snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +151 -78
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +2 -50
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +9 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -278,12 +277,7 @@ class Isomap(BaseTransformer):
|
|
278
277
|
)
|
279
278
|
return selected_cols
|
280
279
|
|
281
|
-
|
282
|
-
project=_PROJECT,
|
283
|
-
subproject=_SUBPROJECT,
|
284
|
-
custom_tags=dict([("autogen", True)]),
|
285
|
-
)
|
286
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Isomap":
|
280
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Isomap":
|
287
281
|
"""Compute the embedding vectors for data X
|
288
282
|
For more details on this function, see [sklearn.manifold.Isomap.fit]
|
289
283
|
(https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html#sklearn.manifold.Isomap.fit)
|
@@ -310,12 +304,14 @@ class Isomap(BaseTransformer):
|
|
310
304
|
|
311
305
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
312
306
|
|
313
|
-
|
307
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
314
308
|
if SNOWML_SPROC_ENV in os.environ:
|
315
309
|
statement_params = telemetry.get_function_usage_statement_params(
|
316
310
|
project=_PROJECT,
|
317
311
|
subproject=_SUBPROJECT,
|
318
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
312
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
313
|
+
inspect.currentframe(), Isomap.__class__.__name__
|
314
|
+
),
|
319
315
|
api_calls=[Session.call],
|
320
316
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
321
317
|
)
|
@@ -336,7 +332,7 @@ class Isomap(BaseTransformer):
|
|
336
332
|
)
|
337
333
|
self._sklearn_object = model_trainer.train()
|
338
334
|
self._is_fitted = True
|
339
|
-
self.
|
335
|
+
self._generate_model_signatures(dataset)
|
340
336
|
return self
|
341
337
|
|
342
338
|
def _batch_inference_validate_snowpark(
|
@@ -410,7 +406,9 @@ class Isomap(BaseTransformer):
|
|
410
406
|
# when it is classifier, infer the datatype from label columns
|
411
407
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
412
408
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
413
|
-
label_cols_signatures = [
|
409
|
+
label_cols_signatures = [
|
410
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
411
|
+
]
|
414
412
|
if len(label_cols_signatures) == 0:
|
415
413
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
416
414
|
raise exceptions.SnowflakeMLException(
|
@@ -418,25 +416,22 @@ class Isomap(BaseTransformer):
|
|
418
416
|
original_exception=ValueError(error_str),
|
419
417
|
)
|
420
418
|
|
421
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
422
|
-
label_cols_signatures[0].as_snowpark_type()
|
423
|
-
)
|
419
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
424
420
|
|
425
421
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
426
|
-
assert isinstance(
|
422
|
+
assert isinstance(
|
423
|
+
dataset._session, Session
|
424
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
427
425
|
|
428
426
|
transform_kwargs = dict(
|
429
|
-
session
|
430
|
-
dependencies
|
431
|
-
drop_input_cols
|
432
|
-
expected_output_cols_type
|
427
|
+
session=dataset._session,
|
428
|
+
dependencies=self._deps,
|
429
|
+
drop_input_cols=self._drop_input_cols,
|
430
|
+
expected_output_cols_type=expected_type_inferred,
|
433
431
|
)
|
434
432
|
|
435
433
|
elif isinstance(dataset, pd.DataFrame):
|
436
|
-
transform_kwargs = dict(
|
437
|
-
snowpark_input_cols = self._snowpark_cols,
|
438
|
-
drop_input_cols = self._drop_input_cols
|
439
|
-
)
|
434
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
440
435
|
|
441
436
|
transform_handlers = ModelTransformerBuilder.build(
|
442
437
|
dataset=dataset,
|
@@ -478,7 +473,7 @@ class Isomap(BaseTransformer):
|
|
478
473
|
Transformed dataset.
|
479
474
|
"""
|
480
475
|
super()._check_dataset_type(dataset)
|
481
|
-
inference_method="transform"
|
476
|
+
inference_method = "transform"
|
482
477
|
|
483
478
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
484
479
|
# are specific to the type of dataset used.
|
@@ -515,17 +510,14 @@ class Isomap(BaseTransformer):
|
|
515
510
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
516
511
|
|
517
512
|
transform_kwargs = dict(
|
518
|
-
session
|
519
|
-
dependencies
|
520
|
-
drop_input_cols
|
521
|
-
expected_output_cols_type
|
513
|
+
session=dataset._session,
|
514
|
+
dependencies=self._deps,
|
515
|
+
drop_input_cols=self._drop_input_cols,
|
516
|
+
expected_output_cols_type=expected_dtype,
|
522
517
|
)
|
523
518
|
|
524
519
|
elif isinstance(dataset, pd.DataFrame):
|
525
|
-
transform_kwargs = dict(
|
526
|
-
snowpark_input_cols = self._snowpark_cols,
|
527
|
-
drop_input_cols = self._drop_input_cols
|
528
|
-
)
|
520
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
529
521
|
|
530
522
|
transform_handlers = ModelTransformerBuilder.build(
|
531
523
|
dataset=dataset,
|
@@ -544,7 +536,11 @@ class Isomap(BaseTransformer):
|
|
544
536
|
return output_df
|
545
537
|
|
546
538
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
547
|
-
def fit_predict(
|
539
|
+
def fit_predict(
|
540
|
+
self,
|
541
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
542
|
+
output_cols_prefix: str = "fit_predict_",
|
543
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
548
544
|
""" Method not supported for this class.
|
549
545
|
|
550
546
|
|
@@ -569,7 +565,9 @@ class Isomap(BaseTransformer):
|
|
569
565
|
)
|
570
566
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
571
567
|
drop_input_cols=self._drop_input_cols,
|
572
|
-
expected_output_cols_list=
|
568
|
+
expected_output_cols_list=(
|
569
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
570
|
+
),
|
573
571
|
)
|
574
572
|
self._sklearn_object = fitted_estimator
|
575
573
|
self._is_fitted = True
|
@@ -586,6 +584,62 @@ class Isomap(BaseTransformer):
|
|
586
584
|
assert self._sklearn_object is not None
|
587
585
|
return self._sklearn_object.embedding_
|
588
586
|
|
587
|
+
|
588
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
589
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
590
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
591
|
+
"""
|
592
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
593
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
594
|
+
if output_cols:
|
595
|
+
output_cols = [
|
596
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
597
|
+
for c in output_cols
|
598
|
+
]
|
599
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
600
|
+
output_cols = [output_cols_prefix]
|
601
|
+
elif self._sklearn_object is not None:
|
602
|
+
classes = self._sklearn_object.classes_
|
603
|
+
if isinstance(classes, numpy.ndarray):
|
604
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
605
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
606
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
607
|
+
output_cols = []
|
608
|
+
for i, cl in enumerate(classes):
|
609
|
+
# For binary classification, there is only one output column for each class
|
610
|
+
# ndarray as the two classes are complementary.
|
611
|
+
if len(cl) == 2:
|
612
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
613
|
+
else:
|
614
|
+
output_cols.extend([
|
615
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
616
|
+
])
|
617
|
+
else:
|
618
|
+
output_cols = []
|
619
|
+
|
620
|
+
# Make sure column names are valid snowflake identifiers.
|
621
|
+
assert output_cols is not None # Make MyPy happy
|
622
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
623
|
+
|
624
|
+
return rv
|
625
|
+
|
626
|
+
def _align_expected_output_names(
|
627
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
628
|
+
) -> List[str]:
|
629
|
+
# in case the inferred output column names dimension is different
|
630
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
631
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
632
|
+
output_df_columns = list(output_df_pd.columns)
|
633
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
634
|
+
if self.sample_weight_col:
|
635
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
636
|
+
# if the dimension of inferred output column names is correct; use it
|
637
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
638
|
+
return expected_output_cols_list
|
639
|
+
# otherwise, use the sklearn estimator's output
|
640
|
+
else:
|
641
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
642
|
+
|
589
643
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
590
644
|
@telemetry.send_api_usage_telemetry(
|
591
645
|
project=_PROJECT,
|
@@ -616,24 +670,28 @@ class Isomap(BaseTransformer):
|
|
616
670
|
# are specific to the type of dataset used.
|
617
671
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
618
672
|
|
673
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
674
|
+
|
619
675
|
if isinstance(dataset, DataFrame):
|
620
676
|
self._deps = self._batch_inference_validate_snowpark(
|
621
677
|
dataset=dataset,
|
622
678
|
inference_method=inference_method,
|
623
679
|
)
|
624
|
-
assert isinstance(
|
680
|
+
assert isinstance(
|
681
|
+
dataset._session, Session
|
682
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
625
683
|
transform_kwargs = dict(
|
626
684
|
session=dataset._session,
|
627
685
|
dependencies=self._deps,
|
628
|
-
drop_input_cols
|
686
|
+
drop_input_cols=self._drop_input_cols,
|
629
687
|
expected_output_cols_type="float",
|
630
688
|
)
|
689
|
+
expected_output_cols = self._align_expected_output_names(
|
690
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
691
|
+
)
|
631
692
|
|
632
693
|
elif isinstance(dataset, pd.DataFrame):
|
633
|
-
transform_kwargs = dict(
|
634
|
-
snowpark_input_cols = self._snowpark_cols,
|
635
|
-
drop_input_cols = self._drop_input_cols
|
636
|
-
)
|
694
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
637
695
|
|
638
696
|
transform_handlers = ModelTransformerBuilder.build(
|
639
697
|
dataset=dataset,
|
@@ -645,7 +703,7 @@ class Isomap(BaseTransformer):
|
|
645
703
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
646
704
|
inference_method=inference_method,
|
647
705
|
input_cols=self.input_cols,
|
648
|
-
expected_output_cols=
|
706
|
+
expected_output_cols=expected_output_cols,
|
649
707
|
**transform_kwargs
|
650
708
|
)
|
651
709
|
return output_df
|
@@ -675,7 +733,8 @@ class Isomap(BaseTransformer):
|
|
675
733
|
Output dataset with log probability of the sample for each class in the model.
|
676
734
|
"""
|
677
735
|
super()._check_dataset_type(dataset)
|
678
|
-
inference_method="predict_log_proba"
|
736
|
+
inference_method = "predict_log_proba"
|
737
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
679
738
|
|
680
739
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
681
740
|
# are specific to the type of dataset used.
|
@@ -686,18 +745,20 @@ class Isomap(BaseTransformer):
|
|
686
745
|
dataset=dataset,
|
687
746
|
inference_method=inference_method,
|
688
747
|
)
|
689
|
-
assert isinstance(
|
748
|
+
assert isinstance(
|
749
|
+
dataset._session, Session
|
750
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
690
751
|
transform_kwargs = dict(
|
691
752
|
session=dataset._session,
|
692
753
|
dependencies=self._deps,
|
693
|
-
drop_input_cols
|
754
|
+
drop_input_cols=self._drop_input_cols,
|
694
755
|
expected_output_cols_type="float",
|
695
756
|
)
|
757
|
+
expected_output_cols = self._align_expected_output_names(
|
758
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
759
|
+
)
|
696
760
|
elif isinstance(dataset, pd.DataFrame):
|
697
|
-
transform_kwargs = dict(
|
698
|
-
snowpark_input_cols = self._snowpark_cols,
|
699
|
-
drop_input_cols = self._drop_input_cols
|
700
|
-
)
|
761
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
701
762
|
|
702
763
|
transform_handlers = ModelTransformerBuilder.build(
|
703
764
|
dataset=dataset,
|
@@ -710,7 +771,7 @@ class Isomap(BaseTransformer):
|
|
710
771
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
711
772
|
inference_method=inference_method,
|
712
773
|
input_cols=self.input_cols,
|
713
|
-
expected_output_cols=
|
774
|
+
expected_output_cols=expected_output_cols,
|
714
775
|
**transform_kwargs
|
715
776
|
)
|
716
777
|
return output_df
|
@@ -736,30 +797,34 @@ class Isomap(BaseTransformer):
|
|
736
797
|
Output dataset with results of the decision function for the samples in input dataset.
|
737
798
|
"""
|
738
799
|
super()._check_dataset_type(dataset)
|
739
|
-
inference_method="decision_function"
|
800
|
+
inference_method = "decision_function"
|
740
801
|
|
741
802
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
742
803
|
# are specific to the type of dataset used.
|
743
804
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
744
805
|
|
806
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
807
|
+
|
745
808
|
if isinstance(dataset, DataFrame):
|
746
809
|
self._deps = self._batch_inference_validate_snowpark(
|
747
810
|
dataset=dataset,
|
748
811
|
inference_method=inference_method,
|
749
812
|
)
|
750
|
-
assert isinstance(
|
813
|
+
assert isinstance(
|
814
|
+
dataset._session, Session
|
815
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
751
816
|
transform_kwargs = dict(
|
752
817
|
session=dataset._session,
|
753
818
|
dependencies=self._deps,
|
754
|
-
drop_input_cols
|
819
|
+
drop_input_cols=self._drop_input_cols,
|
755
820
|
expected_output_cols_type="float",
|
756
821
|
)
|
822
|
+
expected_output_cols = self._align_expected_output_names(
|
823
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
824
|
+
)
|
757
825
|
|
758
826
|
elif isinstance(dataset, pd.DataFrame):
|
759
|
-
transform_kwargs = dict(
|
760
|
-
snowpark_input_cols = self._snowpark_cols,
|
761
|
-
drop_input_cols = self._drop_input_cols
|
762
|
-
)
|
827
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
763
828
|
|
764
829
|
transform_handlers = ModelTransformerBuilder.build(
|
765
830
|
dataset=dataset,
|
@@ -772,7 +837,7 @@ class Isomap(BaseTransformer):
|
|
772
837
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
773
838
|
inference_method=inference_method,
|
774
839
|
input_cols=self.input_cols,
|
775
|
-
expected_output_cols=
|
840
|
+
expected_output_cols=expected_output_cols,
|
776
841
|
**transform_kwargs
|
777
842
|
)
|
778
843
|
return output_df
|
@@ -801,12 +866,14 @@ class Isomap(BaseTransformer):
|
|
801
866
|
Output dataset with probability of the sample for each class in the model.
|
802
867
|
"""
|
803
868
|
super()._check_dataset_type(dataset)
|
804
|
-
inference_method="score_samples"
|
869
|
+
inference_method = "score_samples"
|
805
870
|
|
806
871
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
807
872
|
# are specific to the type of dataset used.
|
808
873
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
809
874
|
|
875
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
876
|
+
|
810
877
|
if isinstance(dataset, DataFrame):
|
811
878
|
self._deps = self._batch_inference_validate_snowpark(
|
812
879
|
dataset=dataset,
|
@@ -819,6 +886,9 @@ class Isomap(BaseTransformer):
|
|
819
886
|
drop_input_cols = self._drop_input_cols,
|
820
887
|
expected_output_cols_type="float",
|
821
888
|
)
|
889
|
+
expected_output_cols = self._align_expected_output_names(
|
890
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
891
|
+
)
|
822
892
|
|
823
893
|
elif isinstance(dataset, pd.DataFrame):
|
824
894
|
transform_kwargs = dict(
|
@@ -837,7 +907,7 @@ class Isomap(BaseTransformer):
|
|
837
907
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
838
908
|
inference_method=inference_method,
|
839
909
|
input_cols=self.input_cols,
|
840
|
-
expected_output_cols=
|
910
|
+
expected_output_cols=expected_output_cols,
|
841
911
|
**transform_kwargs
|
842
912
|
)
|
843
913
|
return output_df
|
@@ -982,50 +1052,84 @@ class Isomap(BaseTransformer):
|
|
982
1052
|
)
|
983
1053
|
return output_df
|
984
1054
|
|
1055
|
+
|
1056
|
+
|
1057
|
+
def to_sklearn(self) -> Any:
|
1058
|
+
"""Get sklearn.manifold.Isomap object.
|
1059
|
+
"""
|
1060
|
+
if self._sklearn_object is None:
|
1061
|
+
self._sklearn_object = self._create_sklearn_object()
|
1062
|
+
return self._sklearn_object
|
1063
|
+
|
1064
|
+
def to_xgboost(self) -> Any:
|
1065
|
+
raise exceptions.SnowflakeMLException(
|
1066
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1067
|
+
original_exception=AttributeError(
|
1068
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1069
|
+
"to_xgboost()",
|
1070
|
+
"to_sklearn()"
|
1071
|
+
)
|
1072
|
+
),
|
1073
|
+
)
|
1074
|
+
|
1075
|
+
def to_lightgbm(self) -> Any:
|
1076
|
+
raise exceptions.SnowflakeMLException(
|
1077
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1078
|
+
original_exception=AttributeError(
|
1079
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1080
|
+
"to_lightgbm()",
|
1081
|
+
"to_sklearn()"
|
1082
|
+
)
|
1083
|
+
),
|
1084
|
+
)
|
985
1085
|
|
986
|
-
def
|
1086
|
+
def _get_dependencies(self) -> List[str]:
|
1087
|
+
return self._deps
|
1088
|
+
|
1089
|
+
|
1090
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
987
1091
|
self._model_signature_dict = dict()
|
988
1092
|
|
989
1093
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
990
1094
|
|
991
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1095
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
992
1096
|
outputs: List[BaseFeatureSpec] = []
|
993
1097
|
if hasattr(self, "predict"):
|
994
1098
|
# keep mypy happy
|
995
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1099
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
996
1100
|
# For classifier, the type of predict is the same as the type of label
|
997
|
-
if self._sklearn_object._estimator_type ==
|
998
|
-
|
1101
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1102
|
+
# label columns is the desired type for output
|
999
1103
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1000
1104
|
# rename the output columns
|
1001
1105
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1002
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1003
|
-
|
1004
|
-
|
1106
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1107
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1108
|
+
)
|
1005
1109
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1006
1110
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1007
|
-
# Clusterer returns int64 cluster labels.
|
1111
|
+
# Clusterer returns int64 cluster labels.
|
1008
1112
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1009
1113
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1010
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1011
|
-
|
1012
|
-
|
1013
|
-
|
1114
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1115
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1116
|
+
)
|
1117
|
+
|
1014
1118
|
# For regressor, the type of predict is float64
|
1015
|
-
elif self._sklearn_object._estimator_type ==
|
1119
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1016
1120
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1017
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1018
|
-
|
1019
|
-
|
1020
|
-
|
1121
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1122
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1123
|
+
)
|
1124
|
+
|
1021
1125
|
for prob_func in PROB_FUNCTIONS:
|
1022
1126
|
if hasattr(self, prob_func):
|
1023
1127
|
output_cols_prefix: str = f"{prob_func}_"
|
1024
1128
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1025
1129
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1026
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1027
|
-
|
1028
|
-
|
1130
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1131
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1132
|
+
)
|
1029
1133
|
|
1030
1134
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1031
1135
|
items = list(self._model_signature_dict.items())
|
@@ -1038,10 +1142,10 @@ class Isomap(BaseTransformer):
|
|
1038
1142
|
"""Returns model signature of current class.
|
1039
1143
|
|
1040
1144
|
Raises:
|
1041
|
-
|
1145
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1042
1146
|
|
1043
1147
|
Returns:
|
1044
|
-
Dict
|
1148
|
+
Dict with each method and its input output signature
|
1045
1149
|
"""
|
1046
1150
|
if self._model_signature_dict is None:
|
1047
1151
|
raise exceptions.SnowflakeMLException(
|
@@ -1049,35 +1153,3 @@ class Isomap(BaseTransformer):
|
|
1049
1153
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1050
1154
|
)
|
1051
1155
|
return self._model_signature_dict
|
1052
|
-
|
1053
|
-
def to_sklearn(self) -> Any:
|
1054
|
-
"""Get sklearn.manifold.Isomap object.
|
1055
|
-
"""
|
1056
|
-
if self._sklearn_object is None:
|
1057
|
-
self._sklearn_object = self._create_sklearn_object()
|
1058
|
-
return self._sklearn_object
|
1059
|
-
|
1060
|
-
def to_xgboost(self) -> Any:
|
1061
|
-
raise exceptions.SnowflakeMLException(
|
1062
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1063
|
-
original_exception=AttributeError(
|
1064
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1065
|
-
"to_xgboost()",
|
1066
|
-
"to_sklearn()"
|
1067
|
-
)
|
1068
|
-
),
|
1069
|
-
)
|
1070
|
-
|
1071
|
-
def to_lightgbm(self) -> Any:
|
1072
|
-
raise exceptions.SnowflakeMLException(
|
1073
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1074
|
-
original_exception=AttributeError(
|
1075
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1076
|
-
"to_lightgbm()",
|
1077
|
-
"to_sklearn()"
|
1078
|
-
)
|
1079
|
-
),
|
1080
|
-
)
|
1081
|
-
|
1082
|
-
def _get_dependencies(self) -> List[str]:
|
1083
|
-
return self._deps
|