snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -278,12 +277,7 @@ class Isomap(BaseTransformer):
278
277
  )
279
278
  return selected_cols
280
279
 
281
- @telemetry.send_api_usage_telemetry(
282
- project=_PROJECT,
283
- subproject=_SUBPROJECT,
284
- custom_tags=dict([("autogen", True)]),
285
- )
286
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Isomap":
280
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Isomap":
287
281
  """Compute the embedding vectors for data X
288
282
  For more details on this function, see [sklearn.manifold.Isomap.fit]
289
283
  (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html#sklearn.manifold.Isomap.fit)
@@ -310,12 +304,14 @@ class Isomap(BaseTransformer):
310
304
 
311
305
  self._snowpark_cols = dataset.select(self.input_cols).columns
312
306
 
313
- # If we are already in a stored procedure, no need to kick off another one.
307
+ # If we are already in a stored procedure, no need to kick off another one.
314
308
  if SNOWML_SPROC_ENV in os.environ:
315
309
  statement_params = telemetry.get_function_usage_statement_params(
316
310
  project=_PROJECT,
317
311
  subproject=_SUBPROJECT,
318
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Isomap.__class__.__name__),
312
+ function_name=telemetry.get_statement_params_full_func_name(
313
+ inspect.currentframe(), Isomap.__class__.__name__
314
+ ),
319
315
  api_calls=[Session.call],
320
316
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
321
317
  )
@@ -336,7 +332,7 @@ class Isomap(BaseTransformer):
336
332
  )
337
333
  self._sklearn_object = model_trainer.train()
338
334
  self._is_fitted = True
339
- self._get_model_signatures(dataset)
335
+ self._generate_model_signatures(dataset)
340
336
  return self
341
337
 
342
338
  def _batch_inference_validate_snowpark(
@@ -410,7 +406,9 @@ class Isomap(BaseTransformer):
410
406
  # when it is classifier, infer the datatype from label columns
411
407
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
412
408
  # Batch inference takes a single expected output column type. Use the first columns type for now.
413
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
409
+ label_cols_signatures = [
410
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
411
+ ]
414
412
  if len(label_cols_signatures) == 0:
415
413
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
416
414
  raise exceptions.SnowflakeMLException(
@@ -418,25 +416,22 @@ class Isomap(BaseTransformer):
418
416
  original_exception=ValueError(error_str),
419
417
  )
420
418
 
421
- expected_type_inferred = convert_sp_to_sf_type(
422
- label_cols_signatures[0].as_snowpark_type()
423
- )
419
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
424
420
 
425
421
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
426
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
422
+ assert isinstance(
423
+ dataset._session, Session
424
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
427
425
 
428
426
  transform_kwargs = dict(
429
- session = dataset._session,
430
- dependencies = self._deps,
431
- drop_input_cols = self._drop_input_cols,
432
- expected_output_cols_type = expected_type_inferred,
427
+ session=dataset._session,
428
+ dependencies=self._deps,
429
+ drop_input_cols=self._drop_input_cols,
430
+ expected_output_cols_type=expected_type_inferred,
433
431
  )
434
432
 
435
433
  elif isinstance(dataset, pd.DataFrame):
436
- transform_kwargs = dict(
437
- snowpark_input_cols = self._snowpark_cols,
438
- drop_input_cols = self._drop_input_cols
439
- )
434
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
440
435
 
441
436
  transform_handlers = ModelTransformerBuilder.build(
442
437
  dataset=dataset,
@@ -478,7 +473,7 @@ class Isomap(BaseTransformer):
478
473
  Transformed dataset.
479
474
  """
480
475
  super()._check_dataset_type(dataset)
481
- inference_method="transform"
476
+ inference_method = "transform"
482
477
 
483
478
  # This dictionary contains optional kwargs for batch inference. These kwargs
484
479
  # are specific to the type of dataset used.
@@ -515,17 +510,14 @@ class Isomap(BaseTransformer):
515
510
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
516
511
 
517
512
  transform_kwargs = dict(
518
- session = dataset._session,
519
- dependencies = self._deps,
520
- drop_input_cols = self._drop_input_cols,
521
- expected_output_cols_type = expected_dtype,
513
+ session=dataset._session,
514
+ dependencies=self._deps,
515
+ drop_input_cols=self._drop_input_cols,
516
+ expected_output_cols_type=expected_dtype,
522
517
  )
523
518
 
524
519
  elif isinstance(dataset, pd.DataFrame):
525
- transform_kwargs = dict(
526
- snowpark_input_cols = self._snowpark_cols,
527
- drop_input_cols = self._drop_input_cols
528
- )
520
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
529
521
 
530
522
  transform_handlers = ModelTransformerBuilder.build(
531
523
  dataset=dataset,
@@ -544,7 +536,11 @@ class Isomap(BaseTransformer):
544
536
  return output_df
545
537
 
546
538
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
547
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
539
+ def fit_predict(
540
+ self,
541
+ dataset: Union[DataFrame, pd.DataFrame],
542
+ output_cols_prefix: str = "fit_predict_",
543
+ ) -> Union[DataFrame, pd.DataFrame]:
548
544
  """ Method not supported for this class.
549
545
 
550
546
 
@@ -569,7 +565,9 @@ class Isomap(BaseTransformer):
569
565
  )
570
566
  output_result, fitted_estimator = model_trainer.train_fit_predict(
571
567
  drop_input_cols=self._drop_input_cols,
572
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
568
+ expected_output_cols_list=(
569
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
570
+ ),
573
571
  )
574
572
  self._sklearn_object = fitted_estimator
575
573
  self._is_fitted = True
@@ -586,6 +584,62 @@ class Isomap(BaseTransformer):
586
584
  assert self._sklearn_object is not None
587
585
  return self._sklearn_object.embedding_
588
586
 
587
+
588
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
589
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
590
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
591
+ """
592
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
593
+ # The following condition is introduced for kneighbors methods, and not used in other methods
594
+ if output_cols:
595
+ output_cols = [
596
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
597
+ for c in output_cols
598
+ ]
599
+ elif getattr(self._sklearn_object, "classes_", None) is None:
600
+ output_cols = [output_cols_prefix]
601
+ elif self._sklearn_object is not None:
602
+ classes = self._sklearn_object.classes_
603
+ if isinstance(classes, numpy.ndarray):
604
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
605
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
606
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
607
+ output_cols = []
608
+ for i, cl in enumerate(classes):
609
+ # For binary classification, there is only one output column for each class
610
+ # ndarray as the two classes are complementary.
611
+ if len(cl) == 2:
612
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
613
+ else:
614
+ output_cols.extend([
615
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
616
+ ])
617
+ else:
618
+ output_cols = []
619
+
620
+ # Make sure column names are valid snowflake identifiers.
621
+ assert output_cols is not None # Make MyPy happy
622
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
623
+
624
+ return rv
625
+
626
+ def _align_expected_output_names(
627
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
628
+ ) -> List[str]:
629
+ # in case the inferred output column names dimension is different
630
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
631
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
632
+ output_df_columns = list(output_df_pd.columns)
633
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
634
+ if self.sample_weight_col:
635
+ output_df_columns_set -= set(self.sample_weight_col)
636
+ # if the dimension of inferred output column names is correct; use it
637
+ if len(expected_output_cols_list) == len(output_df_columns_set):
638
+ return expected_output_cols_list
639
+ # otherwise, use the sklearn estimator's output
640
+ else:
641
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
642
+
589
643
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
590
644
  @telemetry.send_api_usage_telemetry(
591
645
  project=_PROJECT,
@@ -616,24 +670,28 @@ class Isomap(BaseTransformer):
616
670
  # are specific to the type of dataset used.
617
671
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
618
672
 
673
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
674
+
619
675
  if isinstance(dataset, DataFrame):
620
676
  self._deps = self._batch_inference_validate_snowpark(
621
677
  dataset=dataset,
622
678
  inference_method=inference_method,
623
679
  )
624
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
680
+ assert isinstance(
681
+ dataset._session, Session
682
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
625
683
  transform_kwargs = dict(
626
684
  session=dataset._session,
627
685
  dependencies=self._deps,
628
- drop_input_cols = self._drop_input_cols,
686
+ drop_input_cols=self._drop_input_cols,
629
687
  expected_output_cols_type="float",
630
688
  )
689
+ expected_output_cols = self._align_expected_output_names(
690
+ inference_method, dataset, expected_output_cols, output_cols_prefix
691
+ )
631
692
 
632
693
  elif isinstance(dataset, pd.DataFrame):
633
- transform_kwargs = dict(
634
- snowpark_input_cols = self._snowpark_cols,
635
- drop_input_cols = self._drop_input_cols
636
- )
694
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
637
695
 
638
696
  transform_handlers = ModelTransformerBuilder.build(
639
697
  dataset=dataset,
@@ -645,7 +703,7 @@ class Isomap(BaseTransformer):
645
703
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
646
704
  inference_method=inference_method,
647
705
  input_cols=self.input_cols,
648
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
706
+ expected_output_cols=expected_output_cols,
649
707
  **transform_kwargs
650
708
  )
651
709
  return output_df
@@ -675,7 +733,8 @@ class Isomap(BaseTransformer):
675
733
  Output dataset with log probability of the sample for each class in the model.
676
734
  """
677
735
  super()._check_dataset_type(dataset)
678
- inference_method="predict_log_proba"
736
+ inference_method = "predict_log_proba"
737
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
679
738
 
680
739
  # This dictionary contains optional kwargs for batch inference. These kwargs
681
740
  # are specific to the type of dataset used.
@@ -686,18 +745,20 @@ class Isomap(BaseTransformer):
686
745
  dataset=dataset,
687
746
  inference_method=inference_method,
688
747
  )
689
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
748
+ assert isinstance(
749
+ dataset._session, Session
750
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
690
751
  transform_kwargs = dict(
691
752
  session=dataset._session,
692
753
  dependencies=self._deps,
693
- drop_input_cols = self._drop_input_cols,
754
+ drop_input_cols=self._drop_input_cols,
694
755
  expected_output_cols_type="float",
695
756
  )
757
+ expected_output_cols = self._align_expected_output_names(
758
+ inference_method, dataset, expected_output_cols, output_cols_prefix
759
+ )
696
760
  elif isinstance(dataset, pd.DataFrame):
697
- transform_kwargs = dict(
698
- snowpark_input_cols = self._snowpark_cols,
699
- drop_input_cols = self._drop_input_cols
700
- )
761
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
701
762
 
702
763
  transform_handlers = ModelTransformerBuilder.build(
703
764
  dataset=dataset,
@@ -710,7 +771,7 @@ class Isomap(BaseTransformer):
710
771
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
711
772
  inference_method=inference_method,
712
773
  input_cols=self.input_cols,
713
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
774
+ expected_output_cols=expected_output_cols,
714
775
  **transform_kwargs
715
776
  )
716
777
  return output_df
@@ -736,30 +797,34 @@ class Isomap(BaseTransformer):
736
797
  Output dataset with results of the decision function for the samples in input dataset.
737
798
  """
738
799
  super()._check_dataset_type(dataset)
739
- inference_method="decision_function"
800
+ inference_method = "decision_function"
740
801
 
741
802
  # This dictionary contains optional kwargs for batch inference. These kwargs
742
803
  # are specific to the type of dataset used.
743
804
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
744
805
 
806
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
807
+
745
808
  if isinstance(dataset, DataFrame):
746
809
  self._deps = self._batch_inference_validate_snowpark(
747
810
  dataset=dataset,
748
811
  inference_method=inference_method,
749
812
  )
750
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
813
+ assert isinstance(
814
+ dataset._session, Session
815
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
751
816
  transform_kwargs = dict(
752
817
  session=dataset._session,
753
818
  dependencies=self._deps,
754
- drop_input_cols = self._drop_input_cols,
819
+ drop_input_cols=self._drop_input_cols,
755
820
  expected_output_cols_type="float",
756
821
  )
822
+ expected_output_cols = self._align_expected_output_names(
823
+ inference_method, dataset, expected_output_cols, output_cols_prefix
824
+ )
757
825
 
758
826
  elif isinstance(dataset, pd.DataFrame):
759
- transform_kwargs = dict(
760
- snowpark_input_cols = self._snowpark_cols,
761
- drop_input_cols = self._drop_input_cols
762
- )
827
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
763
828
 
764
829
  transform_handlers = ModelTransformerBuilder.build(
765
830
  dataset=dataset,
@@ -772,7 +837,7 @@ class Isomap(BaseTransformer):
772
837
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
773
838
  inference_method=inference_method,
774
839
  input_cols=self.input_cols,
775
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
840
+ expected_output_cols=expected_output_cols,
776
841
  **transform_kwargs
777
842
  )
778
843
  return output_df
@@ -801,12 +866,14 @@ class Isomap(BaseTransformer):
801
866
  Output dataset with probability of the sample for each class in the model.
802
867
  """
803
868
  super()._check_dataset_type(dataset)
804
- inference_method="score_samples"
869
+ inference_method = "score_samples"
805
870
 
806
871
  # This dictionary contains optional kwargs for batch inference. These kwargs
807
872
  # are specific to the type of dataset used.
808
873
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
809
874
 
875
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
876
+
810
877
  if isinstance(dataset, DataFrame):
811
878
  self._deps = self._batch_inference_validate_snowpark(
812
879
  dataset=dataset,
@@ -819,6 +886,9 @@ class Isomap(BaseTransformer):
819
886
  drop_input_cols = self._drop_input_cols,
820
887
  expected_output_cols_type="float",
821
888
  )
889
+ expected_output_cols = self._align_expected_output_names(
890
+ inference_method, dataset, expected_output_cols, output_cols_prefix
891
+ )
822
892
 
823
893
  elif isinstance(dataset, pd.DataFrame):
824
894
  transform_kwargs = dict(
@@ -837,7 +907,7 @@ class Isomap(BaseTransformer):
837
907
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
838
908
  inference_method=inference_method,
839
909
  input_cols=self.input_cols,
840
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
910
+ expected_output_cols=expected_output_cols,
841
911
  **transform_kwargs
842
912
  )
843
913
  return output_df
@@ -982,50 +1052,84 @@ class Isomap(BaseTransformer):
982
1052
  )
983
1053
  return output_df
984
1054
 
1055
+
1056
+
1057
+ def to_sklearn(self) -> Any:
1058
+ """Get sklearn.manifold.Isomap object.
1059
+ """
1060
+ if self._sklearn_object is None:
1061
+ self._sklearn_object = self._create_sklearn_object()
1062
+ return self._sklearn_object
1063
+
1064
+ def to_xgboost(self) -> Any:
1065
+ raise exceptions.SnowflakeMLException(
1066
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1067
+ original_exception=AttributeError(
1068
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1069
+ "to_xgboost()",
1070
+ "to_sklearn()"
1071
+ )
1072
+ ),
1073
+ )
1074
+
1075
+ def to_lightgbm(self) -> Any:
1076
+ raise exceptions.SnowflakeMLException(
1077
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1078
+ original_exception=AttributeError(
1079
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1080
+ "to_lightgbm()",
1081
+ "to_sklearn()"
1082
+ )
1083
+ ),
1084
+ )
985
1085
 
986
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1086
+ def _get_dependencies(self) -> List[str]:
1087
+ return self._deps
1088
+
1089
+
1090
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
987
1091
  self._model_signature_dict = dict()
988
1092
 
989
1093
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
990
1094
 
991
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1095
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
992
1096
  outputs: List[BaseFeatureSpec] = []
993
1097
  if hasattr(self, "predict"):
994
1098
  # keep mypy happy
995
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1099
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
996
1100
  # For classifier, the type of predict is the same as the type of label
997
- if self._sklearn_object._estimator_type == 'classifier':
998
- # label columns is the desired type for output
1101
+ if self._sklearn_object._estimator_type == "classifier":
1102
+ # label columns is the desired type for output
999
1103
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1000
1104
  # rename the output columns
1001
1105
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1002
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1106
+ self._model_signature_dict["predict"] = ModelSignature(
1107
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1108
+ )
1005
1109
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1006
1110
  # For outlier models, returns -1 for outliers and 1 for inliers.
1007
- # Clusterer returns int64 cluster labels.
1111
+ # Clusterer returns int64 cluster labels.
1008
1112
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1009
1113
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1010
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1011
- ([] if self._drop_input_cols else inputs)
1012
- + outputs)
1013
-
1114
+ self._model_signature_dict["predict"] = ModelSignature(
1115
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1116
+ )
1117
+
1014
1118
  # For regressor, the type of predict is float64
1015
- elif self._sklearn_object._estimator_type == 'regressor':
1119
+ elif self._sklearn_object._estimator_type == "regressor":
1016
1120
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1017
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1018
- ([] if self._drop_input_cols else inputs)
1019
- + outputs)
1020
-
1121
+ self._model_signature_dict["predict"] = ModelSignature(
1122
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1123
+ )
1124
+
1021
1125
  for prob_func in PROB_FUNCTIONS:
1022
1126
  if hasattr(self, prob_func):
1023
1127
  output_cols_prefix: str = f"{prob_func}_"
1024
1128
  output_column_names = self._get_output_column_names(output_cols_prefix)
1025
1129
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1026
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1027
- ([] if self._drop_input_cols else inputs)
1028
- + outputs)
1130
+ self._model_signature_dict[prob_func] = ModelSignature(
1131
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1132
+ )
1029
1133
 
1030
1134
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1031
1135
  items = list(self._model_signature_dict.items())
@@ -1038,10 +1142,10 @@ class Isomap(BaseTransformer):
1038
1142
  """Returns model signature of current class.
1039
1143
 
1040
1144
  Raises:
1041
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1145
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1042
1146
 
1043
1147
  Returns:
1044
- Dict[str, ModelSignature]: each method and its input output signature
1148
+ Dict with each method and its input output signature
1045
1149
  """
1046
1150
  if self._model_signature_dict is None:
1047
1151
  raise exceptions.SnowflakeMLException(
@@ -1049,35 +1153,3 @@ class Isomap(BaseTransformer):
1049
1153
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1050
1154
  )
1051
1155
  return self._model_signature_dict
1052
-
1053
- def to_sklearn(self) -> Any:
1054
- """Get sklearn.manifold.Isomap object.
1055
- """
1056
- if self._sklearn_object is None:
1057
- self._sklearn_object = self._create_sklearn_object()
1058
- return self._sklearn_object
1059
-
1060
- def to_xgboost(self) -> Any:
1061
- raise exceptions.SnowflakeMLException(
1062
- error_code=error_codes.METHOD_NOT_ALLOWED,
1063
- original_exception=AttributeError(
1064
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1065
- "to_xgboost()",
1066
- "to_sklearn()"
1067
- )
1068
- ),
1069
- )
1070
-
1071
- def to_lightgbm(self) -> Any:
1072
- raise exceptions.SnowflakeMLException(
1073
- error_code=error_codes.METHOD_NOT_ALLOWED,
1074
- original_exception=AttributeError(
1075
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1076
- "to_lightgbm()",
1077
- "to_sklearn()"
1078
- )
1079
- ),
1080
- )
1081
-
1082
- def _get_dependencies(self) -> List[str]:
1083
- return self._deps