snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +151 -78
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +2 -50
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +9 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -252,12 +251,7 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
252
251
|
)
|
253
252
|
return selected_cols
|
254
253
|
|
255
|
-
|
256
|
-
project=_PROJECT,
|
257
|
-
subproject=_SUBPROJECT,
|
258
|
-
custom_tags=dict([("autogen", True)]),
|
259
|
-
)
|
260
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MultiTaskElasticNet":
|
254
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MultiTaskElasticNet":
|
261
255
|
"""Fit MultiTaskElasticNet model with coordinate descent
|
262
256
|
For more details on this function, see [sklearn.linear_model.MultiTaskElasticNet.fit]
|
263
257
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskElasticNet.html#sklearn.linear_model.MultiTaskElasticNet.fit)
|
@@ -284,12 +278,14 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
284
278
|
|
285
279
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
286
280
|
|
287
|
-
|
281
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
288
282
|
if SNOWML_SPROC_ENV in os.environ:
|
289
283
|
statement_params = telemetry.get_function_usage_statement_params(
|
290
284
|
project=_PROJECT,
|
291
285
|
subproject=_SUBPROJECT,
|
292
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
286
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
287
|
+
inspect.currentframe(), MultiTaskElasticNet.__class__.__name__
|
288
|
+
),
|
293
289
|
api_calls=[Session.call],
|
294
290
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
295
291
|
)
|
@@ -310,7 +306,7 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
310
306
|
)
|
311
307
|
self._sklearn_object = model_trainer.train()
|
312
308
|
self._is_fitted = True
|
313
|
-
self.
|
309
|
+
self._generate_model_signatures(dataset)
|
314
310
|
return self
|
315
311
|
|
316
312
|
def _batch_inference_validate_snowpark(
|
@@ -386,7 +382,9 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
386
382
|
# when it is classifier, infer the datatype from label columns
|
387
383
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
388
384
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
389
|
-
label_cols_signatures = [
|
385
|
+
label_cols_signatures = [
|
386
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
387
|
+
]
|
390
388
|
if len(label_cols_signatures) == 0:
|
391
389
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
392
390
|
raise exceptions.SnowflakeMLException(
|
@@ -394,25 +392,22 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
394
392
|
original_exception=ValueError(error_str),
|
395
393
|
)
|
396
394
|
|
397
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
398
|
-
label_cols_signatures[0].as_snowpark_type()
|
399
|
-
)
|
395
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
400
396
|
|
401
397
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
402
|
-
assert isinstance(
|
398
|
+
assert isinstance(
|
399
|
+
dataset._session, Session
|
400
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
403
401
|
|
404
402
|
transform_kwargs = dict(
|
405
|
-
session
|
406
|
-
dependencies
|
407
|
-
drop_input_cols
|
408
|
-
expected_output_cols_type
|
403
|
+
session=dataset._session,
|
404
|
+
dependencies=self._deps,
|
405
|
+
drop_input_cols=self._drop_input_cols,
|
406
|
+
expected_output_cols_type=expected_type_inferred,
|
409
407
|
)
|
410
408
|
|
411
409
|
elif isinstance(dataset, pd.DataFrame):
|
412
|
-
transform_kwargs = dict(
|
413
|
-
snowpark_input_cols = self._snowpark_cols,
|
414
|
-
drop_input_cols = self._drop_input_cols
|
415
|
-
)
|
410
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
416
411
|
|
417
412
|
transform_handlers = ModelTransformerBuilder.build(
|
418
413
|
dataset=dataset,
|
@@ -452,7 +447,7 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
452
447
|
Transformed dataset.
|
453
448
|
"""
|
454
449
|
super()._check_dataset_type(dataset)
|
455
|
-
inference_method="transform"
|
450
|
+
inference_method = "transform"
|
456
451
|
|
457
452
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
458
453
|
# are specific to the type of dataset used.
|
@@ -489,17 +484,14 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
489
484
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
490
485
|
|
491
486
|
transform_kwargs = dict(
|
492
|
-
session
|
493
|
-
dependencies
|
494
|
-
drop_input_cols
|
495
|
-
expected_output_cols_type
|
487
|
+
session=dataset._session,
|
488
|
+
dependencies=self._deps,
|
489
|
+
drop_input_cols=self._drop_input_cols,
|
490
|
+
expected_output_cols_type=expected_dtype,
|
496
491
|
)
|
497
492
|
|
498
493
|
elif isinstance(dataset, pd.DataFrame):
|
499
|
-
transform_kwargs = dict(
|
500
|
-
snowpark_input_cols = self._snowpark_cols,
|
501
|
-
drop_input_cols = self._drop_input_cols
|
502
|
-
)
|
494
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
503
495
|
|
504
496
|
transform_handlers = ModelTransformerBuilder.build(
|
505
497
|
dataset=dataset,
|
@@ -518,7 +510,11 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
518
510
|
return output_df
|
519
511
|
|
520
512
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
521
|
-
def fit_predict(
|
513
|
+
def fit_predict(
|
514
|
+
self,
|
515
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
516
|
+
output_cols_prefix: str = "fit_predict_",
|
517
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
522
518
|
""" Method not supported for this class.
|
523
519
|
|
524
520
|
|
@@ -543,7 +539,9 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
543
539
|
)
|
544
540
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
545
541
|
drop_input_cols=self._drop_input_cols,
|
546
|
-
expected_output_cols_list=
|
542
|
+
expected_output_cols_list=(
|
543
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
544
|
+
),
|
547
545
|
)
|
548
546
|
self._sklearn_object = fitted_estimator
|
549
547
|
self._is_fitted = True
|
@@ -560,6 +558,62 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
560
558
|
assert self._sklearn_object is not None
|
561
559
|
return self._sklearn_object.embedding_
|
562
560
|
|
561
|
+
|
562
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
563
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
564
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
565
|
+
"""
|
566
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
567
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
568
|
+
if output_cols:
|
569
|
+
output_cols = [
|
570
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
571
|
+
for c in output_cols
|
572
|
+
]
|
573
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
574
|
+
output_cols = [output_cols_prefix]
|
575
|
+
elif self._sklearn_object is not None:
|
576
|
+
classes = self._sklearn_object.classes_
|
577
|
+
if isinstance(classes, numpy.ndarray):
|
578
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
579
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
580
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
581
|
+
output_cols = []
|
582
|
+
for i, cl in enumerate(classes):
|
583
|
+
# For binary classification, there is only one output column for each class
|
584
|
+
# ndarray as the two classes are complementary.
|
585
|
+
if len(cl) == 2:
|
586
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
587
|
+
else:
|
588
|
+
output_cols.extend([
|
589
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
590
|
+
])
|
591
|
+
else:
|
592
|
+
output_cols = []
|
593
|
+
|
594
|
+
# Make sure column names are valid snowflake identifiers.
|
595
|
+
assert output_cols is not None # Make MyPy happy
|
596
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
597
|
+
|
598
|
+
return rv
|
599
|
+
|
600
|
+
def _align_expected_output_names(
|
601
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
602
|
+
) -> List[str]:
|
603
|
+
# in case the inferred output column names dimension is different
|
604
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
605
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
606
|
+
output_df_columns = list(output_df_pd.columns)
|
607
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
608
|
+
if self.sample_weight_col:
|
609
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
610
|
+
# if the dimension of inferred output column names is correct; use it
|
611
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
612
|
+
return expected_output_cols_list
|
613
|
+
# otherwise, use the sklearn estimator's output
|
614
|
+
else:
|
615
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
616
|
+
|
563
617
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
564
618
|
@telemetry.send_api_usage_telemetry(
|
565
619
|
project=_PROJECT,
|
@@ -590,24 +644,28 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
590
644
|
# are specific to the type of dataset used.
|
591
645
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
592
646
|
|
647
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
648
|
+
|
593
649
|
if isinstance(dataset, DataFrame):
|
594
650
|
self._deps = self._batch_inference_validate_snowpark(
|
595
651
|
dataset=dataset,
|
596
652
|
inference_method=inference_method,
|
597
653
|
)
|
598
|
-
assert isinstance(
|
654
|
+
assert isinstance(
|
655
|
+
dataset._session, Session
|
656
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
599
657
|
transform_kwargs = dict(
|
600
658
|
session=dataset._session,
|
601
659
|
dependencies=self._deps,
|
602
|
-
drop_input_cols
|
660
|
+
drop_input_cols=self._drop_input_cols,
|
603
661
|
expected_output_cols_type="float",
|
604
662
|
)
|
663
|
+
expected_output_cols = self._align_expected_output_names(
|
664
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
665
|
+
)
|
605
666
|
|
606
667
|
elif isinstance(dataset, pd.DataFrame):
|
607
|
-
transform_kwargs = dict(
|
608
|
-
snowpark_input_cols = self._snowpark_cols,
|
609
|
-
drop_input_cols = self._drop_input_cols
|
610
|
-
)
|
668
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
611
669
|
|
612
670
|
transform_handlers = ModelTransformerBuilder.build(
|
613
671
|
dataset=dataset,
|
@@ -619,7 +677,7 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
619
677
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
620
678
|
inference_method=inference_method,
|
621
679
|
input_cols=self.input_cols,
|
622
|
-
expected_output_cols=
|
680
|
+
expected_output_cols=expected_output_cols,
|
623
681
|
**transform_kwargs
|
624
682
|
)
|
625
683
|
return output_df
|
@@ -649,7 +707,8 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
649
707
|
Output dataset with log probability of the sample for each class in the model.
|
650
708
|
"""
|
651
709
|
super()._check_dataset_type(dataset)
|
652
|
-
inference_method="predict_log_proba"
|
710
|
+
inference_method = "predict_log_proba"
|
711
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
653
712
|
|
654
713
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
655
714
|
# are specific to the type of dataset used.
|
@@ -660,18 +719,20 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
660
719
|
dataset=dataset,
|
661
720
|
inference_method=inference_method,
|
662
721
|
)
|
663
|
-
assert isinstance(
|
722
|
+
assert isinstance(
|
723
|
+
dataset._session, Session
|
724
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
664
725
|
transform_kwargs = dict(
|
665
726
|
session=dataset._session,
|
666
727
|
dependencies=self._deps,
|
667
|
-
drop_input_cols
|
728
|
+
drop_input_cols=self._drop_input_cols,
|
668
729
|
expected_output_cols_type="float",
|
669
730
|
)
|
731
|
+
expected_output_cols = self._align_expected_output_names(
|
732
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
733
|
+
)
|
670
734
|
elif isinstance(dataset, pd.DataFrame):
|
671
|
-
transform_kwargs = dict(
|
672
|
-
snowpark_input_cols = self._snowpark_cols,
|
673
|
-
drop_input_cols = self._drop_input_cols
|
674
|
-
)
|
735
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
675
736
|
|
676
737
|
transform_handlers = ModelTransformerBuilder.build(
|
677
738
|
dataset=dataset,
|
@@ -684,7 +745,7 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
684
745
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
685
746
|
inference_method=inference_method,
|
686
747
|
input_cols=self.input_cols,
|
687
|
-
expected_output_cols=
|
748
|
+
expected_output_cols=expected_output_cols,
|
688
749
|
**transform_kwargs
|
689
750
|
)
|
690
751
|
return output_df
|
@@ -710,30 +771,34 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
710
771
|
Output dataset with results of the decision function for the samples in input dataset.
|
711
772
|
"""
|
712
773
|
super()._check_dataset_type(dataset)
|
713
|
-
inference_method="decision_function"
|
774
|
+
inference_method = "decision_function"
|
714
775
|
|
715
776
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
716
777
|
# are specific to the type of dataset used.
|
717
778
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
718
779
|
|
780
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
781
|
+
|
719
782
|
if isinstance(dataset, DataFrame):
|
720
783
|
self._deps = self._batch_inference_validate_snowpark(
|
721
784
|
dataset=dataset,
|
722
785
|
inference_method=inference_method,
|
723
786
|
)
|
724
|
-
assert isinstance(
|
787
|
+
assert isinstance(
|
788
|
+
dataset._session, Session
|
789
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
725
790
|
transform_kwargs = dict(
|
726
791
|
session=dataset._session,
|
727
792
|
dependencies=self._deps,
|
728
|
-
drop_input_cols
|
793
|
+
drop_input_cols=self._drop_input_cols,
|
729
794
|
expected_output_cols_type="float",
|
730
795
|
)
|
796
|
+
expected_output_cols = self._align_expected_output_names(
|
797
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
798
|
+
)
|
731
799
|
|
732
800
|
elif isinstance(dataset, pd.DataFrame):
|
733
|
-
transform_kwargs = dict(
|
734
|
-
snowpark_input_cols = self._snowpark_cols,
|
735
|
-
drop_input_cols = self._drop_input_cols
|
736
|
-
)
|
801
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
737
802
|
|
738
803
|
transform_handlers = ModelTransformerBuilder.build(
|
739
804
|
dataset=dataset,
|
@@ -746,7 +811,7 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
746
811
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
747
812
|
inference_method=inference_method,
|
748
813
|
input_cols=self.input_cols,
|
749
|
-
expected_output_cols=
|
814
|
+
expected_output_cols=expected_output_cols,
|
750
815
|
**transform_kwargs
|
751
816
|
)
|
752
817
|
return output_df
|
@@ -775,12 +840,14 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
775
840
|
Output dataset with probability of the sample for each class in the model.
|
776
841
|
"""
|
777
842
|
super()._check_dataset_type(dataset)
|
778
|
-
inference_method="score_samples"
|
843
|
+
inference_method = "score_samples"
|
779
844
|
|
780
845
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
781
846
|
# are specific to the type of dataset used.
|
782
847
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
783
848
|
|
849
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
850
|
+
|
784
851
|
if isinstance(dataset, DataFrame):
|
785
852
|
self._deps = self._batch_inference_validate_snowpark(
|
786
853
|
dataset=dataset,
|
@@ -793,6 +860,9 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
793
860
|
drop_input_cols = self._drop_input_cols,
|
794
861
|
expected_output_cols_type="float",
|
795
862
|
)
|
863
|
+
expected_output_cols = self._align_expected_output_names(
|
864
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
865
|
+
)
|
796
866
|
|
797
867
|
elif isinstance(dataset, pd.DataFrame):
|
798
868
|
transform_kwargs = dict(
|
@@ -811,7 +881,7 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
811
881
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
812
882
|
inference_method=inference_method,
|
813
883
|
input_cols=self.input_cols,
|
814
|
-
expected_output_cols=
|
884
|
+
expected_output_cols=expected_output_cols,
|
815
885
|
**transform_kwargs
|
816
886
|
)
|
817
887
|
return output_df
|
@@ -958,50 +1028,84 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
958
1028
|
)
|
959
1029
|
return output_df
|
960
1030
|
|
1031
|
+
|
1032
|
+
|
1033
|
+
def to_sklearn(self) -> Any:
|
1034
|
+
"""Get sklearn.linear_model.MultiTaskElasticNet object.
|
1035
|
+
"""
|
1036
|
+
if self._sklearn_object is None:
|
1037
|
+
self._sklearn_object = self._create_sklearn_object()
|
1038
|
+
return self._sklearn_object
|
1039
|
+
|
1040
|
+
def to_xgboost(self) -> Any:
|
1041
|
+
raise exceptions.SnowflakeMLException(
|
1042
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1043
|
+
original_exception=AttributeError(
|
1044
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1045
|
+
"to_xgboost()",
|
1046
|
+
"to_sklearn()"
|
1047
|
+
)
|
1048
|
+
),
|
1049
|
+
)
|
1050
|
+
|
1051
|
+
def to_lightgbm(self) -> Any:
|
1052
|
+
raise exceptions.SnowflakeMLException(
|
1053
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1054
|
+
original_exception=AttributeError(
|
1055
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1056
|
+
"to_lightgbm()",
|
1057
|
+
"to_sklearn()"
|
1058
|
+
)
|
1059
|
+
),
|
1060
|
+
)
|
961
1061
|
|
962
|
-
def
|
1062
|
+
def _get_dependencies(self) -> List[str]:
|
1063
|
+
return self._deps
|
1064
|
+
|
1065
|
+
|
1066
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
963
1067
|
self._model_signature_dict = dict()
|
964
1068
|
|
965
1069
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
966
1070
|
|
967
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1071
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
968
1072
|
outputs: List[BaseFeatureSpec] = []
|
969
1073
|
if hasattr(self, "predict"):
|
970
1074
|
# keep mypy happy
|
971
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1075
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
972
1076
|
# For classifier, the type of predict is the same as the type of label
|
973
|
-
if self._sklearn_object._estimator_type ==
|
974
|
-
|
1077
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1078
|
+
# label columns is the desired type for output
|
975
1079
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
976
1080
|
# rename the output columns
|
977
1081
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
978
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
979
|
-
|
980
|
-
|
1082
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1083
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1084
|
+
)
|
981
1085
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
982
1086
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
983
|
-
# Clusterer returns int64 cluster labels.
|
1087
|
+
# Clusterer returns int64 cluster labels.
|
984
1088
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
985
1089
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
986
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
987
|
-
|
988
|
-
|
989
|
-
|
1090
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1091
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1092
|
+
)
|
1093
|
+
|
990
1094
|
# For regressor, the type of predict is float64
|
991
|
-
elif self._sklearn_object._estimator_type ==
|
1095
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
992
1096
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
993
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
994
|
-
|
995
|
-
|
996
|
-
|
1097
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1098
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1099
|
+
)
|
1100
|
+
|
997
1101
|
for prob_func in PROB_FUNCTIONS:
|
998
1102
|
if hasattr(self, prob_func):
|
999
1103
|
output_cols_prefix: str = f"{prob_func}_"
|
1000
1104
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1001
1105
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1002
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1003
|
-
|
1004
|
-
|
1106
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1107
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1108
|
+
)
|
1005
1109
|
|
1006
1110
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1007
1111
|
items = list(self._model_signature_dict.items())
|
@@ -1014,10 +1118,10 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
1014
1118
|
"""Returns model signature of current class.
|
1015
1119
|
|
1016
1120
|
Raises:
|
1017
|
-
|
1121
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1018
1122
|
|
1019
1123
|
Returns:
|
1020
|
-
Dict
|
1124
|
+
Dict with each method and its input output signature
|
1021
1125
|
"""
|
1022
1126
|
if self._model_signature_dict is None:
|
1023
1127
|
raise exceptions.SnowflakeMLException(
|
@@ -1025,35 +1129,3 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
1025
1129
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1026
1130
|
)
|
1027
1131
|
return self._model_signature_dict
|
1028
|
-
|
1029
|
-
def to_sklearn(self) -> Any:
|
1030
|
-
"""Get sklearn.linear_model.MultiTaskElasticNet object.
|
1031
|
-
"""
|
1032
|
-
if self._sklearn_object is None:
|
1033
|
-
self._sklearn_object = self._create_sklearn_object()
|
1034
|
-
return self._sklearn_object
|
1035
|
-
|
1036
|
-
def to_xgboost(self) -> Any:
|
1037
|
-
raise exceptions.SnowflakeMLException(
|
1038
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1039
|
-
original_exception=AttributeError(
|
1040
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1041
|
-
"to_xgboost()",
|
1042
|
-
"to_sklearn()"
|
1043
|
-
)
|
1044
|
-
),
|
1045
|
-
)
|
1046
|
-
|
1047
|
-
def to_lightgbm(self) -> Any:
|
1048
|
-
raise exceptions.SnowflakeMLException(
|
1049
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1050
|
-
original_exception=AttributeError(
|
1051
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1052
|
-
"to_lightgbm()",
|
1053
|
-
"to_sklearn()"
|
1054
|
-
)
|
1055
|
-
),
|
1056
|
-
)
|
1057
|
-
|
1058
|
-
def _get_dependencies(self) -> List[str]:
|
1059
|
-
return self._deps
|