
|
session=dataset._session,
|
733
798
|
dependencies=self._deps,
|
734
|
-
drop_input_cols
|
799
|
+
drop_input_cols=self._drop_input_cols,
|
735
800
|
expected_output_cols_type="float",
|
736
801
|
)
|
802
|
+
expected_output_cols = self._align_expected_output_names(
|
803
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
804
|
+
)
|
737
805
|
|
738
806
|
elif isinstance(dataset, pd.DataFrame):
|
739
|
-
transform_kwargs = dict(
|
740
|
-
snowpark_input_cols = self._snowpark_cols,
|
741
|
-
drop_input_cols = self._drop_input_cols
|
742
|
-
)
|
807
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
743
808
|
|
744
809
|
transform_handlers = ModelTransformerBuilder.build(
|
745
810
|
dataset=dataset,
|
@@ -752,7 +817,7 @@ class ARDRegression(BaseTransformer):
|
|
752
817
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
753
818
|
inference_method=inference_method,
|
754
819
|
input_cols=self.input_cols,
|
755
|
-
expected_output_cols=
|
820
|
+
expected_output_cols=expected_output_cols,
|
756
821
|
**transform_kwargs
|
757
822
|
)
|
758
823
|
return output_df
|
@@ -781,12 +846,14 @@ class ARDRegression(BaseTransformer):
|
|
781
846
|
Output dataset with probability of the sample for each class in the model.
|
782
847
|
"""
|
783
848
|
super()._check_dataset_type(dataset)
|
784
|
-
inference_method="score_samples"
|
849
|
+
inference_method = "score_samples"
|
785
850
|
|
786
851
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
787
852
|
# are specific to the type of dataset used.
|
788
853
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
789
854
|
|
855
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
856
|
+
|
790
857
|
if isinstance(dataset, DataFrame):
|
791
858
|
self._deps = self._batch_inference_validate_snowpark(
|
792
859
|
dataset=dataset,
|
@@ -799,6 +866,9 @@ class ARDRegression(BaseTransformer):
|
|
799
866
|
drop_input_cols = self._drop_input_cols,
|
800
867
|
expected_output_cols_type="float",
|
801
868
|
)
|
869
|
+
expected_output_cols = self._align_expected_output_names(
|
870
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
871
|
+
)
|
802
872
|
|
803
873
|
elif isinstance(dataset, pd.DataFrame):
|
804
874
|
transform_kwargs = dict(
|
@@ -817,7 +887,7 @@ class ARDRegression(BaseTransformer):
|
|
817
887
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
818
888
|
inference_method=inference_method,
|
819
889
|
input_cols=self.input_cols,
|
820
|
-
expected_output_cols=
|
890
|
+
expected_output_cols=expected_output_cols,
|
821
891
|
**transform_kwargs
|
822
892
|
)
|
823
893
|
return output_df
|
@@ -964,50 +1034,84 @@ class ARDRegression(BaseTransformer):
|
|
964
1034
|
)
|
965
1035
|
return output_df
|
966
1036
|
|
1037
|
+
|
1038
|
+
|
1039
|
+
def to_sklearn(self) -> Any:
|
1040
|
+
"""Get sklearn.linear_model.ARDRegression object.
|
1041
|
+
"""
|
1042
|
+
if self._sklearn_object is None:
|
1043
|
+
self._sklearn_object = self._create_sklearn_object()
|
1044
|
+
return self._sklearn_object
|
1045
|
+
|
1046
|
+
def to_xgboost(self) -> Any:
|
1047
|
+
raise exceptions.SnowflakeMLException(
|
1048
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1049
|
+
original_exception=AttributeError(
|
1050
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1051
|
+
"to_xgboost()",
|
1052
|
+
"to_sklearn()"
|
1053
|
+
)
|
1054
|
+
),
|
1055
|
+
)
|
1056
|
+
|
1057
|
+
def to_lightgbm(self) -> Any:
|
1058
|
+
raise exceptions.SnowflakeMLException(
|
1059
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1060
|
+
original_exception=AttributeError(
|
1061
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1062
|
+
"to_lightgbm()",
|
1063
|
+
"to_sklearn()"
|
1064
|
+
)
|
1065
|
+
),
|
1066
|
+
)
|
967
1067
|
|
968
|
-
def
|
1068
|
+
def _get_dependencies(self) -> List[str]:
|
1069
|
+
return self._deps
|
1070
|
+
|
1071
|
+
|
1072
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
969
1073
|
self._model_signature_dict = dict()
|
970
1074
|
|
971
1075
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
972
1076
|
|
973
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1077
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
974
1078
|
outputs: List[BaseFeatureSpec] = []
|
975
1079
|
if hasattr(self, "predict"):
|
976
1080
|
# keep mypy happy
|
977
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1081
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
978
1082
|
# For classifier, the type of predict is the same as the type of label
|
979
|
-
if self._sklearn_object._estimator_type ==
|
980
|
-
|
1083
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1084
|
+
# label columns is the desired type for output
|
981
1085
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
982
1086
|
# rename the output columns
|
983
1087
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
984
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
985
|
-
|
986
|
-
|
1088
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1089
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1090
|
+
)
|
987
1091
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
988
1092
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
989
|
-
# Clusterer returns int64 cluster labels.
|
1093
|
+
# Clusterer returns int64 cluster labels.
|
990
1094
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
991
1095
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
992
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
993
|
-
|
994
|
-
|
995
|
-
|
1096
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1097
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1098
|
+
)
|
1099
|
+
|
996
1100
|
# For regressor, the type of predict is float64
|
997
|
-
elif self._sklearn_object._estimator_type ==
|
1101
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
998
1102
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
999
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1000
|
-
|
1001
|
-
|
1002
|
-
|
1103
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1104
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1105
|
+
)
|
1106
|
+
|
1003
1107
|
for prob_func in PROB_FUNCTIONS:
|
1004
1108
|
if hasattr(self, prob_func):
|
1005
1109
|
output_cols_prefix: str = f"{prob_func}_"
|
1006
1110
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1007
1111
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1008
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1009
|
-
|
1010
|
-
|
1112
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1113
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1114
|
+
)
|
1011
1115
|
|
1012
1116
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1013
1117
|
items = list(self._model_signature_dict.items())
|
@@ -1020,10 +1124,10 @@ class ARDRegression(BaseTransformer):
|
|
1020
1124
|
"""Returns model signature of current class.
|
1021
1125
|
|
1022
1126
|
Raises:
|
1023
|
-
|
1127
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1024
1128
|
|
1025
1129
|
Returns:
|
1026
|
-
Dict
|
1130
|
+
Dict with each method and its input output signature
|
1027
1131
|
"""
|
1028
1132
|
if self._model_signature_dict is None:
|
1029
1133
|
raise exceptions.SnowflakeMLException(
|
@@ -1031,35 +1135,3 @@ class ARDRegression(BaseTransformer):
|
|
1031
1135
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1032
1136
|
)
|
1033
1137
|
return self._model_signature_dict
|
1034
|
-
|
1035
|
-
def to_sklearn(self) -> Any:
|
1036
|
-
"""Get sklearn.linear_model.ARDRegression object.
|
1037
|
-
"""
|
1038
|
-
if self._sklearn_object is None:
|
1039
|
-
self._sklearn_object = self._create_sklearn_object()
|
1040
|
-
return self._sklearn_object
|
1041
|
-
|
1042
|
-
def to_xgboost(self) -> Any:
|
1043
|
-
raise exceptions.SnowflakeMLException(
|
1044
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1045
|
-
original_exception=AttributeError(
|
1046
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1047
|
-
"to_xgboost()",
|
1048
|
-
"to_sklearn()"
|
1049
|
-
)
|
1050
|
-
),
|
1051
|
-
)
|
1052
|
-
|
1053
|
-
def to_lightgbm(self) -> Any:
|
1054
|
-
raise exceptions.SnowflakeMLException(
|
1055
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1056
|
-
original_exception=AttributeError(
|
1057
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1058
|
-
"to_lightgbm()",
|
1059
|
-
"to_sklearn()"
|
1060
|
-
)
|
1061
|
-
),
|
1062
|
-
)
|
1063
|
-
|
1064
|
-
def _get_dependencies(self) -> List[str]:
|
1065
|
-
return self._deps
|